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Figure 1: We introduce self-supervised visual masking that enhances image quality prediction for existing quality metrics such as MAE, SSIM,
FLIP, and VGG. Our work is inspired by the well-known characteristic of the Human Visual System (HVS), visual masking, which results
in locally varying sensitivity to image artifact visibility that reduces with increasing contrast magnitude of the original image pattern. We
found that the learned masking clearly outperforms its traditional hand-crafted versions and better adapts to specific distortion patterns.
In the first two rows, we show the reference and distorted images, while the third and fourth rows show the error maps as predicted by the
original metrics and their enhanced versions using our masking approach. As can be seen, our mask-enhanced metrics better predict the local
distortion visibility by the human observer. For a more intuitive comparison, we scale each error map to fit within the mean opinion scores
(MOS) range (please refer to Sec. 4.2 for more details). In this color scale, darker indicates less visible distortion.

Abstract
Full-reference image quality metrics (FR-IQMs) aim to measure the visual differences between a pair of reference and distorted
images, with the goal of accurately predicting human judgments. However, existing FR-IQMs, including traditional ones like
PSNR and SSIM and even perceptual ones such as HDR-VDP, LPIPS, and DISTS, still fall short in capturing the complexities
and nuances of human perception. In this work, rather than devising a novel IQM model, we seek to improve upon the perceptual
quality of existing FR-IQM methods. We achieve this by considering visual masking, an important characteristic of the human
visual system that changes its sensitivity to distortions as a function of local image content. Specifically, for a given FR-IQM
metric, we propose to predict a visual masking model that modulates reference and distorted images in a way that penalizes the
visual errors based on their visibility. Since the ground truth visual masks are difficult to obtain, we demonstrate how they can
be derived in a self-supervised manner solely based on mean opinion scores (MOS) collected from an FR-IQM dataset. Our
approach results in enhanced FR-IQM metrics that are more in line with human prediction both visually and quantitatively.
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1. Introduction

Full-Reference Image Quality Metrics (FR-IQMs), which take as an
input a pair of reference and distorted images, play a crucial role in a
wide range of applications in digital image processing, such as image
compression and transmission, as well as in evaluating the rendered
content in computer graphics and vision. They are commonly used
as a cost function in optimizing restoration tasks like denoising,
deblurring, and super-resolution [DMWS21]. Consequently, devel-
oping FR-IQMs that accurately reflect the visual quality of images
in accordance with the characteristics of the human visual system
(HVS) is critical. The most commonly used FR-IQMs for evaluating
image quality are the mean square error (MSE) or mean absolute er-
ror (MAE). While these per-pixel metrics are easy to compute, they
assess image quality regardless of spatial content, leading to false
positive predictions. This can be seen in Fig. 1a, where Gaussian
noise is less noticeable in textured regions, while MAE predicts uni-
formly distributed error. Similarly, a depth-of-field blur is primarily
visible on high-contrast fonts Fig. 1b, while MAE predicts the blur
visibility also in smooth gradient regions. Other classic metrics like
SSIM [WBSS04], while accounting for spatial content, often result
in false positive predictions (the JPEG artifact and image-based
rendering (IBR) artifact in Fig. 1c-d, respectively). A recent hand-
crafted metric FLIP [ANA∗20] is specifically designed to predict
the visual differences in time-sequential image-pair flipping, which
can make it too sensitive for side-by-side image evaluation, e.g.,
noise is less visible in high-contrast texture (Fig. 1e) or motion blur
is not equally visible across different parts of an image (Fig. 1f).
Recognizing that hand-crafted image features may not adequately
capture the HVS complexity, modern metrics [ZIE∗18] strive to
assess the perceptual dissimilarity between images by comparing
deep features extracted from classification networks [SZ15]. These
metrics appear to better account for the HVS characteristics; how-
ever, they are designed to generate a single value per image pair and
cannot provide correct visible error localization, as can be seen in
the impulse noise example (Fig. 1g). Moreover, the features learned
through training the classification networks tend to be less sensitive
to global distortions, such as moderate color and brightness changes
(Fig. 1h) that have less impact on reliable classification.

The objective of this work is not to develop a new perceptual
FR-IQM; instead, we are interested in improving the quality predic-
tion of existing metrics to align more closely with human judgment
(Fig. 2). We also aim to enhance the accuracy of error map pre-
dictions by considering multiple factors such as image content,
distortion levels, and distortion types. By detecting both the pres-
ence and evaluating the magnitude of visible distortion in each
pixel, we aim to ensure that the metric predictions more accurately
reflect the probability of a human observer detecting differences
between a pair of images. In this regard, there have been several
efforts toward incorporating the perceptual aspects of human vision,
specifically visual masking [LF80, Fol94, WG84], into FR-IQM
methods [Lub95, Dal93, MKRH11, MDC∗21]. In simple words, vi-
sual masking refers to the phenomenon in which certain components
of an image (in our application, distortions) may be less visible to
the viewer due to the presence of other visual elements in the same
image. Visual masking can affect image quality perception, making
some image distortions less visible to the viewer [FSPG97, ZDL02].
However, existing visual masking models are typically hand-crafted

and struggle to generalize effectively across various distortion types.
Although learning a visual masking model appears to be a natural
solution, the lack of reliable ground truth data for visual masking
makes direct supervision impractical. In this work, we propose a
self-supervised approach to predict visual masking using a dataset
of images featuring a variety of distortions of different magnitudes
whose quality has been evaluated in the mean opinion scores (MOS)
experiment with human subjects [LHS19].

In summary, our work offers the following contributions:

• We propose a lightweight CNN that generates a mask for a given
reference and distorted input pair. The predicted mask acts as a
per-pixel weight and, when multiplied with the inputs, greatly
improves the performance of the existing FR-IQMs. The incor-
poration of our learned mask into any FR-IQM is seamless and
demands minimal computational resources. While the CNN is
trained specifically for each metric, it learns a generic masking
model capable of identifying various types of distortions.

• We demonstrate that our masking model can be generalized to
deep features and used as a per-layer feature map weight.

• Our solution significantly enhances the accuracy of quality pre-
diction for FR-IQMs across various test datasets. Furthermore,
it produces per-pixel error maps that visually align more closely
with human perception compared to the original FR-IQMs.

• We show the potential application of our approach as a loss func-
tion for training image denoising and motion deblurring.

2. Previous work

FR-IQMs can be categorized into classical metrics, which perform
the computation directly in the image space, and learning-based
metrics, which leverage deep feature models to assess image quality.

Classic metrics Basic FR-IQMs, such as MSE, RMSE, and MAE,
compute the per-pixel difference to quantify image distortion. While
these metrics are straightforward to calculate, their consistency
with human vision is typically low. Such perceptual consistency
can be improved by considering relative instead of absolute error,
as in PSNR and the symmetric mean absolute percentage error
(SMAPE) [VRM∗18]. To account for the spatial aspects of the
HVS, alternative metrics such as SSIM [WBSS04] are introduced,
which consider image patches and measure local differences in
luminance, contrast, and structural information. SSIM is further
extended to multi-scale MS-SSIM [WSB03] and complex wavelet
CW-SSIM [SWG∗09] versions that capture both global and local
structural information. FSIM [ZZMZ11] decomposes the image
into multiple subbands using Gabor filters and compares subband
responses between the reference and distorted images. By assuming
that natural images have a specific distribution of pixel values, mod-
els based on information theory [SB05, SB06] measure the mutual
information between images by comparing their joint histograms
and taking into account the statistical dependencies between neigh-
boring pixels. Classical metrics can offer either a single overall
quality score or a visibility map indicating the distortion inten-
sity. Watson-DCT [Wat93], VDM [Lub95], VDP [Dal93], HDR-
VDP [MKRH11], and fovVideoVDP [MDC∗21] measure either the
visibility of distortions or perceived distortions magnitude, or both
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Çoğalan et al. / Enhancing image quality prediction with self-supervised visual masking 3 of 12

MAE, SSIM
Human Choice

E-MAE, E-SSIM
DISTS, LPIPS

E-DISTS,  E-LPIPS

Distorted 1 Reference Distorted 2 Distorted 1 Reference Distorted 2

Figure 2: Agreement of metric predictions with human judgments. We consider the classic (MAE and SSIM) and learning-based (LPIPS and
DISTS) metrics, and we compare their prediction to their enhanced versions (E-MAE, E-SSIM, E-DISTS, and E-LPIPS) using our approach.
On the left, we see a situation where MAE and SSIM favor JPEG-like artifacts over slightly resampled textures. On the right, we encounter a
scenario where LPIPS and DISTS prefer blur over a subtle color shift. Our extended metric versions are better aligned with human choice.
The images have been extracted from the PIPAL dataset [JHH∗20].
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Figure 3: Our proposed visual masking for enhancing classic metrics such as MAE and SSIM (left) and learning-based metrics such as DISTS
or LPIPS (right). For classic metrics, the input to our mask predictor network F are sRGB images, while for learning-based metrics, the
inputs are the VGG features extracted from the images. We learn the visual masks in a self-supervised fashion by minimizing the difference
between the metric final score and human scores collected from an FR-IQM dataset.

by considering various visual aspects such as luminance adapta-
tion, contrast sensitivity, and visual masking. A more recent metric,
FLIP [ANA∗20], emphasizes color differences, and it is sensitive to
even subtle distortions by emulating flipping between the compared
image pair.

Deep learning-based metrics In recent years, research in FR-IQM
has been placing greater emphasis on perceptual comparisons in
deep feature space rather than image space to enhance the alignment
with human judgments. Prashnani et al. [PCMS18] are among the
first to utilize deep feature models learned from human-labeled data
to predict perceptual errors. Zhang et al. [ZIE∗18] demonstrate that
internal image representations from classification networks can be
used for image comparison. They propose the Perceptual Image
Patch Similarity (LPIPS) index, which quantifies image similarity
by measuring the ℓ2 distances between pre-trained VGG features.
To further improve the correlation with human judgments, they learn
per-channel weights for selected VGG features using their collected
perceptual similarity dataset. Recognizing that simple ℓp-norm mea-
sures fail to consider the statistical dependency of errors across dif-
ferent locations, Ding et al. [DMWS20] introduce the DISTS, which
aims to measure the texture and structure similarity between feature
pairs by comparing their global mean, variance, and correlations in

the form of SSIM. Building upon this work, A-DISTS [DLZ∗21]
extended the approach to incorporate local structure and texture
comparisons. Czolbe et al. [CKCI20] incorporate their extended
Watson-DCT model [Wat93] as a measure of VGG feature distance.
Moving away from deterministic point-wise feature comparisons,
DeepWSD [LCZ∗22] compares the overall distributions of features
using the Wasserstein distance, a statistical measure for comparing
two distributions. Nevertheless, the majority of the proposed IQMs
metrics are targeted toward producing a single quality score and are
not primarily designed to generate per-pixel error maps. In this re-
gard, Wolski et al. [WGY∗18] employ a custom CNN model trained
in a fully supervised way using coarse user marking data to predict
an error visibility map that highlights the regions where distortions
are more likely to be noticeable.
Recently, deep learning-based no-reference metrics (NR-IQM)
such as KonCept512 [HLSS20], HYPERIQA [SYZ∗20], MUSIQ
[KWW∗21] and MANIQA [YWS∗22] have been proposed. While
NR-IQM methods often report impressive performance, their prac-
tical applicability remains limited. FR-IQM metrics are still pre-
dominant in CG applications, as the reference images are typically
readily available.

In this work, we extend the classic and deep learning-based full-
reference metrics by introducing a learnable component trained
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on perceptual MOS data in a self-supervised way. By implicitly
analyzing local image content, our model derives per-pixel maps that
mimic visual masking, effectively modeling the visual significance
of distortions.

3. Self-supervised visual masking

This section elaborates on our methodology for perceptually calibrat-
ing the existing FR-IQMs. Given a reference and distorted pair (X
and Y ) ∈ RH×W×C, we first learn a visual mask, M ∈ RH×W×1,
which has the same spatial dimensions as the inputs. For clas-
sical metrics (Fig. 3-left), the input X and Y are sRGB images
(C = 3), while for learning-based metrics such as LPIPS, DISTS,
or DeepWSD, the input X and Y are the VGG features extracted
from the images and C is the number of channels in a given
VGG layer (Fig. 3-right). The predicted mask is then element-
wise multiplied with X and Y before being fed into an FR-IQM,
D. Note that, for learning-based metrics, a direct modulation of
the input sRGB images by a mask M would distort their con-
tent and consequently reduce the VGG performance as it is origi-
nally trained on complete, non-masked images. Our solution with
VGG feature modulation draws inspiration from classic FR-IQMs
[Lub95,Dal93,MKRH11,MDC∗21], where the response from hand-
crafted filter banks is transduced using a fixed, perception-motivated
masking model [LF80,Fol94,WG84]. In our approach, the response
from pre-trained VGG filters is modulated with a learned per-pixel
mask M, where perception modeling is learned from the MOS data.
We estimate the mask M by utilizing a lightweight CNN denoted as
F , which takes both X and Y as input. Mathematically, this can be
expressed as:

M = F(X ,Y ) (1)

It is important to note that the network F is trained specifically
for a metric D. In the case of metrics such as LPIPS, DISTS, and
DeepWSD, we follow their specific architecture and compute a mask
for each layer using a separate F , and the same mask is applied
for all channels in a given layer (Fig. 3-right). The original spatial
pooling is preserved for each metric, such as L1 distance in LPIPS,
structural similarity in DISTS, or Wasserstein distance in DeepWSD.
Since we cannot directly supervise the output of the mask generator
network, we adopt a self-supervised approach to train it using an
IQM dataset with a single quality score. The network’s parameters
are optimized by minimizing the ℓ2 difference between the metric
output value and human scores. Our loss is formulated as follows:

Loss = ∥G(D(M⊙X ,M⊙Y ))−q∥2
2 (2)

Here, q ∈ [0,1] represents the normalized mean opinion score
when comparing the images X and Y . As the metric response can
vary in an arbitrary range, following a similar approach in [ZIE∗18],
a small network G is jointly trained to map the metric response to
the human ratings.

3.1. Training and network details

For training, we use the KADID dataset [LHS19], which comprises
81 natural images that have been distorted using 25 types of tradi-
tional distortions, each at five different levels, making roughly 10k

training pairs. Note that we train our mask generator network F for
all the distortion categories together rather than for one specific cat-
egory. We find that a lightweight CNN with three convolutional lay-
ers, each consisting of 64 channels, suffices for successful training.
ReLU activation is applied after each layer, while we use Sigmoid
activation for the final layer to keep the mask values in the range
between 0 and 1. The computation overhead of our mask generator
network is very negligible, and it takes only 12 ms to compute the
mask on a 1080Ti GPU with an input resolution of 768×512×3.
Our mapping network G consists of two 32-channel fully connected
(FC) ReLU layers, followed by a 1-channel FC layer with Sigmoid
activation. The batch size for training is set to 4. We employ the
Adam optimizer [KB15] with an initial learning rate of 10−4 and a
weight decay of 10−6.

Table 1: Performance comparison of existing FR-IQMs and their
enhanced versions using our approach (specified by the prefix E)
on three standard IQM datasets. The prefix R denotes the original
metric retraining on the KADID dataset, while the prefix S refers to
employing a visual saliency mask instead of our mask. At the bottom,
we include the corresponding results for NR-IQMs. Higher values
of SRCC, PLCC, and KRCC indicate better quality prediction. The
first and second best metrics for each dataset are indicated in bold
and underlined, respectively. Additionally, the version with superior
correlation is highlighted in dark gray for each metric.

CSIQ TID PIPAL

Metric PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC

FSIM 0.900 0.913 0.740 0.847 0.789 0.611 0.651 0.617 0.441
VIF 0.826 0.841 0.642 0.820 0.813 0.616 0.584 0.538 0.378
HDR-VDP-2 0.761 0.886 0.704 0.715 0.753 0.571 0.514 0.503 0.354
PieAPP 0.827 0.840 0.653 0.832 0.849 0.652 0.729 0.709 0.521

MAE 0.819 0.801 0.599 0.639 0.627 0.409 0.458 0.443 0.304
S-MAE 0.656 0.697 0.493 0.498 0.496 0.347 0.369 0.365 0.248
E-MAE 0.871 0.917 0.738 0.857 0.863 0.673 0.597 0.606 0.429
PSNR 0.851 0.837 0.645 0.726 0.714 0.540 0.468 0.456 0.314
E-PSNR 0.901 0.910 0.728 0.855 0.844 0.656 0.637 0.629 0.446
SSIM 0.848 0.863 0.665 0.697 0.663 0.479 0.550 0.534 0.373
E-SSIM 0.869 0.910 0.732 0.842 0.868 0.677 0.671 0.656 0.469
MS-SSIM 0.826 0.841 0.642 0.820 0.813 0.616 0.584 0.538 0.379
E-MS-SSIM 0.862 0.895 0.709 0.806 0.825 0.621 0.642 0.634 0.453
FLIP 0.731 0.724 0.527 0.591 0.537 0.413 0.498 0.442 0.306
E-FLIP 0.871 0.902 0.715 0.859 0.858 0.666 0.621 0.612 0.434
FovVideoVDP 0.795 0.821 0.632 0.742 0.727 0.544 0.565 0.509 0.358
E-FovVideoVDP 0.841 0.882 0.685 0.830 0.816 0.623 0.662 0.626 0.449
VGG 0.938 0.952 0.804 0.853 0.820 0.639 0.643 0.610 0.432
E-VGG 0.914 0.938 0.776 0.895 0.889 0.710 0.695 0.675 0.485
LPIPS 0.944 0.929 0.769 0.803 0.756 0.568 0.640 0.598 0.424
R-LPIPS 0.931 0.917 0.756 0.898 0.886 0.697 0.670 0.640 0.447
E-LPIPS 0.922 0.933 0.771 0.884 0.876 0.689 0.705 0.678 0.490
DISTS 0.947 0.947 0.796 0.839 0.811 0.619 0.645 0.626 0.445
E-DISTS 0.938 0.925 0.754 0.903 0.915 0.725 0.725 0.697 0.507
Watson-VGG 0.944 0.940 0.785 0.808 0.763 0.573 0.627 0.606 0.429
E-Watson-VGG 0.917 0.936 0.776 0.886 0.895 0.716 0.697 0.678 0.488
DeepWSD 0.949 0.961 0.821 0.879 0.861 0.674 0.593 0.584 0.409
R-DeepWSD 0.955 0.961 0.823 0.895 0.88 0.695 0.654 0.633 0.449
E-DeepWSD 0.937 0.937 0.775 0.905 0.892 0.710 0.704 0.672 0.485

HYPERIQA 0.769 0.757 0.573 0.679 0.662 0.489 0.325 0.363 0.250
MANIQA 0.874 0.827 0.642 0.784 0.760 0.572 0.404 0.407 0.276
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Figure 4: Visual comparisons of distortion visibility maps for Gaussian noise (upper row) and superresolution artifacts (middle and bottom
rows). The distortion examples are taken from the PIPAL dataset. The first two columns present the reference and distorted images, followed
by the respective metric predictions: MAE, HDR-VDP-2 [MKRH11], LocVis [WGY∗18], FovVideoVDP [MDC∗21], and our E-MAE. Here, we
additionally visualize the MAE map to better understand the characteristics of each distortion. As can be seen, the existing metrics tend to
either underestimate or overestimate the distortion visibility. Note that LocVis and E-MAE have not seen distorted images with superresolution
artifacts in their training.

4. Results

In this section, we first present our experimental setup, which we
use for our method evaluation and ablations of different training
strategies.

4.1. Experimental setup

We employ our visual masking approach to enhance some of
the classical metrics (MAE, PSNR, SSIM, MS-SSIM, FLIP, and
fovVideoVDP) and recent learning-based methods (VGG, LPIPS,
DISTS, Watson-VGG, and DeepWSD). Note for MS-SSIM, we used
the same F across all scales, while the inputs are images at different
scales. Moreover, the metric called VGG is computed by simply
taking the ℓ1 difference between VGG features for the same layers
as originally chosen for LPIPS and DISTS. Deploying our masking
model to PieAPP or any other metrics that create new CNN architec-
tures from scratch is not practical as there is no intermediate com-
ponent to which we can apply our masking model. Thus, our main
focus remains on mainstream metrics that use features extracted
from pre-trained networks for quality prediction. We assess the per-
formance of our proposed approach on three well-established IQM
datasets: CSIQ [LC10], TID2013 [PJI∗15], and PIPAL [JHH∗20].
The first two datasets mainly consist of synthetic distortions, ranging
from 1k to 3k images. On the other hand, PIPAL is the most com-
prehensive IQM dataset due to its diverse and complex distortions,
consisting of 23k images. Each reference image in this dataset was
subjected to 116 distortions, including 19 GAN-type distortions.
For evaluation, following [DMWS20], we resize the smaller side
resolution of input images to 224 while maintaining the aspect ratio.
Note that rescaling is only performed on the test datasets to match

the image resolution in which the MOS data were collected. Our
approach does not require rescaled inputs, and all visual figures in
the paper are processed in their original resolution. For each dataset,
three metrics are used for evaluation: Spearman’s rank correlation
coefficient (SRCC), Pearson linear correlation coefficient (PLCC),
and the Kendall rank correlation coefficient (KRCC). The PLCC
measures the accuracy of the predictions, while the SRCC indicates
the monotonicity of the predictions, and the KRCC measures the
ordinal association. The PLCC measures linear correlation, requir-
ing both variables (metric output and MOS) to be on the same scale,
hence, we mapped the metric scores to the MOS values using a
four-parameter logistic function, consistent with established IQM
methods [DMWS20, LCZ∗22]. We do not use G for PLCC remap-
ping; otherwise, we need to train a specific G for each metric on
a given test set. Importantly, SRCC and KRCC scores do not re-
quire additional remapping, thus directly reflecting the correlation
between metric output and MOS data.

4.2. Evaluations

In this section, we present the outcome of the quantitative (agree-
ment with the MOS data) and qualitative (the quality of error maps)
evaluation of our method. We also analyze the mask content and
relate it with perceptual models of contrast and blur perception.
Finally, we analyze the error map prediction of different distortion
levels, and we consider the potential use of our enhanced E-MAE
metric as a loss in denoising and deblurring image restoration tasks.

Quality prediction The experimental results are presented in
Tbl. 1, where with the prefix E, we denote our proposed extension
for each specific IQM. Our extension of traditional metrics, such as

© 2024 The Authors.
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MAE, PSNR, SSIM, FLIP, and fovVideoVDP, consistently improves
their performance for all datasets. This is remarkable as those met-
rics are commonly used, and our simple extension can make their
distortion prediction closer to the human observer. Interestingly, the
enhanced E-MAE and E-PSNR outperform recent learning-based
VGG, LPIPS, and DISTS in the TID dataset while showing a compa-
rable performance for the PIPAL dataset. Notable improvements are
also observed in both datasets for the recent learning-based metrics
(E-VGG, E-LPIPS, E-DIST, Watson-VGG, and E-DeepWSD), posi-
tioning them at a level comparable to other state-of-the-art IQMs,
such as PieAPP [PCMS18]. The only exception is the case of the
small-scale CSIQ dataset, where the original learning-based metrics
achieve high correlations with the MOS data and leave little space
for further improvements. Please see our supplementary for a more
detailed analysis.

We also consider retraining LPIPS per-channel weights using the
KADID dataset (denoted as R-LPIPS in Tbl. 1), which improves
correlation for TID and PIPAL datasets with respect to the original
LPIPS. Compared to our E-LPIPS, such retraining is more prone to
overfitting; it performs marginally better for the TID dataset, which
has more distortion similarities with KADID, while it is significantly
worse for the larger and more diverse PIPAL dataset. Similarly, train-
ing layer-specific weights for DeepWSD (R-DeepWSD) improves
correlation, however, our E-DeepWSD achieves better performance.
Moreover, channel/layer-wise weighing can not be reasonably ap-
plied to image-based metrics (MAE, SSIM, FLIP).

We evaluate the performance of recent NR-IQM methods
MANIQA [YWS∗22] and HYPERIQA [SYZ∗20] that are trained
on the KADID dataset. As it can be seen in Tbl. 1, the NR-IQM
methods show significantly lower correlations with the MOS data,
particularly for the PIPAL dataset, which indicates that FR-IQM
methods can better generalize to unseen distortion types.

Visual saliency methods incorporate semantic information, how-
ever, they are not trained to discriminate between dominant distor-
tions and salient features (e.g., faces). This seems to be a limiting
factor in the direct saliency use in our image quality evaluation
framework. To validate this observation, we employed a predicted
saliency map from an off-the-shelf saliency network [Jia18] as a
mask to the MAE metric that we denote as S-MAE in Tbl. 1. While
in this simple attempt, we observe significantly lower correlations
with the MOS data, we believe that our approach can be comple-
mented by saliency, so that effectively distortion predictions are
narrowed to image regions that are likely to be visually attended.

Error map prediction In Fig. 1, we show the error maps predicted
by various existing IQMs and their enhanced versions for a set of
images featuring different types of distortions. As the output of each
metric can be in an unbounded range and vary across different met-
rics and their improved versions with our approach, for a more intu-
itive and fair comparison, instead of simply normalizing them within
the range from zero to one using a Sigmoid function [ANA∗20], we
visualize the output of each metric after being scaled to the MOS
range using a pre-trained scaling network G. Specifically, we utilize
KADID dataset and train a separate G for each metric to transform
their raw response into values that align with human ratings (MOS).
Note that for the enhanced version of each metric, the network G
is already provided from the training step. In general, this scaling

process is akin to mapping the metric scores to the MOS values
using a four-parameter function when computing the correlation. As
can be seen in Fig. 1, the enhanced error maps using our approach
better align with the human perception of the distortion. A notable
example is the case of Gaussian noise, where a metric like MAE
predicts uniformly distributed error, and our masking approach ef-
fectively redistributes the error in terms of both their magnitude and
local visibility. We provide more examples in our supplementary
materials. Additionally, Fig. 4 showcases three examples where our
E-MAE metric achieves better localized error maps compared to
well-established visibility metrics such as HDR-VDP-2 [MKRH11],
LocVis [WGY∗18], and FovVideoVDP [MDC∗21].
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Figure 5: Comparison of our E-MAE metric masks for the noise
(fifth row) and blur (sixth row) distortions as a function of different
image contrast (×0.5,×1, and ×2). In the fourth row, we also show
a map with the human sensitivity to local contrast changes as pre-
dicted by a traditional model of visual contrast masking [TAKW∗19,
Eq.4]. In all cases, darker means more masking (less sensitive to
distortion).

Mask visualization It is also intriguing to see the learned mask,
i.e., the output of the network F , and to compare it with a traditional
visual contrast masking model, such as the one used in JPEG2000
compression [ZDL02]. To this end, Fig. 5 presents our masks gener-
ated for noise and blur distortions. We consider the same distortion
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level and three levels of image contrast enhancement (×0.5,×1,
and ×2). In the case of noise distortion, our learned masks predict
stronger visual masking in the high-contrast butterfly and better
noise visibility in the out-of-focus smooth background. Increasing
image contrast (×2) leads to even stronger visual masking in the but-
terfly area and the plant behind it. Reducing image contrast (×0.5)
leads to the inverse effect. Such behavior is compatible with the
visual contrast masking model [ZDL02, TAKW∗19], where due to
self-contrast masking, the higher the contrast of the original signal
(e.g., on edges), the stronger the distortion should be to make it
visible. Along a similar line, due to neighborhood masking, the
higher the contrast texture, the stronger the visual masking as well.
In the case of blur distortion, our learned mask predicts its strong
visibility on high-contrast edges. The stronger the image contrast
(×2), the blur visibility improves. Assigning a higher weight by our
mask to high contrast regions agrees with perceptual models of blur
detection and discrimination [WA11, SBG15].
Note that we derive each mask taking as an input both the reference
and distorted images; the mask can resolve even per-pixel distortions,
as in the case of noise (Fig. 5), and accordingly informs the E-MAE
metric on the perceptual importance of such distortions. What is
also remarkable is that the HVS might impose contradictory require-
ments on hand-crafted visual models that become specific for a given
distortion. This is well illustrated in Fig. 5, where noise can be better
masked by strong contrast patterns [ZDL02, TAKW∗19] while blur
is actually better revealed by strong contrast patterns [WA11]. Our
learned E-MAE mask recognizes the distortion context and reacts as
expected by penalizing less noise distortion in high-contrast and tex-
tured regions while penalizing more blur distortion at high-contrast
edges. Interestingly, such local, seemingly contradictory behavior
has been learned solemnly by providing multiple pairs of reference
and distortion images along with the corresponding quality MOS
rating, which is just a single number. No annotation on specific
distortion types has been required in our training. Fig. 11 shows
further examples that our learned masking is also informed about
contrast masking by texture [FSPG97] and the contrast sensitivity
function (CSF) [Dal93, Bar99, WAK∗20].

Masks vs. metrics analysis Masks typically vary with distortion
type, as demonstrated in Fig. 5 for noise and blur. In Fig. 6, we fur-
ther illustrate the predicted mask across various metrics, including
MAE, PSNR, SSIM, FLIP, and VGG for a given pair of reference
and distorted images with Gaussian noise. As can be seen, metrics
with similar characteristics, such as MAE, PSNR, and FLIP, tend
to learn similar maps. For a more perceptually-informed metric
like SSIM that partially models visual masking, our predicted mask
adjusts its sensitivity by assigning lower weight to regions where
SSIM exaggerates the error (e.g., in the grass area) and identity
weight when accurately predicting the error magnitude (e.g., the
body of lighthouse). When it comes to VGG, the mask learned for
the early layer resembles the MAE mask since the initial convo-
lutional layers tend to learn basic image features like edges and
textures, whereas for the deeper layers, as the VGG learns more ab-
stract features, the interpretation of the masks become less obvious.
In the supplementary, we provide an additional example with blur
distortion.

Employing the enhanced metric as a loss In this part, we in-

vestigate the benefit of the enhanced IQMs in optimizing image
restoration algorithms. To this end, we employ MAE and MAE+λ·
E-MAE as loss functions for training image denoising and mo-
tion deblurring using the state-of-the-art image restoration method,
Restormer [ZAK∗22]. For the denoising task, we select the images
in the BSD400 dataset [MFTM01] as our training set and introduce
synthetic noise to these images by applying additive white Gaussian
noise with a randomly chosen standard deviation ranging between 0
and 50. We performed each training with the same number of itera-
tions in an identical setup (e.g., learning rate). Then, we evaluate the
trained models on five benchmark datasets, consistent with the ones
used in [ZAK∗22]. We conduct our evaluation for various noise lev-
els and report the results in Tbl. 2. We can observe that training just
with the MAE loss leads to higher PSNRs, in particular for higher
noise levels, but at the same time, image blur and contrast loss can
be observed (refer to Fig. 7). More perceptually inclined quality
metrics penalize for such visual quality reduction, e.g., LPIPS is
sensitive to excessive blur [ZIE∗18]. Combining with an E-MAE
loss component clearly improves such metrics’ scores consistently
across various noise levels as well as the visual quality. For the mo-
tion deblurring task, we employed the GoPro dataset [NHKML17]
for the training and evaluation. The combination of MAE and E-
MAE enhances the deblurring results across different quality metrics
(Tbl. 3) and leads to a sharper appearance (Fig. 8). In both tasks,
we empirically found that λ = 1 gives the best performance. We
also observe that relying exclusively on the E-MAE loss component
leads to worse results, which is expected, as indicated in [DMWS21].
In the supplementary, we provide more comparisons for other loss
combinations, such as MAE+VGG and MAE+E-VGG that lead to
similar conclusions.

4.3. Ablations

We perform a set of ablations to investigate the impact of reduced
training data in terms of distortion levels, reference image num-
ber, and distortion type diversity on the E-MAE metric prediction
accuracy.

Distortion levels The first experiment analyzes the importance
of incorporating various distortion levels into our training set. In
this regard, we train our network for the E-MAE metric using only
one distortion level per category, and the results are reported in
Fig. 9. Interestingly, for all the datasets (except PIPAL), an inverse
U-shape trend emerged across five different distortion levels, where
we observe the lowest correlation when training with the mini-
mum and maximum distortion levels (levels 1 and 5). Conversely,
a moderate amount of distortion (level 3) appears to be sufficiently
representative for each distortion category and achieved a compara-
ble correlation to training with all five levels. This behavior can be
anticipated because, at the lowest and highest distortion levels, the
distortions are either barely visible or strongly visible, leading to the
consistent selection of mostly extreme rating scores. Consequently,
when the network is exclusively exposed to images with one such
extreme distortion and rating levels, it fails to learn to differenti-
ate between them. On the other hand, at moderate distortion levels
where distortions are partially visible or invisible, the network has a
better opportunity to learn masks that behave differently for varying
spatial locations.
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Figure 6: Visualisation of predicted mask across different metrics for a given pair of reference and distorted images with Gaussian noise from
the TID dataset. Note that the SSIM values have been remapped to 1-SSIM, where lower values indicate less visible errors. In the case of the
PSNR, we show the error map for the measured MSE. For the VGG metric, we visualize the predicted mask for all layers, while the error map
is shown only for the first layer.

Denoised with MAE + E-MAE Noisy Reference Denoised with MAE + E-MAEDenoised with MAE

Figure 7: Visual results in the image denoising task when employing MAE and MAE+E-MAE as loss functions. Considering that denoiser
networks typically reduce noise through smoothing, our objective was to investigate whether the use of the E-MAE loss component could
encourage the network to retain or hallucinate details, even if they do not precisely match the reference but their discrepancy from the ground
truth is possibly not perceivable. As can be seen, the denoised images with the MAE+E-MAE loss yield sharper content and higher contrast.

Deblurred with MAE + E-MAE Blurry Reference Deblurred with MAE + E-MAEDeblurred with MAE

Figure 8: Visual results for the motion deblurring task when employing MAE and MAE + E-MAE as loss functions.

Dataset size Although we employ a large-scale KADID dataset
in our training (25 distortion types × five distortion levels), the
number of reference images is limited to 81. This ablation aims to
investigate the training performance by even further reducing the
number of reference images. To this end, we perform multiple runs

of E-MAE metric training using randomly selected subsets of 20,
40, and 60 reference images. Fig. 10 presents the SRCC correlations
averaged over multiple runs. The correlation differences between
40, 60, and the full set of 81 reference images are minor. In the case
of 20 reference images, the performance is slightly lower and the
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Table 2: Evaluation of a blind Gaussian denoising task when employing MAE and the equal combination of MAE and E-MAE as loss functions.
We show the performance of the trained models on synthetic Gaussian noise created with four distinct noise levels (σ) averaged across five
benchmark datasets, consistent with the ones used in [ZAK∗22].

σ = 15 σ = 25 σ = 50 σ = 60

Loss PSNR↑ SSIM↑ LPIPS↓ E-MAE↓ PSNR↑ SSIM↑ LPIPS↓ E-MAE↓ PSNR↑ SSIM↑ LPIPS↓ E-MAE↓ PSNR↑ SSIM↑ LPIPS↓ E-MAE↓

MAE 34.36 0.94 0.058 0.0343 31.94 0.90 0.092 0.0849 28.82 0.84 0.163 3.187 28.02 0.81 0.182 4.258
MAE + E-MAE 34.37 0.94 0.055 0.0145 31.92 0.91 0.087 0.0263 28.71 0.84 0.152 0.790 27.88 0.81 0.167 1.035

Table 3: Evaluation of a motion deblurring task when employing
MAE and the equal combination of MAE and E-MAE as loss func-
tions. We show the performance of the trained models on synthetic
blur created using the GoPro dataset [NHKML17].

Metric PSNR↑ SSIM↑ LPIPS↓ E-MAE↓

MAE 31.70 0.92 0.1030 0.0192
MAE + E-MAE 31.78 0.93 0.1018 0.0184
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Figure 9: Evaluation of E-MAE training performance using only
selected distortion levels for each distortion category. We measure
the SRCC correlation with the MOS data, and as a reference, we also
include the results of complete training with all distortion levels.

variance higher, which indicates that 20 scenes might not be enough
to capture image content variability.
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Figure 10: Evaluation of E-MAE training performance using differ-
ent numbers of the reference images (scenes). Multiple training runs
have been performed for 20, 40, and 60 randomly selected scenes
from the full set of 81 reference images. The data points represent
the respective SRCC correlation averages over such runs, while the
vertical bars depict the standard deviation.

Distortion diversity We investigate the impact of separate E-MAE
training on specific distortion subsets such as noise, blur, combined
noise, and blur, as well as the complete KADID dataset. At the test
time, we evaluate trained this way E-MAE versions on noise and

Table 4: The SRCC correlation with the MOS data for the E-
MAE metric trained with specific distortion categories (noise, blur,
noise&blur) and the entire (all) KADID dataset, as indicated in the
brackets. The TID dataset is used for testing, where the “Category”
columns indicate whether only the noise and blur subsets are con-
sidered or the entire dataset.

Metric Category: noise blur all

MAE 0.601 0.934 0.545
E-MAE (noise) 0.847 0.927 0.674
E-MAE (blur) 0.732 0.926 0.655
E-MAE (noise & blur) 0.841 0.936 0.726
E-MAE (all) 0.906 0.955 0.857

blur subsets of the TID dataset, as well as its complete version. The
results, presented in Tbl. 4, reveal that training solely on the noise
category unsurprisingly improves the SRCC correlation within that
category; however, it also enhances the overall correlation for the
TID dataset with respect to the original MAE. Conversely, training
exclusively on blur does not improve the performance within the
blur category itself, as the blur distortion already exhibits a strong
correlation (0.934) for the MAE metric, making any improvement
marginal. On the other hand, we noticed that training with all cate-
gories combined significantly improves the correlation in both the
noise and blur categories compared to training with only noise or
blur categories, which can suggest that exposing the network to a
wider range of distortion types enables better generalization.

In our supplementary material, we additionally show the impact
of each of the three factors on the predicted error maps.

5. Limitations and future work

The actual visual contrast masking is the function of the viewing con-
dition and the display size [Cha13], which is often considered in the
perceptual quality metrics [Dal93, MKRH11, MDC∗21, ANA∗20]
but otherwise mostly ignored. However, the effectiveness of our
visual masking model is limited to the experimental setup where
human scores are obtained in the KADID dataset.

As we have demonstrated, incorporating our masking model into
traditional metrics is straightforward, but it might be a difficult task
for certain network architectures, such as PieAPP [PCMS18].

As shown in Fig. 11, in the context of the CSF reproduction,
our metric might not be well calibrated for near contrast threshold
stimuli, whose visibility is also affected by the viewing distance
and display conditions. Wolski et al. [WGY∗18] developed the
LocVis dataset with local maps of distortion detection probability
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Figure 11: Error map prediction for the MAE and E-MAE metrics along with learned weighting masks for two perception patterns
from [ČHM∗13]. These patterns were specifically designed to investigate various perceptual phenomena, including contrast sensitivity and
contrast masking. In the first row, the background consists of a high-frequency pattern with increasing contrast toward the right and a stimulus
pattern with decreasing contrast from bottom to top (which becomes more apparent when zoomed in). In this scenario, contrast masking is
more pronounced with increasing background contrast that, in turn, reduces the stimulus visibility, and E-MAE correctly predicts this effect.
The second row presents another example, showing a set of patterns where their spatial frequencies increase toward the right while their
contrast decreases toward the top. In this case, the learned masking roughly follows an inverse U-shape characteristic, akin to the contrast
sensitivity function (CSF) [Dal93, Bar99, WAK∗20]. Our masking well approximates the sensitivity drop for high frequencies but tends to
suppress the visibility of low-frequency patterns excessively. In spite of this drawback, we still find it quite remarkable that the CSF shape
becomes apparent in our learned mask without any explicit training with calibrated near-threshold CSF data.

that emphasize near-threshold distortions. Unfortunately, the LocVis
dataset is not reliable for supra-threshold distortion in terms of
their magnitude estimation, while we readily learn from the MOS
data. We relegate as future work, combining such not-compatible
distortion visibility and magnitude estimation data into a consistent
training dataset for enhancing our masking model.

6. Conclusion

In this paper, we present a new approach towards reducing the
notorious gap between the existing quality metric prediction and
the actual distortion visibility by the human observer. We achieve
this by self-supervised training of a metric-specific network using
the existing distortion datasets labeled with mean opinion score
(MOS). We show that although overall image quality is rated with
a single MOS value in the training data, by securing sufficient
diversity of such training, as detailed in our ablation study, the
network can leverage global MOS into a meaningful per-pixel mask.
The mask, through different weighting of local distortion visibility,
which also adapts to specific distortion types, helps a given metric
to aggregate such local information into the comprehensive MOS
value, as imposed by the training data. The mask can be learned
directly in the image space for traditional metrics or in the feature
space for recent learning-based metrics. In either case, it is trivial
to incorporate into most of the existing metrics. Remarkably, our
approach improves the performance of commonly used metrics,
such as MAE, PSNR, SSIM, and FLIP on all datasets we tested.
The prediction accuracy of recent learning-based metrics is typically
substantially enhanced.
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