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Figure 1: We survey and categorize methods for text-to-3D shape generation. Our categorization organizes methods into three families
delineated by the use of 3D and text data. The first and second family rely on 3D data in combination with either paired text descriptions
(3DPT) or with no text-3D pairing (3DUT). The third family does not rely on 3D data for training (NO3D).

Abstract

Recent years have seen an explosion of work and interest in text-to-3D shape generation. Much of the progress is driven by
advances in 3D representations, large-scale pretraining and representation learning for text and image data enabling generative
Al models, and differentiable rendering. Computational systems that can perform text-to-3D shape generation have captivated
the popular imagination as they enable non-expert users to easily create 3D content directly from text. However, there are
still many limitations and challenges remaining in this problem space. In this state-of-the-art report, we provide a survey of
the underlying technology and methods enabling text-to-3D shape generation to summarize the background literature. We then
derive a systematic categorization of recent work on text-to-3D shape generation based on the type of supervision data required.
Finally, we discuss limitations of the existing categories of methods, and delineate promising directions for future work.

1 Introduction

Text to 3D shape generation methods can revolutionize 3D content
creation by allowing anyone to generate 3D content based on a sim-
ple text description. It is no wonder that there has been an explosion
of interest in this research direction. Recent advances in generative
models for text and images [RDN*22; SCS*22] enabled by large-
scale language and vision-language models, as well as advances in
learned 3D representations and 3D generative models have acted as
catalysts for progress in text to 3D shape generation.

At the same time as this rapid progress, a number of open re-
search challenges are coming into focus. There is currently a spar-
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sity of available 3D data paired with natural language text descrip-
tions, making it infeasible to rely purely on direct supervision from
data pairs in both domains. Moreover, current text to 3D generation
methods do not afford natural editability of the generated outputs
in an intuitive way based on user inputs. Generation of larger-scale
3D outputs representing compositions of objects into natural scenes
also remains challenging. Lastly, the complexity of underlying 3D
generative models coupled with the complexity of the optimization
problem when avoiding reliance on paired text and 3D data lead to
a challenging learning problem with significant compute and train-
ing time requirements.
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Figure 2: We illustrate the main components for the different families of methods in this survey. 3DPT methods involve training a generative
model on paired text and 3D data. In 3DUT, data is limited to only 3D shapes, so methods in this group leverage the aligned text-3D
embedding space of CLIP encoders allowing conditioning on rendered images during training and text prompts during inference. In No3D,
no data is available so methods rely on pretrained guidance models such as CLIP and T2I diffusion models to optimize similarity and
distillation respectively with differentiable 3D representations. Finally, Hybrid3D methods often combine techniques from NO3D with priors
learned from 3D assets to train 3D-aware T2I models or to enable text-to-image-to-3D using pretrained large text-to-image models.

There have been some recent related surveys addressing 3D gen-
erative models [CRW*20; SPX*22] and text-conditioned genera-
tion [CG23; LZW*23]. The former group of surveys on 3D gener-
ative models addresses what is typically one component of a com-
plete text-to-3D shape system. Chao and Gingold [CG23] cover
both text-to-image and text-to-3D generation and do not focus on
a detailed categorization and discussion of 3D generation methods.
Li et al. [LZW*23] do focus on text-to-3D generation specifically
but address mainly application domains and do not derive a com-
prehensive categorization of the methods themselves, or pursue a
systematic discussion of the method design decisions.

In this survey, we systematically summarize work on text-to-
3D shape generation on the basis of four key components: train-
ing data, 3D representation type, generative model, and training
setup. For the first, we further categorize by the amount and type of
3D data that is needed for supervision. Specifically, we categorize
methods based on whether they: 1) use 3D data to train a genera-
tive model (Section 4); or 2) tackle text-to-3D without any 3D data
(Section 5). Figure 1 and Table 1 provide a summary of this catego-
rization. We note that overall techniques in 1) are similar to text-to-
image methods, with the key differences being: a) the 3D genera-
tive model; and b) the link between text and 3D. For methods in 1),
we further breakdown between methods that are supervised with
paired text-3D data (Section 4.1) and methods that do not rely on
paired data (Section 4.2). As other surveys have focused purely on
3D generative models, in this survey we focus particularly on meth-
ods for text-to-3D without any 3D data, and how the link between
text and 3D can be established without paired text to 3D data (typ-
ically leveraging 2D image information). In addition, we discuss
some of the key challenges of generating high quality 3D shapes
without explicit 3D training data, and strategies that are employed
to tackle these challenges. Recent work has started to address these
challenges by learning shape priors from large 3D datasets, often
coupled with techniques introduced for text-to-3D without 3D data.
We describe these ‘hybrid’ approaches in Section 6.

2 Scope of this Survey
2.1 Comparison with Related Surveys

Shi et al. [SPX*22] offers a comprehensive review of generative
models for 3D data. They primarily concentrate on various 3D
representations, including voxels, point clouds, neural fields, and
meshes, and delve into different generative model types like GANSs,
VAEs, and energy-based models used by various works. While
some papers that use text for conditional 3D generation are men-
tioned, it is not the main focus of their survey.

An earlier survey Chaudhuri et al. [CRW*20] in comparison
emphasizes structure-aware generative models for 3D shapes and
scenes. They focus on approaches that decompose 3D objects or
scenes into smaller elements and introduces overarching structures
using representations like hierarchies and programs. They show-
case various generative models applied to these structures, ranging
from classical probabilistic models to deep learning techniques.

Chao and Gingold [CG23] present a survey on text-conditioned
editing, encompassing both 2D and 3D methodologies. Though the
emphasis is on editing, the survey details the key text-to-3D gener-
ation techniques that underpin these editing methods. Notably, the
study predominantly highlights works that leverage CLIP for shape
generation and editing. However, recent advancements using diffu-
sion distillation methods remain unaddressed.

A recent review by Li et al. [LZW*23] examines recent text-to-
3D research, notably those incorporating CLIP and diffusion mod-
els. Although there is some overlap in the work discussed, our sur-
vey offers a more structured categorization for easier comparison
and provides more in-depth examination of each work.

2.2 Organization of this Survey

As summarized in Table 1, our survey classifies recent text-to-3D
research into three primary families: 1) Methods that utilize paired
text with 3D data (3DPT), discussed in Section 4.1; 2) Meth-
ods reliant on 3D data but not requiring paired 3D and text data
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3D Paired Text (3DPT): Requires paired text-3D data which is limited. Gen-
eration limited to observed data.

3D Unpaired Text (3DUT): Leverages 3D data to train 3D generative model.
Bridges text and 3D using images. Can use vision-language models to generate
captions for 3D data, reducing to “Paired” scenario.

No 3D Data (N03D): No 3D data for training. Multi-view and structure consis-
tency is an issue. Uses images as bridge, typically with differentiable rendering.
Conceptually can generate arbitrary 3D content. Per-prompt optimization, slow.

Hybrid3D: Combine text-to-image and image-to-3D methods. Enforce 3D con-
sistency using 3D—aware text-to-image models or multi-view images.

Table 1: Properties of the four families into which we categorize
text-to-3D shape generation methods.

(3DUT), discussed in Section 4.2; 3) Methods that require no 3D
data training data at all, and typically use CLIP or Diffusion models
as guidance (N0O3D), discussed in Section 5; and 4) Recent work
that leverage a combination of text-to-image and image-to-3D, dis-
cussed in Section 6.

The main focus of this survey is primarily on the third family
of works as they have not been addressed in detail by prior sur-
veys. For these NO3D approaches we further divide into sections
that discuss methods that: 1) leverage pre-trained text-image em-
beddings (Section 5.1) 2) formulate or improve upon ways to use
diffusion models as a prior (Section 5.2); 3) use different 3D rep-
resentations, rendering techniques, or improvements to the train-
ing setup to enhance the quality of the results. Figure 2 shows an
overview of different methods covered in this survey.

We then discuss emerging work on generation of multi-object
3D scenes (Section 7), and on allowing editing of the output 3D
shape in various ways (Section 8). The following section of the
survey presents a brief overview of evaluation methods for text-to-
3D shape generation (Section 9). We conclude the survey with a
discussion of promising future directions (Section 10).

3 Preliminaries

In this section, we provide a brief background of fundamentals
used in text-to-3D generation methods. In particular, we summa-
rize choices for 3D representations (Section 3.1), the necessary
background on deep generative models (Section 3.2), and guid-
ance models for connecting 3D representations with text via images
(Section 3.3).

3.1 3D Representations

There are a variety of representations that are possible when work-
ing with 3D data, each with specific properties and challenges. In
their survey of 3D generative models, Shi et al. [SPX*22] include
a good overview of the different choices. Here we provide a brief
summary, with a focus on how appearance (color or texture) is en-
coded in 3D models as these attributes are commonly included in
text descriptions. We also describe in detail neural radiance fields
(NeRFs) and DMTet, as these are two popular representations used
in text-to-3D generation.

Explicit Representations. In traditional computer graphics
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pipelines, 3D shapes are predominantly represented as polygonal
meshes (most commonly triangle meshes). Meshes encode both the
geometry through the spatial coordinates of vertices on the shape
surface, as well as the topology connecting those vertices. Material
properties of the shape’s surface such as albedo color, specularity,
reflectance etc. can be represented through values at the vertices
or more densely through a texture map that is mapped onto the
surface, typically through the use of barycentric coordinate-based
interpolation on the triangles constituting the mesh. Given a 3D
surface mesh representation, generation of a point cloud is possi-
ble through sampling of the mesh surface, where sampled point
coordinates are in RS, and additional information such as the sur-
face normal vector, surface color value etc. can also be extracted.
Through the process of voxelization, it is also possible to generate
voxel grid representations of occupancy, color, or signed distance
from the nearest surface. Point clouds and dense voxel grid repre-
sentations are common choices for encoding 3D shape structure in
neural architectures. In contrast, triangle meshes are the dominant
representation for exchange and storage in 3D content databases,
rendering, and other computer graphics pipeline operations.

NeRF [MST#*20]. The Neural Radiance Field (NeRF) represents
a 3D scene as a continuous function 6,c = NeRF(xyz,d), where
xyz is a query point within the 3D scene, d consists of the camera
viewing direction and ©,c are the density and color. To render a
pixel from a ray r the following equation is used:

K i—1
C(r) = Z Tria;c;, where o; = 1 —exp(—0;9;), and Tr; = H(l —aj)

i=1 j=1
M
Here T7; is the transmittance, o; is the alpha compositing value,
5, is the length between neighboring samples on the ray and C(r)
is the rendered color for ray r. Here we mention some notable
works that are used by methods in this survey. Voxel grid NeRF
models [SSC22; CXG*22; FYT*22; KRWMZ22] store learnable ex-
plicit/implicit features in a voxel grid structure for fast learning due
to the smaller or outright removal of the MLP predicting density
and color. InstantNGP [MESK?22] uses multi-resolution hash ta-
bles for storing learnable features. Mip-NeRF [BMT*21] uses con-
ical frustums as opposed to rays for more accurate rendering. Mip-
NeRF 360 [BMV*22] further add changes to the scene parame-
terization for better reconstruction of unbounded scenes. Xie et al.
[XTS*22] offers a survey of neural fields and their applications.

DMTet [SGY*21]. DMTet uses a hybrid representation scheme
with an explicit tetrahedral grid [GCX*20] with signed distance
field (SDF) values at each vertex to implicitly represent the un-
derlying isosurface. Adopting their notation, the tetrahedral grid T
containing the vertices Vr form (Vr,T). The tetrahedrons in the
grid Ty, € T consists of four vertices {va,,Vvp, ,Ve,, v, }» Where there
are K tetrahedrons in total. Given the SDF values at each vertex
{SDF (va,),SDF (vy,),SDF (v, ), SDF (vg,)} we can calculate the
zero crossing via interpolation on edges where sign changes occur.
The surface within the tetrahedra can then be extracted, this process
is referred to as Marching Tetrahedra. Deformation vectors are also
encoded for each vertex, this allows for fitting 3D objects with even
finer detail. As we will see for works using DMTet for text to 3D,
the SDF and deformation values can either be optimized explicitly
or predicted from a neural network. Along with color information
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for each vertex the extracted mesh is often rendered with a differ-
entiable rasterizer [LHK*20] for optimization.

3D Gaussians. Kerbl et al. [KKLD23] introduced blended 3D

Gaussians for representing scenes. Each Gaussian is parameterized
by a position, scaling vector and, rotation as a unit quaternion.
The position corresponds to the mean of the Gaussian, and the
covariance matrix is formed from the scale and rotation. Despite
its simplicity, this representation has been shown to be effective at
accurately and efficiently modeling complex scenes and has been
adopted by more recent work [TRZ*23; YFW*23; CWL23].

Structured Representations. It is also possible to represent a

3D shape as a combination of primitive parts. The parts can be
grouped in a hierarchical manner, or generated via a program. This
constitutes a promising direction for future work on text-to-3D gen-
eration: leveraging structured representations as used by neurosym-
bolic methods (see Ritchie et al. [RGJ*23] for a recent survey).

3.2 Deep Generative Models

A goal of text-to-3D shape generation is to generate potentially a
variety of different shapes given a single text query. Thus, a fun-
damental component in text-to-3D shape generation is the use of a
generative model. A generative model models the joint probability
distribution and can be sampled from to obtain diverse samples. In
text-to-3D generation, the output space can be a 3D representation,
a latent vector that is then transformed into a 3D representation
via a shape decoder, or a 2D image that is used to generate a 3D
shape. In addition to the above, it is also possible to use a text-
to-image generative model to guide the optimization of a 3D rep-
resentation. There are a number of popular families of generative
models with different properties including auto-regressive models,
GANSs, VAEs, normalizing flow models, and diffusion models. For
a more detailed discussion Shi et al. [SPX*22] provide an excellent
overview of the types of generative models and how they can be
used in generation of 3D output. Here, we elaborate on diffusion
models since they Are an important component of recent work on
text-to-3D generation that does not require 3D data.

Diffusion Models. Sohl-Dickstein et al. [SWMG15] and Ho et al.
[HJA20] are generative models that model the distribution of the
training data xp ~ g(xp) by integrating latent variables x;.7 by
Po(x0) = [ po(xo.r)dx1.7. Here we follow the notation used by
DDPM [HJA20]. The distribution of the latent variables is defined
through a forward and reverse process using Markov Chains. The
forward process involves corrupting a data sample xg at each time
step according to a noise schedule until x7 is just Gaussian noise
xr ~ N (0,I). The formal definition is as follows:

T
q(xrrlxo) = [ Ja(xlxi—1) 2)
=1
qxi|xi—1) = N (x; /1= Brxi—1, B1) 3)

Here P; is a predefined variance schedule. Note that we can
obtain the latent variable x; from xo by sampling q(x:|xg) =
N (x¢;/Gexo, (1 — G )I), where o = 1 — Br and & = [T,_; . The

reverse process can similarly be defined through Gaussian transi-
tions:

T
po(xo.r) = plxr) [ T p(x—1]x) “4)

=1
Po(Xi—1|xt) = N (xi—13p0 (x1,1), g (x1,1)) (5
In DDPM, by setting Xy (xr,1) = 67T and o (Xe,1) = ﬁ(xz —
\/1&—7@84’ (xz,1)), where € is a neural network used to predict the

unit variance noise € used to corrupt xo. We can supervise the train-
ing with a simplified noise residual objective:

By e we[|€ — €0 (Vo + VT — e, 1) ] 6)

where w; is a weighting term. The neural network & is usually im-
plemented as a UNet [RFB15]. After training the network param-
eters ¢ with the above loss, we can generate samples by first sam-
pling x7 ~ A(0,I) then using the reverse process to get x. Note
another parameterization of this loss in Karras et al. [KAAL22]:

Eo,yn[Mo:)|[D(y +n;0:) — ]3] )

where the denoiser is defined as D(x; 6;) = x — 6€¢(x, 1), y is a sam-
pled point from the training data and n ~ A (0, 57 1) is the noise. We
encourage readers to read Karras et al. [KAAL22] for more details
as it brings recent diffusion methods under the same framework and
discuss different hyperparameters choices.

3.3 Guidance Models

CLIP [RKH*21]. The CLIP model consists of a text encoder
Encl; ;p and image encoder Encky p which project text and im-
ages onto an aligned latent space trained by minimizing the con-
trastive loss on 400 million image text pairs. The text and im-
age embeddings are obtained through el ;p = Encly p(x”) and
el p = Enchy p(x!), where x” and x are the input text and im-
age respectively and ecpp € R® is the embedding in the aligned
latent space. Finally, we can calculate the similarity between a pair
of image and text as ¢CLip-¢cuie/ ||efp | lefup -

T2I Diffusion Models. Here we briefly discuss text to image
(T2I) diffusion models used by the following works in this sur-
vey to provide a 2D prior for generating 3D objects. Earlier
works [SWMG15; SSK*21; DN21] uses an additional classifier
which is gradient conditioned on the noisy image and label to
guide the sampling process. More recent T2I diffusion models use
classifier-free guidance [HS22] which is formulated as:

Ep(xr,¢) = (1 + w)gy(xs31,¢) — wey (xr31, D) (8)

Here c is the conditioning variable, which is the input text in the
case of T2I models. The predicted noise at each step involves the
conditional and unconditional scores with weighting ® and @ is
a null prompt. The text conditioning can be incorporated through
cross attention layers in the UNet network [RBL*22; SCS*22;
BNH#*22]. eDiff-I [BNH*22] and Imagen [SCS*22] follow a cas-
caded approach where the diffusion model is trained at a lower res-
olution, with cascading super resolution models to upsample the
produced images. Stable Diffusion [RBL*22] uses a latent diffu-
sion model (LDM) architecture that first trains to compress images
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Figure 3: lllustration of key components in text to 3D generation
models. A text encoder takes the text and produces an embedding
in a latent space that is used to condition a generative model to
sample a latent shape code. The latent shape code is then passed
through a shape decoder fo generate a 3D shape. Typically, the
text and 3D latent spaces are aligned so the text embedding can
be directly used as the shape embedding. The generative model is
used to allow for sampling of diverse shapes. Text-to-3D models are
characterized by the choice of text encoder, shape decoder, shape
representation, text-3D alignment method, and how the generative
model is integrated to allow sampling of diverse shapes.

to a lower resolution latent space with an autoencoder. Then, this
approach fits a diffusion model in the latent space learned in the
first stage. Due to its open source nature, Stable Diffusion is a pop-
ular choice used by the majority of works.

4 Text-to-3D using 3D Data

At a high-level, text-to-3D methods require the following compo-
nents (see Figure 3):

e Text encoder. Encodes text into an embedding space.

e Shape decoder. Generates a 3D shape from a latent vector. When
paired text-3D data is available, this can also be trained to gen-
erate (or decode) from the encoded text embedding.

o Joint text-shape embedding. When paired text-3D data is avail-
able, this can be learned directly.

e 3D generative model. This generative model can be used to gen-
erate a latent vector for the shape decoder, images from which
shapes are then generated, or directly to generate diverse shapes.

Note that it is possible to train the text encoder and shape de-
coder separately on text only and 3D only data. The shape decoder
is often trained as part of the shape autoencoder with just 3D data.
When paired text-3D data is available, the joint text-shape embed-
ding specifying the alignment can be trained directly. When there
is no aligned text-3D data, image embeddings are typically used to
bridge the two modalities. Specifically, pretrained vision-language
models (where the text-image embeddings are already aligned) are
used, and the shape encoder is trained to align shape embeddings
into the same space, with the shape decoder then trained to decode
from that space.

We first discuss paired text-3D data methods (3DPT) in Sec-
tion 4.1, and then discuss unpaired text-3D data methods (3DUT)
in Section 4.2.
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Dataset Contrastive Shapes  Categories  Text Text source
Text2Shape [CCS*19] no 15K 2 75K crowdsourced
Partlt [HLZH21] yes 10K 4 10K crowdsourced
Cap3D [LRLJ23] no 550K-785K many — generated
OpenShape [LSK*23] no 876K many — generated
Point-E [NJD#*22] no >IM many — —
ShapeGlot [AFH*19] yes 5K 1 79K crowdsourced
SNARE [TSB*22] yes 8K 262 50K  crowdsourced
ShapeTalk [AHS*23] yes 36K 30 536K  crowdsourced

Table 2: Datasets of paired text and shape. Gray text indicates
dataset is not open-sourced. The ‘—’ symbol indicates the statistics
are unavailable. Cap3D offers various 3D object-caption paired
data versions of varying quality depending on filtering.

4.1 Paired Text to 3D (3DPT)

Traditional supervised approaches are based on the assumption that
training data providing paired text and 3D samples is available. Re-
cent work based on this assumption can produce models that are
of very high quality. However, these approaches are typically un-
able to generate objects outside of the dataset and the quality of
the 3D objects is highly dependent on the training dataset used. A
summary of paired text-to-shape datasets can be found in Table 2.

Table 3 summarizes the methods in terms of text encoder, text-to-
3D alignment approach, and generative model used. We categorize
supervised methods into three primary classifications. The first en-
compasses conventional techniques [CCS*19; LWQF22] that learn
an aligned space between text and 3D using modality-specific en-
coders. These latents are subsequently inputted into a 3D object
decoder to produce the final shape. The subsequent two categories
first employ an auto-encoder for 3D shapes. A separate network
is then utilized to learn a prior based on the latent space derived
from the initial stage. Text conditioning is integrated through var-
ious mechanisms within the prior network, producing latents con-
ditioned on the input text. The key distinction between these latter
two categories lies in their modeling approach: one leverages au-
toregressive models for prior learning [MCST22; FZC*22], while
the other employs diffusion models [CLT*23; LDZL23; ZLC*23;
LDC*23; JN23].

Much of the work in this area is focused on improving 3D gen-
erative modeling, with the text as an illustrative conditioning input
along side other potential conditioning input.

4.1.1 Paired Text-to-shape Datasets

There are few datasets that provide both 3D shapes and natural lan-
guage text descriptions. Text2Shape [CCS*19] provided the first
paired text and 3D dataset based on the text and chair models from
ShapeNet [CFG*15]. Descriptions provide information about both
color and shape. ShapeGlot [AFH*19] and ShapeTalk [AHS*23]
provided discriminative text that selected one object from multiple
objects. However, as noted by Luo et al. [LLJ22], this style of text
data omits important information that is shared between the three
objects (e.g. the object category) and is not suitable for aligning text
and 3D spaces for 3D shape generation. This data is however, ap-
propriate for shape editing. Many of the shape datasets come from
3D model repositories that contain text information (such as the
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name of the asset, product catalogue descriptions, etc). Such text in-
formation can be found in datasets such as ABO [CGD*22], Obja-
verse [DSS*23], and Objaverse-XL [DLW*23]. However, this text
information is often noisy, uninformative, and for better or worse,
in multiple languages. OpenShape [LSK*23] and Cap3D [LRLIJ23]
illustrated the use of large-language models (LLMs) for filtering
and generating more informative text descriptions for shapes on the
large scale Objaverse [DSS*23] dataset. Table 2 summarizes these
paired datasets.

4.1.2 Notable Examples of 3DPT Methods

GAN-based. The pioneering work Text2Shape [CCS*19] was
the first work to use deep generative models to generate shapes
from text. They modeled the shapes as dense voxel grids repre-
senting occupancy and RGB color. Their text to 3D method in-
volves two training stages. The first stage uses learning by as-
sociation [HMC17] combined with metric learning [Sohl6] to
learn a shared representation between shapes and text descriptions.
Then, a voxel-based conditional Wassertein GAN [MO14; ACB17;
GAA*17] model is used to learn to generate shapes from input text
prompts. When training the GAN, the critic judges both whether
the generated shape is ‘realistic’ and whether it matches the text.

Auto-encoder with IMLE. Liu et al. [LWQF22] proposed a three
stage training process. The first stage learns an auto-encoder model
to reconstruct the object occupancy and color grid, where the la-
tent space is decomposed into shape and color features. In the
second stage, a text encoder is learned to output features in the
same decomposed latent space of the first stage from the paired
text data. In addition, another decoder leveraging word and local
point feature attention layers are learned for different local features
based on point coordinates. Finally, to enable diverse generations
from text prompts a generator outputs different shape and text fea-
tures given input noise vectors and a source shape and text feature.
IMLE [LM18] is used to guarantee that each ground truth shape
has corresponding samples from the generator.

Autoregressive Prior. AuroSDF [MCST22] introduces the use of
a Patch-wise encoding VQ-VAE [VV*17], termed P-VQ-VAE to
encode 3D shapes characterized by truncated signed distance func-
tion (T-SDF) by locally encoding patches independently into dis-
crete encodings, arranged in a grid structure, followed by a joint de-
coding process. They first train the P-VQ-VAE on 3D shapes from
ShapeNet. Then a non-sequential autoregressive model is proposed
to learn a prior over the discrete latent space learned from the first
stage. For language conditioning, an auxiliary network is trained
to predict latents based on a given text prompt, leveraging text-
shape pairs from ShapeGlot [AFH*19] for training. Beyond this,
their model is also capable of performing other tasks like shape
completion and 3D reconstruction.

ShapeCrafter [FZC*22] enhances the work of AutoSDF by
introducing the Text2Shape++ dataset, an advancement of the
original Text2Shape. This dataset breaks down text prompts into
phrase sequences and calculates the similarity between these sub-
sequences and shapes to establish a many-to-many shape corre-
spondence. This approach supports recursive 3D shape modeling
during generation. Although ShapeCrafter employs the same P-
VQ-VAE from AutoSDF for latent shape representation learning, it
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Figure 4: [llustration of the difference between latent autoregres-
sive models (LAM) and latent diffusion models (LDM). LAM uti-
lizes an autoregressive prior over a learned latent space whereas
LDM uses a diffusion model. LDMs have demonstrated improved
performance in text-to-3D shape generation.

uses a recursive shape generation training process. Here, the phrase
sequence is recursively fed to the autoregressive model at each time
step, leading to progressive shape generation.

Diffusion Prior. Recent advances in diffusion models have shifted
attention from autoregressive models to diffusion-based techniques
for modeling the latent space. This trend was notably driven by
Latent Diffusion Models (LDMs) [RBL*22]. Li et al. [LDC*23]
pinpointed several limitations of autoregressive models, includ-
ing: 1) error accumulation during sampling; 2) suboptimal genera-
tion order due to the processing direction inherent in transformers;
and 3) a tendency for transformers to mode-collapse without ad-
equate noise injection, resulting in reduced diversity. Progress in
text-to-image diffusion models has streamlined the integration of
conditional text into the diffusion process. For instance, the use
of domain-specific encoders and a cross-attention mechanism in
Rombach et al. [RBL*22] can be adeptly employed for text-guided
3D generation. Similarly, techniques like Img2Img [MHS*21] have
been used for text-driven editing and manipulation. Figure 4 illus-
trates the contrast between latent diffusion models (LDM) and la-
tent autoregressive models (LAM).

SDFusion [CLT*23] similarly employs a two-stage approach for
3D shape generation. Initially, it trains a 3D VQ-VAE model on T-
SDF representations using ShapeNet. Subsequently, a 3D UNet is
utilized to learn the LDM for the latent space established in the first
stage. Conditional generation with different modalities is incorpo-
rated following [RBL*22] with modality-specific encoders and a
cross-attention mechanism within the 3D UNet. During inference,
classifier-free guidance [HS22] is used for conditional shape sam-
pling. Additionally, the model integrates Score Distillation Sam-
pling (SDS) [PIBM23] to facilitate 3D shape texturing. Evaluation
on the Text2Shape and ShapeGlot datasets reveals that SDFusion
outperforms autoregressive methods such as AutoSDF.

Diffusion-SDF [LDZL.23] employs a patch-based VAE [KW13]
model to encode local patches derived from the SDF of shapes,

© 2024 Eurographics - The European Association
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Model

Method Dataset 3Drep Color Images Text Text-to-3D align Shape Gen model Gen space
Text2Shape[ CCS*19] Text2Shape voxels (323) yes no CNN + GRU  metric + label by assoc. — WGAN voxels
TITG3SG[LWQF22] Text2Shape implicit occ. yes no BERT cyclic loss AE IMLE latent
AutoSDF[MCST22] ShapeGlot T-SDF (643) no no BERT — VQ-VAE Autoregressive latent
SDFusion[CLT*23] Text2Shape T-SDF (643/1283) texture no BERT — VQ-VAE Diffusion latent
Diffusion-SDF[LDZIL.23] Text2Shape T-SDF (643) no no CLIP — VAE Diffusion latent
3DQD[LDC*23] ShapeGlot T-SDF no no CLIP — P-VQ-VAE Diffusion latent
Shap-E[IN23] Internal Dataset STF yes multi CLIP — Transformer + NeRF Diffusion latent
Michelangelo[ZLC*23] ShapeNet + templates pt cloud / occ. no multi CLIP contrastive loss SITA-VAE Diffusion latent
SALAD[KYNS23] ShapeGlot 3D Gaussian + impl. occ no no LSTM — AD Casc. diffusion  exp. + latent
ShapeScaffolder[TYW23] Text2Shape structured impl. occ yes no BERT + graph ~ MSE + part-node attn AE None - hierarchical decoding

Table 3: Methods that use paired 3D data with text (3DPT). Early work [CCS*19] did not rely on pretrained models and trained everything
from scratch. Later models initially leverage pretrained language models (e.g. BERT), and eventually pretrained vision-language models (e.g.
CLIP/GLIDE) for encoding the text. We use ‘—’ to indicate that there was no extra text-to-3D alignment, and that the alignment is done as
part of the training of conditional generation with text input. In the color column, ‘texture’ indicates the work proposes a way to apply texture
to the generated 3D shape. The ‘Images’ column indicates whether the method uses single or multi-view images for training or aligning
image to shape models. The ‘Shape’ column indicates how encoding-decoding into/from the 3D shape latent space is trained, typically
with a 3D autoencoder (AE) or variational autoencoder (VAE), with a few works [KYNS23] using auto-decoding (AD) as introduced in
DeepSDF [PFS*19] (where only the decoder is trained). Early work [CCS*19] did not train to encode into the shape latent space separately.
In Shap-E [JN23], the latent code is used as parameters for a NeRF/STF MLP, and a transformer was trained to project point cloud and
multi-view data into the latent space using rendering losses for NeRF and STF. We indicate the type of Generative model (‘Gen model’) used
and whether the model is operating in the latent space or not (‘Gen space’). Note that WGAN and IMLE (used in [CCS*19; LWQF22])
require only a single forward pass for sampling and decoding the 3D shape during inference. Newer methods first require autoregressive or
diffusion sampling in a latent space then decoding with a decoder model which usually means a longer inference time. We can succinctly refer
to autoregressive models and diffusion models in latent space as LAM and LDM respectively (see Figure 4), but here we explicitly indicate

the generative model and space for clarity.

utilizing a patch joint decoder for reconstruction. For its LDM, a
3D UNet-based architecture named UinU-Net is introduced. This
architecture incorporates an inner network using 1 x 1 x 1 convo-
lutions to focus on individual patch information. The inner net-
work is integrated with the primary UNet via skip connections.
Text-conditioned generation parallels the approach of SDFusion.
For text-driven shape completion, the model leverages inpainting
mask-diffusion methods [LDR*22; RBL*22]. Furthermore, diffu-
sion based image manipulation techniques [CG22; KKY22] facili-
tate text-guided shape completion.

3DQD [LDC*23] follows the use of P-VQ-VAE in AutoSDF to
learn encodings for 3D shapes. Distinctly, 3DQD’s LDM model
learns a discrete diffusion process directly on the one-hot encod-
ings of the VQ-VAE’s codebook indexes with transition matrices
during the diffusion process. Given the noise and categorical cor-
ruption introduced by this discrete diffusion, a Multi-frequency Fu-
sion Module (MFM) is integrated at the end of the denoising trans-
former to mitigate high-frequency anomalies in token features.

Shap-E’s 3D encoder [JN23] accepts both point cloud data and
multi-view renderings of a 3D object. The input data is integrated
through cross-attention and subsequently processed by a trans-
former backbone. This backbone produces a latent representation
which acts as the weight matrices for an MLP. Notably, this trans-
former functions as a hypernetwork [HDL17]. The MLP is de-
signed to predict STF outputs. These outputs include three distinct
branches: an SDF branch, a color branch, and a density branch.
The latter two are used for the NeRF representation. The SDF val-
ues facilitate the generation of a mesh using the marching cubes
algorithm, which can then be rendered with the color data. As a re-
sult, Shap-e’s decoder can produce both NeRF and mesh outputs.

© 2024 Eurographics - The European Association
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For training purposes, photometric losses are used with the images
rendered from both NeRF and mesh representations. The training
dataset comes from Nichol et al. [NJD*22], boasting several mil-
lion 3D assets paired with textual descriptions. The authors expand
upon this dataset with roughly 1 million more 3D assets and an ad-
ditional 120K captions. Furthermore, their LDM model is trained
to predict the MLP weight matrices, which are based on the latents
obtained from the 3D encoders. To incorporate text conditioning,
the text embedding is prepended to the input of the transformer
diffusion model. Thanks to the large scale of the training dataset,
Shap-E can generate a rich array of diverse 3D objects. However,
regrettably, this training dataset is not publicly available to the re-
search community.

Michelangelo [Z1.C*23] introduces a methodology to learn an
alignment between 3D shapes, text, and images prior to generation.
Initially, a transformer is used to encode the 3D point cloud, result-
ing in shape tokens. Using frozen CLIP encoders [RKH*21], simi-
lar encoding processes are applied to both text and images, produc-
ing text and image tokens, respectively. To ensure alignment across
these three modalities, modality-specific projectors are used to pro-
cess these tokens into distinct image, text, and shape embeddings.
The alignment of these embeddings is then done through a con-
trastive loss between the (shape, image) pairs and the (shape, text)
pairs. A reconstruction loss, based on the occupancy grid gener-
ated by the 3D decoder, is also employed. The overarching network
architecture is termed the Shape-Image-Text Aligned Variational
Auto-Encoder (SITA-VAE). After alignment, an Aligned Shape
LDM (ASLDM) is trained to model the shape tokens. The process
of conditioning on text and image tokens follows the methodology
presented by Rombach et al. [RBL*22].



8 of 27 H. Lee, M. Savva & A. X. Chang / Text-to-3D Shape Generation

Align image-shape space

N m Render
Encoder Decoder — Encoder

-
_—

Align text-shape space

(via image) —
“ d m Render
o |Encoder I—|:| Decoder — Encoder

Figure 5: In text-to-shape generation with unpaired data (3DUT),
an image-to-3D generative model is combined with pretrained text-
image embeddings. Typically, 3D assets are first used to train a 3D
autoencoder that takes a shape embedding to an 3D shape. Large
pretrained text-image embeddings are then used to align the text
to 3D space, with a generative model that can sample from the 3D
latent space conditioned on an input embedding. The shape space is
aligned to the pretrained text-image space by: 1) aligning the shape
decoder to render from image embeddings e.g., as in CLIP-Forge
and CLIP-Sculptor (top); or 2) ensuring 3D shapes generated from
a text embedding have rendered embeddings that match the text
embedding, e.g., as in TAP3D (bottom).

4.1.3 Structure aware text to shape generation

Most methods we described so far treat the output shape as an un-
structured 3D representation. An emerging line of work attempts
to produce structured 3D shapes based on parts and part connectiv-
ity [LLJ22; TYW23]. ShapeScaffolder [TYW23] first uses shape
data to pretrain a structured shape decoder that can take a global
latent vector encoding (consisting of both shape and color latents)
and hierarchically decode it into parts. For text conditioning paired
text-shape data is used to align a global text embedding to the shape
and color latent spaces via MSE loss. The text is also converted to
a graph representing parts, their attributes, and relations. Features
for the parts and relations are extracted and attention between the
text-based graph features and part features guides the hierarchical
decoding process. Another recent work, SALAD [KYNS23] pro-
posed a two-phase diffusion approach. In the first phase, the part
structure is generated as a mixture of 3D Gaussians, and in the sec-
ond phase a latent vector representing the shape details for each
part is generated. To condition the model on text, they concatenate
the language feature and train the model using paired text-shape
data from ShapeGlot [AFH*19]. There is also growing interest in
generating shapes based on programs [JGMR23; YXP*23]. A re-
cent work that connects text to programs is Neural Shape Com-
piler [LLJ22]. Translating text to programs that can generate 3D
shapes is an interesting direction for future investigation.

4.2 Unpaired 3D Data (3DUT)

In this section, we discuss methods where a database of 3D shapes
is available for training a 3D generative model, but there is no
paired text-to-3D data. These methods are summarized in Table 4.
In this case, pretrained text-to-image models are used as a bridge

to align the text and 3D embeddings. Without paired 3D data, but
access to a 3D dataset, it is possible to render 2D images from the
3D data and use the generated images as training data to train a
generative model that goes from 2D image to 3D shapes. Work in
this space can either train their own image-to-3D model or lever-
age existing pretrained models. The generative model will typically
make use of latent image embeddings that comes from a pretrained
vision language model (e.g. CLIP). Since CLIP has aligned text-
and-image embeddings, this family of work assume using CLIP
text-embedding directly will be sufficient. However, recent work
has identified that the pretrained embeddings have shortcomings
and proposed ways to compensate. Figure 5 provides an illustrative
summary of this family of approaches.

4.2.1 Notable Examples of 3DUT Methods

CLIP-Forge [SCL*22]. Initially, a shape autoencoder is trained on
the ShapeNet dataset to reconstruct 3D voxels. This involves the
encoder transforming voxels into embeddings, represented as ¢V =
Enc” (x"). Subsequently, both the embedding and voxel positions
are inputted into a decoder occupancy network [MON*19], denoted
as Dec”, to recreate the original shape.

The following stage uses a flow model [DSB16]. This model
is trained to process the embeddings, ¢', in conjunction with
CLIP image embeddings derived from multi-view renderings of the
3D objects. These CLIP embeddings are represented as eICLIP =
Enchy ;p(x), where x! are the rendered images. The flow model
maps inputs onto a Gaussian distribution.

During inference, multi-view images are substituted with text
prompts. These prompts are then encoded using CLIP to obtain
the associated embeddings, represented as eELIP = Enc(TjLIP(xT).
Given that the CLIP encoders are trained to map to a unified latent
space, both the text embedding and a sample from the Gaussian
distribution are inputted into the flow model in reverse to obtain the
shape embedding, e, Finally, the occupancy network decodes the
final shape.

CLIP-Sculptor [SFL*23]. The concept of leveraging CLIP en-
coders that map to a shared latent space is also seen in CLIP-
Sculptor. However, CLIP-Sculptor employs a more powerful au-
toregressive model in lieu of a flow model. During the initial train-
ing phase, two VQ-VAE:s are trained at varying resolutions for re-
construction. For the 3D shape, the voxel encoder transforms it into
eV = VQ(Ency (xY)), where ¢ is the vector-quantized grid encod-
ing for the input voxel and r indicates the voxel resolution. The
lower resolution voxel grid is configured at 323, while the higher
resolution operates at 64°. The shape is then reconstructed with the

decoder x/ = Dec) (V).

Similarly to CLIP-Forge, multi-view renderings of the 3D ob-
jects are encoded using CLIP, expressed as eéLIP = EnCéLIP(xl )
Noise is introduced to these embeddings, resulting in the condi-
tional vector ¢ for variation. This vector is then processed by an
MLP, which subsequently predicts the affine parameters of the
layer normalization layers present in a coarse transformer with
dropout. This transformer is designed to autoregressively decode
masked encodings under the constraint of conditionals, as denoted
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Model
Method Dataset 3D representation  Color Images  Text Text-to-3D alignment Generative model
CLIP-Forge[SCL*22] ShapeNet voxels no multi CLIP CLIP + image / 3D align Flow (latent)
CLIP-Sculptor[SFL*23] ShapeNet voxels (323/64%) no muli CLIP CLIP LAM
ISS[LDL*23] ShapeNet, CO3D DVR yes single CLIP  CLIP + mappers + test time consistency loss DVR
TAP3D[WWEF*23] ShapeNet DMTet yes multi CLIP CLIP + mappers + align loss GAN

Table 4: Methods that use unpaired 3D data (3DUT). The ‘Images’ column indicates whether the method uses single or multi-view images
for training or aligning image to shape models. For ‘Text-to-3D alignment’, all models use CLIP to align 3D objects during training with
text prompts during inference. Additional components may be further leveraged to better align image, 3D or text to bridge domain gaps in
the CLIP latent space. Note that TAP3D[WWF*23] (in light gray) trains an aligned text-shape space using generated templated text.

by P(e}y|Mask(e},),c). In the subsequent training stage, a super-
resolution (fine) transformer is trained to unmask high resolution
encodings Mask(eg4) conditioned on the predicted lower resolution
encodings egz from the coarse transformer through cross attention.

During the inference phase, the image embeddings are sup-
planted by text embeddings derived from user prompts. Follow-
ing this, the masked encoding undergoes an iterative decoding
process, first by the coarse transformer and subsequently by the
fine transformer, to produce the final encoding representing the
desired shape. Drawing inspiration from classifier-free guidance
prevalent in diffusion techniques, CLIP-Sculptor frames the sam-
pling with the equation: 7, (c) = P;(0) +a(t)(P.(c) — P;(0)). Here,
P:(c) is represented by P(egz‘[ |Mask(e¥21t7 1),¢) and P;(0) is given
by P(e}{zJ|Mask(e§/2’r_1),0). The function a(¢) starts with a high
guidance scale, ensuring the shape adheres to the text-based con-
straints. However, as the process advances, its value decreases to
introduce greater diversity in the output.

ISS [LDL*23]. The two aforementioned papers operate with the
assumption that the CLIP text and image spaces align seamlessly.
However, the ISS authors find otherwise. Specifically, they discov-
ered significant distances between the embeddings of paired text
and images. When directly swapping the CLIP image encoder for
the text encoder during inference, this discrepancy can lead to in-
consistencies between the generated shape and its corresponding
text. Additionally, learning to generate shapes straight from the
CLIP feature space causes a loss of details in the final 3D shape.
To counteract these issues, ISS introduces a two-phase method for
aligning the feature spaces, enabling 3D shape generation guided
by text without assuming perfectly matched text-shape pairs.

The initial alignment phase uses a pretrained single-view re-
construction model, specifically DVR [NMOG?20]. This comprises
an encoder converting images to latent embeddings, and a de-
coder responsible for shape reconstruction. They align the CLIP
image features with the DVR network’s latent features using a
mapping network M. This is achieved by minimizing the func-
tion Ly(M(Enchy ;p(x')),Enchyr(x!)). Here, Enchy represents
the DVR decoder, x are images rendered from the 3D object, and
the CLIP features are normalized. The decoder loss and other reg-
ularizing losses are optimized to refine the decoder network.

At the inference stage, to narrow the disparity between CLIP’s
image and text encoders, the mapping network M undergoes addi-
tional fine-tuning. This is to minimize the CLIP consistency loss
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represented by (Enchy 1p(x!) - Encly ;p(x7)). Here, x! denotes im-
ages rendered from the 3D shape using the DVR decoder, while Xl
is the provided text prompt. All CLIP features are also normalized.
Acknowledging the constraints of the DVR model, they allow for
further fine-tuning of the DVR decoder with the CLIP consistency
loss for text-driven stylization.

TAP3D [WWEF#23] proposes a simple approach of adding text
controls to an existing unconditional 3D generation model. They
utilize CLIP similarity as a loss to fine-tune parts of the original
network to accept CLIP text embeddings as input. Specifically, they
use a GET3D [GSW*22] model pretrained on ShapeNet, a DMTet-
based GAN. The GET3D model takes as input two noise vectors
and transforms them into intermediate latent codes using mapping
networks for modeling the geometry and texture. The mapping net-
works are the only parts of the model being fine-tuned. First, to ob-
tain text prompts for 3D shapes, they generate pseudo-captions by
calculating nouns and adjectives that have high similarity with ren-
dered images of the 3D objects. They then construct the captions
with template sentences. The mappers are trained by maximizing
the CLIP similarity between the pseudo-captions and rendered im-
ages of the generated object from GET3D. An additional regular-
ization loss aims to maximize the similarity between rendered im-
ages of generated objects and ground-truth object renderings.

5 Text-to-3D without 3D data (NO3D)

Here we discuss the family of approaches designed for scenarios
when either no 3D data is available, or reliance on such 3D data
is avoided. In this scenario, the typical strategy uses per-prompt
optimization together with a differentiable renderer to optimize an
underlying 3D representation such that 2D images that are com-
patible with the text prompt can be generated. In this unsupervised
setting, there are currently two popular sets of approaches: 1) max-
imizing the similarity of the prompt and rendered images using a
pretrained vision-language joint embedding (Section 5.1); or 2) us-
ing a pretrained text-to-image diffusion model to guide updates to
the parameters of the 3D representation (Section 5.2). Figure 6 il-
lustrates these two sets of approaches.

A key design decision applying to both sets of approaches is the
choice of 3D representation. There are several popular choices that
permit differentiable rendering: 1) NeRF-based model; 2) deform-
ing triangular meshes; and 3) deep marching tetrahedra (DMTet).
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Figure 6: Illustration of the text-to-3D shape generation strategies that do not rely on 3D data. Left: methods minimizing text to 2D loss
using a pretrained vision-text embedding space such as CLIP. Right: methods using pretrained image-to-text diffusion-based models to guide
the training of a 3D representation. These are per-prompt optimization strategies, leading to significant compute and time required per shape.

Method 3D Rep Augmentation Additional loss

DreamFields [J]MB*22] MipNERF [BMT*21]  BG (GN, CH, FT) Transmittance
CLIP-Mesh [MXBP22]  mesh + normal + texture BG  Diff. prior + Lap reg
PureCLIPNeRF [LC22] explicit/implicit NeRF ~ BG + diff + persp  Tr+ TV + KL + Bg

Table 5: Summary of unsupervised CLIP guidance methods. These
methods optimize the 3D representation so that the CLIP similarity
between rendered images and text is maximized. They also make
use of additional augmentation and loss terms to help enforce the
generation of more geometrically plausible objects. For instance,
DreamFields [JMB*22] includes various background (BG) aug-
mentations such as Gaussian noise (GN), checkerboard pattern
(CH), and random Fourier textures (FT).

5.1 Unsupervised CLIP Guidance

In this class of methods, the parameters of a differentiable 3D repre-
sentation are updated so that rendered images have high similarity
to text prompt embeddings, as evaluated by a pretrained vision-
language joint embedding (CLIP). This approach is challenging as
training by just optimizing the CLIP similarity can be tricky and
does not provide any signal for geometric consistency. To counter
this, work in this area proposes a variety of regularization and aug-
mentation techniques. Table 5 provides a summary of methods and
categorization along the axes of 3D representation, augmentation
strategies, and additional regularization.

5.1.1 Notable Examples

Dream Fields [JMB*22]. Dream Fields is a pioneering work in
this direction, first demonstrating the possibility of creating 3D
shapes without relying on any 3D data. While previous research
utilized CLIP to bridge the language-shape gap in scenarios with
available 3D data but lacking pairing with text, Dream Fields show-
cased the capability to guide the training of a 3D representation
directly using pre-trained text-image CLIP embeddings.

To achieve this Dream Fields uses a NeRF as the back-
bone 3D representation. Given a camera pose described by az-
imuth and elevation (8,0), an image x' = NeRF(0,0) is gener-
ated using volumetric rendering. The specific NeRF used is Mip-
NeRF [BMT*21]. Then an input text prompt «L guides the model
training using the CLIP similarity loss, expressed as Lcpp =

—Enchy p(x")T Encly ;p(x7). A key challenge when using CLIP
in this fashion is that the embeddings minimize a contrastive loss
between images and text, and thus may prioritize texture learn-
ing over structural or spatial information. Dream Fields shows that
solely relying on this loss can lead to the generation of implausible
3D objects. To counteract this, they propose multiple regularization
techniques. Initially, they incorporate a transmittance loss to elim-
inate floating density anomalies. They also experiment with vari-
ous background augmentations (e.g., Gaussian noise, checkerboard
patterns, random Fourier textures). These are alpha-composited
onto the NeRF-rendered images, enhancing the coherence of the
resulting 3D models.

CLIP-Mesh [MXBP22]. CLIP-Mesh similarly employs CLIP
guidance. However, they use a mesh representation. Notably, their
training begins with a primitive geometric shape, such as a sphere.
This differentiates the approach from Text2Mesh [MBL*22],
which requires an initial object aligned with the semantic class of
the input text prompt.

The primitive geometry’s vertices dictate a subdivision surface,
with both the normal map and texture maps initialized randomly.
The object is rendered from various viewpoints using a differ-
entiable renderer, and these images are then processed through
the CLIP image encoder. The similarity loss with CLIP is subse-
quently calculated against the text embeddings. Additionally, the
CLIP-Mesh approach integrates a diffusion prior akin to DALL-
E 2 [RDN*22]. Here, the text embeddings are mapped to image
embeddings. This is also leveraged to calculate similarity between
the rendered images. Their findings indicate that jointly employing
these losses enhances generation quality. Training is regularized us-
ing a Laplacian regularizer and random background augmentations
(mirroring the Dream Fields approach).

PureCLIPNeRF [LC22]. In the works discussed thus far, optimiz-
ing images under CLIP guidance often leads to incoherent results.
In PureCLIPNeRF [LC22], various elements are examined to mit-
igate the adversarial generations caused by CLIP guidance. These
elements include different image augmentations, pretrained CLIP
backbones, and both explicit and implicit NeRF architectures. This
work finds that the combination and selection of these factors influ-
ences the quality of the final output 3D shape results significantly.
By integrating augmentation strategies, CLIP backbones, and 3D

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



H. Lee, M. Savva & A. X. Chang / Text-to-3D Shape Generation

Dream
Fields

Dream
Fields
(reimpl.)

CLIP-
Mesh

Dream-
Fusion

-

matte painting of a castle made 5 yage with

of cheesecake surrounded by a
moat made of ice cream

a hamburger
pink flowers

Figure 7: Qualitative results from DreamFusion [PJBM23] com-
paring against methods utilizing CLIP guidance (Dream Fields,
CLIP-Mesh). DreamFusion produces higher quality 3D shapes. Vi-
suals reproduced from Poole et al. [PJBM23].

representation design choices effectively, one can produce more
consistent 3D objects.

Dream3D [XWC#23]. While the aforementioned regularizations
aim to counteract adversarial generations, CLIP guidance remains
susceptible to emphasizing textures or patterns from the input text
prompt. This often leads to inconsistencies in the geometry of the
generated 3D object. To address this, Dream3D [XWC#*23] in-
troduces a 3D prior for initializing the CLIP guidance optimiza-
tion. This is achieved by fine-tuning a Stable Diffusion [RBL*22]
model using text and renderings from ShapeNet. Another dif-
fusion model is trained to translate the produced images into a
3D shape latent code. This latent input is processed by an SDF-
StyleGAN [ZLWT22] network to generate the 3D shape. Ulti-
mately, CLIP guidance refines this 3D model, ensuring it aligns
more closely with the provided text.

5.1.2 Discussion

While methods in this section are not bounded to generating objects
within the limits of a dataset like prior sections, the geometric qual-
ity of the output objects is still lacking in many cases. This limita-
tion is primarily because CLIP is trained with a contrastive objec-
tive, which can cause the image encoder to prioritize texture pattern
extraction. As a result, using CLIP for guidance may not effectively
generate fine geometric detail on objects and can yield overly sim-
plified geometry. To address this issue, prior work has explored var-
ious augmentations that help regularize the training process, differ-
ent CLIP architectures, as well as different 3D shape priors. While
these improvements can improve generated outcomes, the subse-
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quent section will demonstrate that the alternative strategy using
text-to-image diffusion models as guidance helps to increase the
quality of the output 3D shape geometry as can be seen in Figure 7.
This strategy leads to objects that not only align more closely with
more complex text prompts but also showcase detailed geometric
and texture details.

5.2 Unsupervised Diffusion Guidance

Much like the approach with CLIP guidance, we can bridge the
gap between 3D shape being generated and the 2D guidance
model by rendering images of the 3D shape from various cam-
era perspectives. Instead of optimizing the similarity between im-
ages and text, we utilize scores from the diffusion models as
the guiding gradients. The score, as determined by the denois-
ing diffusion model s¢(x;,), serves as an approximation to the
score function V', logpa, (x:|x) [SSK*21]. Here, the score function
Vi, logpa, (x;]x) points towards areas of higher probability density.
In more detail, our objective is to ensure that images, irrespective of
the angle from which the 3D model is rendered, gravitate towards
high-probability zones outlined by the diffusion models. Note that
the noise function €¢(x;,7) is proportional to the score [Rob92]:

8¢(x;,t) N D(x;;6¢) — xt -
—— 52 = s5¢(x2,1) ©)

Table 6 summarizes the methods in this family, and categorizes
them in terms of the underlying 3D representation, specific guid-
ance model, and loss terms used during training. In Section 5.2.1,
we highlight seminal papers that focus on formulating a loss around
this concept. Section 5.2.2 delves into works that leverage im-
proved 3D representations for higher quality outputs. A notable
challenge with this formulation is the “Janus Problem”, which is
a consistency issue with the generated object. This arises due to
optimizing each rendered image without taking into account the
entire object as well as inherent 2D biases in text-to-image (T2I)
diffusion models. To address this, Section 5.2.3 presents studies
that offer mitigation strategies and fine-tune T2I models on multi-
view data, thereby injecting 3D information to counteract the 2D
bias. Another limitation of this framework is that we have to con-
duct training for each individual text prompt which can take up
to several hours for high quality models. However, the research in
Section 5.2.4 suggests integrating this loss into a multi-object gen-
erative model, enhancing training efficiency. This approach enables
generation of multiple objects and interpolation between prompts
during inference.

5.2.1 Loss Formulation

In this section, we highlight notable papers that introduce loss func-
tions designed to harness 2D priors from text-to-image (T2I) diffu-
sion models for generating 3D models from text.

DreamFusion [PJBM23]. The DreamFusion authors introduced
the pioneering Score Distillation Sampling (SDS) loss. This
was used to optimize a NeRF model, specifically Mip-NeRF
360 [BMV*22], parameterized by 6. It effectively integrates prior
knowledge distilled from a pretrained T2I diffusion model Ima-
gen [SCS*22], which is parameterized by ¢. The optimization is
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Method 3D representation Guidance model Loss
DreamFusion [PJBM23] Mip-NERF 360 [BMV*22] Imagen [SCS*22] SDS
SJC [WDL*23] Explicit Voxel Grid NeRF StableDiff [RBL*22] Ne
Prolific Dreamer [WLW*23] 1) Instant-NGP [MESK22] + 2) Dis. DMTet [SGY*21; CCJJ23] StableDiff VSD
Magic3D [LGT*23] 1) Instant-NGP + 2) DMTet 1) eDiff-I [BNH*22] + 2) StableDiff SDS
TextMesh [TMT*23] 1) SDF NeRF + 2) Mesh 1) Imagen (SDS) + 2) StableDiff (texturing)  SDS + Tex Ref
Fantasia3D [CCJJ23] Dis. DMTet StableDiff SDS
DreamGaussian [TRZ*23] 3D Gaussians StableDiff SDS + Tex Ref
GSGEN [CWL23] 3D Gaussians StableDiff, Point-E SDS
GaussianDreamer [YFW#*23] 3D Gaussians StableDiff SDS

Table 6: Summary of methods using unsupervised diffusion guidance, a sub-family of methods that do not require 3D data (NO3D). We
organize these methods along the design choices of 3D representation, guidance model, and training loss. Some of the methods use a two
stage approach to obtain a higher resolution mesh output or to separate geometry and texture (indicated by numerals 1 and 2 in each cell).

Tex Ref indicates the use of additional texture refinement losses.

driven by the following loss formulation:

Y Lsps = B[ (1)eg(ui20) ) oo
In this context, x represents the image rendered from NeRF, while y
is the text prompt. As previously mentioned, €y (z:;y,?) relates to the
score, signifying gradients that direct towards high-probability re-
gions in the ambient space, conditioned on y. The subtraction of the
added noise €, serves as variance reduction. This is crucial since the
denoiser is conditioned on x;, which exhibits noise levels distinct
from those in the NeRF-generated image. Furthermore, DreamFu-
sion has shown that:

(10)

VoLsps(9,x=g(8)) = VeEt[%W(I)KL(q(XzIg(e);y,t)llpq;(xuy,t))]

(11
Optimizing the SDS loss aligns with minimizing the KL divergence
between the noise-injected images from the NeRF network g(6),
and the probability densities learned by diffusion models condi-
tioned on text prompt y. For a detailed derivation, see the origi-
nal paper. Using the powerful priors from T2I models, DreamFu-
sion achieves markedly improved results compared to prior meth-
ods employing CLIP. It is worth noting that the more sophisticated
shading model emphasizes geometric details, while a basic albedo
model might induce ambiguities, impacting the quality of the ob-
ject geometry. A notable limitation is the “Janus problem” where
models display multiple front faces, likely due to datasets used to
train T2I models predominantly featuring front views of objects.

Score Jacobian Chaining (SJC) [WDL*23]. Concurrently, Score
Jacobian Chaining (SJC) formulates its approach by applying the
chain rule to the score of the diffusion model. This sidesteps the
UNet Jacobian term present in DreamFusion, which originates
from the diffusion training loss. It is noteworthy that this term is
excluded from the SDS loss, as empirical results demonstrated en-
hanced performance without it. The SJC loss is as follows:

D(xrn +0n,6) — xx, 0xn

o2 ) 99
The equation involves 7, the camera pose for NeRF rendering, and
n are distinct noise samples employed for the Monte Carlo estimate.
Both the SDS and SJC formulations display comparable perfor-
mance. Their model employs Stable Diffusion [RBL*22] as guid-
ance and an explicit voxel grid NeRF model [CXG*22; FYT*22;

VoLsic = En| (12)

SSC22]. By directly rendering in the Stable Diffusion latent space
RO} 64x4 they accelerate training, sidestepping gradient compu-
tations through the encoder. This technique is also advocated in
Latent-NeRF [MRP*23].

ProlificDreamer [WLW#23]. A limitation of the SDS loss formu-
lation is the tendency for generated objects to exhibit excessive
smoothness and limited variation. Prolific Dreamer theorizes that
this stems from the mode-seeking formulation in Equation (11).
Essentially, DreamFusion aims to fit a single plausible 3D model to
a probability distribution within the diffusion model. However, the
distribution encompasses numerous objects with different identities
fitting description y. To address this, Prolific Dreamer approaches
the issue through the lens of variational inference:

minKL(gf (x01y) | po(xol)) (13)

Here the goal is to minimize the KL divergence between images
generated by a distribution 4 comprised of multiple NeRF models
(particles) and the pretrained diffusion model. This leads to their ul-
timate formulation, termed the Variational Score Distillation (VSD)
loss defined as:

e)
VOL"VSD(G) ~ El,e,c'[w(t)(spretruin (Xz,f,y) - Sd) (x,,t, ny)) £}

(14)

The term &, represents a LoRA [HSW*21] parameterization of
the pretrained diffusion network, which also incorporates the cam-
era condition ¢ for rendering images from the NeRFs. The LoRA
network is optimized using the standard diffusion training loss, al-
ternating with the VSD loss. Though optimizing multiple particles
(NeRFs) can be resource-intensive, their model consistently deliv-
ers superior results even with a single particle. Compared to the
SDS loss, the produced objects exhibit markedly enhanced quality,
as shown in Figure 8. This approach also enables training at lower
guidance weights (7.5 versus 100 in DreamFusion), which helps to
produce textures that are more realistic and less cartoonish. Train-
ing is in a two-stage manner with improved hyperparameters simi-
lar to Magic3D [LGT#*23] which we discuss in the next section.

5.2.2 3D Representation Improvements

Training of NeRFs is often hampered by the substantial memory re-
quirements of volumetric rendering, which typically restrict meth-
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ods to lower resolutions. Here, we discuss mesh-based represen-
tations, such as DMTet, that employ rasterization. This is a more
memory-efficient approach enabling training at higher resolutions,
and generation of sharper textures and finer geometric details. Re-
cently, Gaussian Splatting (GS) [KKLD23] has gained traction due
to efficient representation and faster rendering compared to NeRFs.

Magic3D. The Magic3D [LGT*23] approach addresses the slow
training times in DreamFusion and lack of fine details in the gen-
erated objects. These issues stem from the high memory usage of
the NeRF model. The authors present a two-stage coarse-to-fine
training pipeline aimed at crafting high-fidelity 3D models. In the
coarse stage they train a Instant-NGP [MESK22] model at a lower
resolution of 64 x 64 under the guidance of the T2I model eDift-
I [BNH*22]. Subsequently, in the fine stage they convert the NeRF
model into a DMTet [GCX*20; SGY*21] representation. Train-
ing at this stage is done at a higher resolutions of 512 x 512 with
Stable Diffusion as guidance. Thanks to the efficiency of render-
ing through rasterization rather than volume rendering, this ap-
proach considerably reduces the memory footprint. The resulting
3D meshes extracted from DMTet surpass the quality of those pro-
duced by DreamFusion with a substantial 61.7% of human raters
preferring the former in a user study.

TextMesh [TMT#*23]. In concurrent work to Magic3D, TextMesh
similarly adopts a two-stage approach to avoid over-saturated tex-
tures in objects produced from DreamFusion. In the first stage
they train a NeRF model with a SDF backbone for densities. This
makes it easier to extract a mesh after this stage using Marching
Cubes [LC98]. They then render depth from four views of the mesh
(top, front and sides) which are tiled and fed through Stable Diffu-
sion with depth conditioning to obtain textured images. They then
fine-tune the mesh textures with photometric loss from the textured
images as well as the SDS loss with smaller guidance weights of
7.5 to produce objects that have more photorealistic textures.

Fantasia3D [CCJJ23]. The Magic3D authors stated that DMTet
training from random initialization leads to poor results. This could
be due to the more discrete nature of DMTet, whereas NeRFs are
more continuous in the sense that there are multiple points along
the ray where gradients can propagate. Fantasia3D shows that it is
possible to train from scratch with DMTet alone and achieve high
quality geometry as well as textures. To do this they disentangle the
training into separate stages of geometry and appearance modeling
with the SDS loss. Their DMTet geometry model consists of an
MLP parameterized by W to predict SDF values and deformations.
The network is initialized with a 3D ellipsoid in the beginning of
training. In the geometry modeling stage they propose a novel mask
and normal augmentation technique in the early phase of training
directly in the latent space of Stable Diffusion and then encode the
normal directly in RGB space for the rest of the geometry training
with SDS guidance. Then, in the appearance training stage they fix
the geometry while learning the diffuse k,, metallic ky» and normal
variation kn maps for the 3D model using a Physically Based Ren-
dering (PBR) model where another MLP I is used to predict the
different terms. They show that disentangling the learning of two
components results in better geometry as well as better textures
due to the PBR rendering model.
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Figure 8: Qualitative comparison of DreamFusion [PJBM23],
Magic3D  [LGT*23], Fantasia3D [CCJJ23], Gaussian-
Dreamer [YFW*23], and DreamFusion [PJBM23]. Results
generated by running authors’ implementation for Gaussian-
Dreamer and threestudio implementation of each method for the
others. This line of work has demonstrated steady progress in
improving the quality and coherence of generated 3D objects.

Gaussian Splatting Methods. Recent work leverages 3D Gaus-
sians and splatting to efficiently represent complex 3D scenes.
DreamGaussian [TRZ#23] samples points within a sphere and then
optimizes the 3D Gaussians with the SDS loss, periodically den-
sifying points to add detail. GSGEN [CWL23] instead initializes
using a point cloud generated from Point-E [NJD*22]. The 3D
Gaussians are optimized not only with SDS from the rendered im-
ages, but a 3D SDS loss with positions of the Gaussian points using
Point-E. They then densify and prune the Gaussians to refine ap-
pearance with additional regularization losses along with the image
SDS loss. GaussianDreamer [YFW*23] similarly initializes using
points from 3D diffusion models such as Shap-E [JN23]. These 3D
priors used for initialization help generate more consistent shapes.
DreamGaussian and GaussianDreamer boast training speeds of 2
and 15 minutes on a single GPU.
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5.2.3 Janus Problem

A prevalent issue in text-to-3D shape generation is known as the
“Janus problem”. This is characterized by the generation of 3D
models with multiple faces that deviate from realistic object struc-
ture. For instance, when attempting to create a 3D representation
of a dog, certain perspectives may erroneously display multiple
frontal faces, as illustrated in the first two rows of Figure 9. This
anomaly is likely a consequence of dataset bias in the training of
T2I models, with a disproportionate number of images presenting
objects from a frontal perspective. DreamFusion attempted to side
step this by introducing view-dependent prompts. For example,
they suggested the use of specific prompts for different azimuth
angles: ‘front view + prompt’ for angles ranging from 0° to 90°,
‘back view + prompt’ for 180° to 270°, and ‘side view + prompt’
for the remaining angles, with the addition of ‘top view’ or ‘bottom
view’ contingent upon defined elevation thresholds. Despite these
measures offering some improvement, they are not a panacea, as
the Janus problem persists across various prompts.

Mitigation. Some methods have been proposed to side step this
issue and can be generally incorporated into SDS-like loss train-
ing frameworks. Hong et al. [HAK23] propose two methods for
debiasing the training process by clipping gradients of the SDS
loss, and by removing words that may be in conflict with the view-
ing angle from the prompts to debias them. Seo et al. [STK*23]
utilizes 3D geometry priors of shapes generated from models like
Point-E [NJD*22] to help maintain 3D consistency. Initializing 3D
Gaussians with points generated by Point-E in GSGEN [CWL23]
and GaussianDreamer [YFW*23] also have the same effect. Perp-
Neg [AZS*23] proposes to use negative prompts in the T2I dif-
fusion model framework to discourage inconsistent view prompts
with respect to the sampled view. While these methods help miti-
gate the Janus Problem, they do not solve the underlying bias within
T2I models. In the following section we discuss methods such as
MVDream [SWY*23] and SweetDreamer [LCCT23] which fine-
tune the guidance models to be 3D—aware, directly addressing this
issue.

5.2.4 Generative Models with SDS Loss

ATT3D [LXZ*23]. The ATT3D approach addresses a big problem
with the other works discussed in this section: requiring per-prompt
training for every object. ATT3D trains a unified model using the
SDS loss with multiple prompts at once. To do this they add an ad-
ditional mapping network that takes the text prompt as input and is
used to modulate spatial grid features in the Instant-NGP model to
generate multiple different objects. During training they also amor-
tize over text by interpolating over text embeddings, helping to
smooth interpolations between different text prompts. The ATT3D
authors show that their approach converges with better efficiency
(fewer rendered frames per prompt) and achieves results compara-
ble to the single-prompt training of DreamFusion. They also show
some generalization capabilities with unseen prompts that are com-
positing new prompts with text in the training prompts.

At the time of writing another approach [LZL*23a] has been pro-
posed to tackle the same issue. Utilizing a decoder network to gen-
erate triplane NeRF representations from text, they also experiment
with different ways for effectively injecting the text information.

H. Lee, M. Savva & A. X.

Chang / Text-to-3D Shape Generation
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Figure 9: Qualitative comparison of ProlificDreamer [WLW*23]
vs MVDream [SWY*23]. Results generated using MVDream au-
thors’ implementation and threestudio ProlificDreamer implemen-
tation. The MVDream approach mitigates the ‘Janus problem’
where the 3D model has multiple frontal faces (each row shows
four views around an output 3D model).

The model is trained with multi-prompt SDS and CLIP losses with
Perp-Neg [AZS*23] to mitigate the Janus problem. Their method
is able to generate higher quality 3D objects compared to ATT3D
with better text and 3D alignment.

5.2.5 Discussion

In this section, we first discussed losses for distilling 2D pri-
ors learned by T2I models for generating 3D objects. This in-
cludes DreamFusion [PJBM23] and Score Jacobian Chaining
(SJC) [WDL*23] as well as ProlificDreamer [WLW*23] which im-
prove upon the formulation. We then introduced works that im-
prove upon the quality of the models with more efficient represen-
tations such as DMTet. The strong priors learned in T2I models
demonstrate superior generation quality compared to models in the
previous section utilizing CLIP guidance. This area is increasingly
popular with several followup works analyzing how to improve
upon the distillation loss [LYL*23; KPCL23; WFX*23; YGL*23;
WXF*23; TWWZ23; ZSME23; PLZZ24; WZY *24].

Compared to works utilizing paired text and 3D or just 3D data,
the methods in this family are able to generate objects that span
a broader domain and in general can generate objects from more
complex text prompts. However, a drawback of this class of meth-
ods is having to train a new 3D model for every text prompt (a
limitation that is also present in the CLIP-guided methods). For
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Figure 10: [llustration of recent methods that rely on a ‘Hybrid3D’
pipeline of: i) making text-to-image (T21) or image-to-image (121)
models 3D—aware through multi-view and multi-modal images and
corresponding camera viewpoint information; and ii) improving
image-to-3D models using distillation losses, photometric losses
and Large Reconstruction Models (LRMs).

higher quality objects, the training time can take up to hours for
some methods. This is in comparison to only having to run a
much faster inference for the paired or unpaired 3D data methods.
ATT3D [LXZ*23] and Instant3D [LZL*23a] address this issue by
applying the SDS loss in a multi-prompt generative setting. These
methods show initial success with better training efficiency com-
pared to per-prompt optimization. However, the models are trained
on a relatively small amount of prompts and whether this training
strategy generalizes to a long-tailed distribution of real objects re-
mains to be seen.

The approaches in this section generate impressive results lever-
aging 2D priors from T2I models, but the 3D objects are plagued
by the Janus problem. In the next section, we discuss methods that
fine-tune T2I models with 3D priors to directly address this issue.
These methods enable generation of objects within seconds, creat-
ing optimism that with continued refinement they may supersede
the slower SDS loss optimization approaches.

6 Hybrid3D

Here, we discuss methods that share a common theme of using
images as a bridge between text and 3D, in particular to enforce
3D consistency. These methods combine text-to-image (T2I) and
then image-to-3D (I2-3D) in a pipeline. This strategy allows use
of pretrained T2I models and 12-3D models. However, two issues
need to be addressed: i) domain gap between output images from
pretrained T2I model and input images to pretrained 12-3D model;
and ii) how to incorporate information for improved conditioning
of the output 3D model. The first issue can be addressed by fine-
tuning the T2I model with additional data. The second issue, has
been addressed using 3D—aware T2I models conditioned on cam-
era pose information to encourage consistent 3D shape generation
via SDS or photometric losses, or generating multi-view images
that are then leveraged for 3D shape generation. Figure 10 provides
an overview illustration.

We first describe Point-E [NJD*22] as it is a straightforward text-
to-image-to-3D pipeline and a good basis for discussing the two-
stage pipeline of T2I then 12-3D. We then focus on each stage:
1) fine-tuning T2I models to be 3D—aware [SWY*23; LCCT23;
LZL*23b; LLL*23; LWV*23; LLZ*23; SCZ*23; LGL*23]; and 2)
training 12-3D models to generate 3D objects from single or multi-
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view images [NJD*22; HZG*23; LTZ*23; LXJ*23; LSC*23]. We
also discuss methods focusing on both stages [LLL*23; LTZ*23;
LXJ*23; LSC*23]. Note that we focus on methods that use text
as the main input, but briefly touch on methods with image-based
input as they can be used for text-to-3D generation in a pipeline
similar to Point-E (text-to-image-to-3D).

Point-E [NJD*22]. Point-E adopts a direct approach using text-
guided diffusion to first generate an image from text. The im-
age serves as a condition for a point cloud diffusion model to do
single-view 3D reconstruction. The Point-E approach first refines
GLIDE [NDR*21] to generate images similar to synthetically ren-
dered images. A special token is added to the text prompt to indi-
cate that this is a rendered image so that at inference time the token
can signal that the model should generate images similar to ren-
dered ones. Subsequently, a point cloud diffusion model is trained
conditioned on images from the initial stage. The model is condi-
tioned by leveraging the entire token sequence of the CLIP image
embedding from the generated image. Due to its straightforward
combination of the two T2I and 12-3D stages, Point-E serves as
a good canonical example of this strategy. We next discuss work
focusing on improving each of these two stages.

6.1 3D-aware T2I

Work focusing on adapting T2I models to be 3D aware uses camera
pose information or generates images from different views. These
methods may leverage multi-view images and multi-modal images.
The former involves mechanisms for allowing communication be-
tween multi-views during generation, while the latter uses images
capturing information beyond RGB (e.g., normal, albedo, depth).
Note that prior work has called the latter multi-modal image in-
puts ‘cross domain’ [LGL*23]. This additional information enables
establishing correspondences between views and modalities, lead-
ing to improved 3D awareness. Concretely, multi-view methods
adapt the T2I model to generate multiple views at once and modify
the self attention layer of diffusion models to enable 3D attention
across views [SWY#23; LZL*23b; LLL*23; LGL*23], tile multi-
ple views in a single image [SCZ*23; LTZ*23], or use a unified
3D representation during generation [LLZ*23]. Multi-modal im-
age methods generate several image modalities at once by leverag-
ing cross domain attention [LLL*23; LGL*23]. We organize these
methods into text conditioning and image conditioning.

Text conditioning. Several recent methods fine-tune existing T2I
models to be 3D aware and take text as the input condition. M V-
Dream [SWY*23] and SweetDreamer [LCCT23] aim to solve the
Janus problem and improve object coherency by swapping the
guidance models with T2I models fine-tuned with 3D priors. Di-
rect2.5 [LZL*23b] devises a optimization scheme using the sparse
multi-view geometric and color images generated from the fine-
tuned T2I models to enable fast generation of objects in 10 seconds.
UniDream [LLL*23] designs a pipeline that is able to generate re-
lightable objects with PBR materials.

Image conditioning. We briefly mention image-to-image (I2I)
methods that generate consistent novel views of a 3D object given
a reference image as input, but do not go into detail as they are be-
yond the focus of this survey. A popular choice for fine-tuning is
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Method InCam Input Output Views  Image Res Multi-View Comm To 3D Dataset Stable Diff GPU Days
MVDream [SWY*23] abs Text 4RGB 2562 3D Attn SDS OV + LAION v2.1 3 Days 32 A100
SweetDreamer [LCCT23] abs Text 1CCM 64° SDS OV filt. (270K) v2.1 -

. 4 Text 4 Normal OV filt.+COYO-400M filt. (S00K, 65M 80 Hours 32 A100 (80G
Direct2.5 [LZL*23b] s age (Normal) 4rGB 2% 3D Attn Recon oV filt. (10|<)< ' V2l 20 Hours 32 A100 ExoG;
Instant3D [LTZ*23] - Text 12 x 2-tiled RGB 1024° LRM* OV filt. (10K) SDXL 3 Hours 32 A100
UniDream [LLL*23] abs Text 4 Albedo + Normal 256> 3D + Cross Dom Attn ~ TRM + SDS OV filt. (300k) + LAION - 19 Hours 32 A800
Zero-1-to-3 [LWV*23] rel Image 1 RGB 256° N[e ov v 7 Days 8 A100 (80G)
SyncDreamer [LLZ*23] rel Image 16 RGB 256° Cost Vol + Depth Attn Recon ov Zero-1-to-3 4 Days 8 A100 (40G)
Zerol123++ [SCZ*23] - Image 13 x2-tiled RGB 960 x 640 - ov v2 -
‘Wonder3D [LGL*23] rel Image 6 RGB + Normal 2567 3D + Cross Dom Attn Recon OV (LVIS) v 3 Days 8 A800

Table 7: Summary of methods fine-tuning T2I/I21 diffusion models to be 3D aware. The ‘InCam’ column indicates whether absolute or
relative camera parameters are used to condition the model where rel indicates camera parameters relative to the input reference image (vs
absolute coordinates for abs). The ‘Input’ column indicates text or image conditioning for generation. The ‘Output Views’ column shows how
many views are generated as the output of the fine-tuned model along with the type of image (CCM, RGB, Normal). ‘Image Res’, ’Multi-View
Comm’ indicate the output image resolution of the model and mechanism for communication between multi-views. In ‘To3D’ we indicate
how the 3D object is obtained either through distillation (SDS, SJC), using images for reconstruction (i.e. photometric losses) or image to
3D models (TRM, LRM*). LRM* here indicates a large reconstruction model modified to accept multi-views as condition. ‘Dataset’ and
‘Stable Diff’ indicate the dataset used to fine-tune the model and which Stable Diffusion version the models are based on. Most of the models
use some version of Objaverse (OV), with filtering often applied to discard low-quality assets. Note that ‘~’" in UniDream indicates that the
specific model used for fine-tuning is not mentioned in their paper. ‘GPU Days’ shows the time and GPU resource used to train the models.

Image Variations (IV) [Lam] which fine-tunes Stable Diffusion to
condition on images as input instead of text. Zero-1-to-3 [LWV*23]
was one of the first to leverage priors in existing diffusion models
for 3D reconstruction. They fine-tune the model to generate novel
views of the input reference view with relative camera parameters
of the target view as a condition, and apply the SJC loss for 3D gen-
eration. SyncDreamer [LLZ*23] builds on Zero-1-to-3 and adds a
unified cost volume to generate multiple views at once, resulting in
better consistency between views. Zero123++ [SCZ*23] proposes
several training schemes to improve the stability of the fine-tuning
process and output quality. Here, multiple views are tiled into one
image to enable the generation of multiple frames at once. Won-
der3D [LGL*23] proposed a domain attention to allow for the gen-
eration of multi-view RGB and normal images at once. With the
additional geometric information from the normal maps, they train
a NeuS [WLL*21] model to reconstruct meshes from the sparse
views in 2 to 3 minutes.

6.2 Image-to-3D Models

Work targeting this stage uses three strategies to generate 3D ob-
jects from images: 1) distillation losses like SDS; 2) image recon-
struction from sparse views with photometric losses; and 3) sepa-
rate model generating 3D objects from conditioning images. Ta-
ble 7 organizes work using these three strategies to obtain 3D mod-
els from fine-tuned T2I diffusion models.

Distillation losses. Methods using distillation losses (like in No3D)
produce objects of higher quality, with the optimization gradually
transforming a 3D representation over many iterations with differ-
ent camera views sampled, allowing for more intricate details to be
generated. However, the main limitation is the high generation time
per 3D object, similarly to No3D approaches.

Image reconstruction from sparse views. Methods that optimize
the 3D objects directly to match the images via reconstruction
methods are much faster (e.g., 10 seconds in Direct2.5). Typically
this speed is obtained by having a limited number of sparse views.

The main drawback is that the sparse viewpoints make it hard to
generate more complex objects due to occlusions. Also, eliminating
inconsistencies between views is hard, which can create artifacts in
the extracted 3D object.

Trained image to 3D models. Due to increasing 3D data, there is
growing interest in training a separate image to 3D model. This re-
quires running inference on the model which is usually much faster
(e.g., 20 seconds in Instant3D) than optimization. However, these
models need larger capacities to get high quality 3D objects lead-
ing to higher resource requirements. Also, depending on the dataset
used to train the model, generalizability may be limited. A popu-
lar alternative to diffusion models are transformer-based methods
called Large Reconstruction Models (LRM) [HZG*23]. In LRM,
a transformer predicts triplane NeRF representations with condi-
tioning injected through cross attention from a single input image.
Both Instant3D [LTZ*23] and UniDream [LLL*23] use LRM and
modify it to accept multiple views at once. Their pipeline is sim-
ilar to Point-E, except a text to multi-view image network is fine-
tuned. One-2-3-45 [LXJ*23] and One-2-3-45++ [LSC*23] lever-
age SparseNeuS [LLW*22] and LAS-Diffusion [ZPW*23] respec-
tively as backbones for multi-view image to 3D generation.

6.3 Discussion

Some challenges in using these ‘Hybrid3D’ methods revolve
around what datasets to use for fine-tuning and what camera
views to select for rendering. One problem with using Obja-
verse [DSS*23; DLW#*23] the largest available synthetic 3D object
dataset is that object textures appear toy-like and flat making gen-
erated objects less photorealistic. SweetDreamer addresses this by
using normal map images and an unmodified T2I model for texture
optimization. UniDream generates albedo and normal maps, and
then generating 3D objects with another reconstruction model with
a Stable Diffusion model used to optimize for photorealistic PBR
materials. The choice of camera viewpoints used to fine-tune the
model is also important. For example, MVDream samples cameras
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' “A nightstand”
. “A wardrobe”

& Aved”

Figure 11: Example input and output from Set-the-
Scene [CRM*23]. On the left, bounding boxes indicate the
location of each object a well as their local accompanying text. On
the right the outputs resulting from different global text prompts
are shown. Visuals reproduced from Cohen-Bar et al. [CRM*23].

from the upper hemisphere of the object meaning artifacts may be
visible when looking at the bottom of the object. Methods utilizing
direct reconstruction may choose fixed viewpoints (e.g., Direct2.5).
However, depending on the type of object being generated impor-
tant details may be occluded.

Looking at the dataset column in Table 7 we see different strate-
gies for filtering datasets. Instant3D adopts an interesting strategy
by training an SVM on manually labeled examples to filter the
dataset. In general, Objaverse is noisy and can hurt model perfor-
mance if used in entirety. However, how to best filter the dataset
while not hurting the generalizability of models is not well studied.

The GPU days column in Table 7 shows these models are expen-
sive to train. Diffusion models especially require large batch sizes
for training. Naive scaling to generate more dense views leads to
prohibitive GPU requirements. It would be interesting to explore
how large the base diffusion models need to be to learn generation
of multi-view images. For example, is it possible to use smaller dis-
tilled models like BK-SDM [KSCC23] to fine-tune these methods?

Another promising future direction is exhibited by
DMV3D [XTL*23], where the model is designed to generate
consistent multi-view images. The multi-view diffusion model
uses a transformer model from LRM to predict an internal NeRF
during the denoising process and encourage consistency between
the multi-view images being denoised.

7 Generating multi-object scenes with diffusion guidance

The work discussed thus far in this survey mainly focuses on gener-
ating a single object from an input text prompt. While it is possible
to use more complex prompts describing a multi-object scene, the
methods we described often fail to generate a coherent scene com-
position incorporating multiple objects.

There is a long line of prior work on 3D scene layout genera-

tion, which typically assumes the presence of a 3D shape database
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from which objects are retrieved and composited into a scene lay-
out. Some seminal work in this vein, and guided by input text de-
scriptions was done in Chang et al. [CSM14]. An excellent survey
covering the earlier 3D scene layout work in detail is provided by
Chaudhuri et al. [CRW#*20]. In this survey, we focus on generation
of 3D scenes built on top of the methodology presented thus far,
which offers the advantage of generating scene layouts composed
of objects each of which is also generated conditioned on the input
description. There has been limited work on this latter strategy to
text-to-3D scene.

In contrast to the object-centric approaches discussed earlier in
the survey, it is also possible to generate an entire scene without ex-
plicitly modeling individual objects. These methods typically rely
on text-to-image (T2I) models to generate partial views of the scene
based on the text, and use outpainting methods to generate addi-
tional views. These views are then fused together by using depth
prediction. Here, we describe these different lines of work that all
aim to generate more complex 3D scene-level outputs.

7.1 Compositional Generation

The papers in this section aim to generate a scene consisting of mul-
tiple objects, mostly assuming that a layout of objects is given as
a condition in the form of bounding boxes and the accompanying
text prompts. An example of this from Set-the-Scene [CRM*23]
is shown in Figure 11. More recent works [VCK23; GLC*24;
ZWS*23] drop the assumption that the layout is given and attempt
to both predict the layout (scale, position, and rotation) for each
object as well as generate the individual objects.

Set-the-Scene. Cohen-Bar et al. [CRM*23] composes individual
Latent-NeRF models for each of the object bounding boxes in the
input layout condition. They propose a interleaved training scheme
where individual NeRFs as well as the entire scene where all the
NeRFs are rendered is trained with the SDS loss alternately. This
allows for the optimization to focus on local objects as well as mak-
ing sure that individual objects synergies with each other in the
global frame. Compared to their baseline Latent-NeRF which fails
to generate complex scenes their method is able to generate coher-
ent scenes with individual objects. As the objects are all individ-
ual NeRFs, they can be rearranged and placed into a scene layout
through appropriate spatial transformations.

CompoNeREF. Lin et al. [LBL*23] similarly uses multiple Latent-
NeRF models for each object bounding box. However, instead of
simply adding the density and color components of each NeRF
during volumetric rendering they add additional global and local
MLPs to further refine density and colors in the rendered global
frame. This helps to make the objects more consistent with each
other in the scene. The individual and global SDS losses are added
and optimized in conjunction.

Comp3D. Po and Wetzstein [PW23] offers a different approach
instead of training multiple NeRF models. They calculate the
classifier-free guidance for each individual prompt of the objects
in the scene. Then, using the rendered bounding boxes as segmen-
tation masks the gradients for each region are masked and com-
bined to be optimized. This has the benefits of less memory usage
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compared to the above methods, as only one NeRF model is being
trained. This model is based on the Score Jacobian Chaining (SJC)
strategy described in Section 5.2.

Layout Generation. The above methods assume that bounding
box layouts are given. Recent work addresses layout generation to-
gether with object generation. CG3D [VCK23] uses a probabilistic
graphical model (PGM) to sample objects and estimate their inter-
actions with each other. The text description is converted to a scene-
graph which is used to instantiate the PGM. The scene is generated
by optimizing SDS losses to generate objects (each represented as
a set of 3D Gaussian) and a combination of SDS loss and physi-
cal constraints (e.g. gravity and contact) loss for object interactions
(e.g. the placement of objects relative to each other). The integra-
tion of phyical constraint losses allows for plausible generation of
objects that are on or in another object. Another promising direction
is the use of LLMs for layout generation. GraphDreamer [GLC*24]
generates a scene graph using LLMs such as ChatGPT. The scene
is then optimized using several SDS losses on individual objects,
the entire scene and objects with relations (edge pairs in the scene
graph). SceneWiz3D [ZWS*23] similarly uses an LLM to generate
objects of interest in a text prompt and then uses an off-the-shelf
text-to-3D model to generate initial 3D objects. A particle swarm
optimization algorithm with CLIP similarity then optimizes the ob-
ject locations, followed by optimization with VSD losses for the
objects and the environment.

7.2 RGBD Fusion for Scenes

While distillation losses like SDS have been successful in object-
centric generation, crafting detailed scenes with complex object
compositions remains challenging. The research discussed in this
section harnesses the priors learned by T2I models for scene gen-
eration. In contrast to prior work relying on the SDS loss to slowly
distill knowledge from T2I models. They integrate images pre-
dicted from T2I models and a depth estimation network to perform
RGBD fusion, thus generating a 3D mesh or NeRF representation
for the entire scene.

SceneScape [FAKD23]. The SceneScape approach is the first to
tackle the task of perpetual view generation given text as input. It
aims to create a video of a consistent 3D scene using a provided
text and camera path. To achieve this, SceneScape employs two
pretrained models: Stable Diffusion (SD) inpainting and a depth
estimation model [RBK21]. The process starts by generating an ini-
tial image from the SD model using the text prompt, complemented
by depth predictions. From this, an initial mesh is established. For
each subsequent frame, the mesh is rendered based on the updated
camera position, leading to a frame with gaps. These gaps are filled
using the inpainting model, while the depth estimation model offers
the necessary depth predictions. The updated image and depth data
is then used to refine the mesh for subsequent frames. After each
frame, the decoder of both the inpainting and depth models is fine
tuned and reset for frame consistency. SceneScape generates videos
of diverse scenes with intricate details. Yet, the method is subject
to limitations. Over time, errors can accumulate and this technique
struggles particularly with outdoor scenes.

Text2Room [HCO#23]. The Text2Room approach has a compa-
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rable strategy to SceneScape, merging texture and geometric data
over several frames to create a 3D mesh for room generation from
text. A Stable Diffusion inpainting model and a depth prediction
mechanism iteratively refine frames and determining depths to con-
tinually enhance the mesh representation. To ensure depth consis-
tency across frames, a specialized depth inpainting model is de-
ployed. Moreover, to fine-tune alignment the scale and shift pa-
rameters of the predicted depth map are optimized, ensuring a more
accurate match with the known depth derived from the mesh. Us-
ing the pixel depth values a point cloud is constructed where every
four neighboring pixels are linked to produce two triangles. Fur-
ther filtration removes faces that could lead to visual distortions.
Unlike SceneScape’s continuous scene creation, indoor rooms pos-
sess complex structures at many spatial scales. This distinction am-
plifies the significance of camera trajectory choices, ensuring the
generated rooms possess plausible structures, layouts, furnishings,
and minimizing gaps in the geometry. Text2Room utilizes a two
phase viewpoint selection technique. Initially, they leverage a set of
predefined camera trajectories to establish the primary scene layout
and furniture planing. In the subsequent phase, specific views are
chosen to refine and fill in any geometric hole. The final mesh un-
dergoes Poisson surface reconstruction [KBHO06] to refine its form.
While their approach successfully crafts comprehensive 3D scenes
with detailed textures, some outputs may exhibit stretched geomet-
ric areas or overly smoothed regions.

Text2NeRF [ZLW#23]. The Text2NeRF approach also aims to
solve the task of text to scene generation. Differing from the mesh-
based approach of previous methods, it uses an implicit NeRF net-
work for its 3D representation. They start by generating an ini-
tial image using Stable Diffusion, accompanied by depth predicted
from a depth estimation model. Subsequently, by altering camera
positions and projecting the initial image and depth with the corre-
sponding camera parameters, they generate a support set of images
and depths. These will naturally contain gaps. Both the initial and
support are then used to initialize the NeRF model. Then, a new
view is chosen to be rendered via NeRF. The rendered image and
depth containing holes are filled in with Stable Diffusion inpaint-
ing, while the depth is estimated using the depth network. Depth
alignment adopts a two stage approach: initially, by calculating the
mean scale and distance disparities for alignment, and then by fine-
tuning a neural network for nonlinear depth alignment. The NeRF
model is further trained with the updated frame, with the cycle of
rendering new views, inpainting and updates repeating. The main
advantage of Text2NeRF lies in its use of an implicit representation
such as NeRF, which avoids issues such as geometric stretching
seen in Text2Room, notably in outdoor scene settings.

8 Editing

An important consideration in the text to 3D shape generation task
is allowing the user to apply edit operations on an output 3D shape
using text instructions. This functionality is clearly valuable in
practical scenarios where the user desires specific changes in the
output 3D shape. Enabling such intuitive editing operations con-
stitutes a significant open research avenue. Here, we discuss re-
cent work that focuses on text-based 3D editing by optimizing 3D
shapes with CLIP (Section 8.1) or leveraging text-to-image models
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for 3D editing (Section 8.2). As changing the appearance of an ob-
ject while keeping the geometry the same is an important use case,
we also discuss recent work in retexturing based on a text prompt
(Section 8.3).

8.1 Shape Editing with CLIP

One way to edit 3D shapes given a text command is to optimize
the 3D representation so that the rendered image and text match by
using CLIP guidance.

CLIP-NeRF [WCH#*22]. CLIP-NeRF employs CLIP’s guidance
to manipulate 3D objects using text. Initially, a disentangled con-
ditional NeRF model is trained. In this model, the input condition
is separated into a shape code zs and an appearance code z,. No-
tably, the latter only influences color predictions, while the former
is used to deform positional encodings within the NeRF network.
The entire model’s optimization is carried out using a GAN loss.

For image or text-driven manipulations two distinct mappers, the
shape mapper M; and the appearance mapper M, are trained to uti-
lize the CLIP text-image encodings to predict update codes, which
are subsequently added into the shape and appearance codes of the
conditional NeRF model. This ensures alignment with the given in-
put text or image description. The mappers’ training is supervised
by both the discriminator and CLIP similarity losses. Crucially,
during this phase, only the mappers are trained while all previously
trained modules remain frozen.

Text2Mesh [MBL*22]. Given a text prompt, Text2Mesh aims to
stylize a 3D object mesh by adding 3D geometric detail and color.
To do so, Text2Mesh takes the given shapes and optimizes displace-
ment vectors for each mesh vertex and its color attribute. The train-
ing predominantly relies on CLIP similarity, with some regulariza-
tion strategies to avert implausible geometry.

8.2 Scene Editing with Text-to-image Models

Recent advances in text-to-image (T2I) models can be leveraged
for editing 3D objects or scenes. The T2 models can be used to
provide edited versions of rendered images that are then reincor-
porated into the 3D representation [HTE*23; KSH*23]. Here we
briefly describe a few works that use T2I models for editing of 3D
objects or scenes.

SKED. Mikaeili et al. [MPCM23] provides a method for sketch
and text guided editing of an object. The input comprises of multi-
ple sketch-views consisting of closed shapes indicating regions for
edit as well as the complementing text prompt. The base object is
represented as an Instant-NGP NeRF model. The overall optimiza-
tion is guided by the SDS loss to ensure the object is aligned with
respect to the text prompt. However, to preserve the identity of the
base object they propose two losses to regularize training. A preser-
vation loss that penalizes density and color changes with respect to
the original object especially for points distant from the designated
edit areas, and a silhouette loss to make sure that the edit regions
are being filled. The results show that this method can perform lo-
calized edits of 3D objects while preserving the original identity of
the object.
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Vox-E. Sella et al. [SFHA23] aims to perform local or global ed-
its of a 3D object given a text prompt. They start off with a voxel
grid NeRF model (ReLU Fields) initialized with the original object.
They then train the model with the SDS loss and a volumetric regu-
larization using a correlation loss between densities of the original
and edited objects. While this objective produces an output aligned
with the text prompt and structure that mostly preserves the origi-
nal identity. It may be desirable for local edits to keep other regions
unchanged. To address this, a spatial refinement method has been
introduced. This method segments the locally-edited region from
the modified object and merges it with the original. The process
utilizes the cross-attention modules in the T2I model to generate
attention maps with respect to the the text indicating the local edit
as well as the rest of the text. Using the attention map, two ad-
ditional NeRF models are trained. Subsequently, an energy min-
imization approach is employed to derive the segmentation mask
used for merging. With this their method is able to perform global
edits that can change the contents of the entire object, as well as
more localized edits that only modify a small region.

Instruct-NeRF2NeRF. Haque et al. [HTE*23] is designed to mod-
ify NeRF scenes using textual inputs. The procedure alternates be-
tween updating input images and training the NeRF model. In-
structPix2Pix is used to edit the images based on the provided text.
These images include both the multi-view dataset used for NeRF
training and images rendered with different camera parameters.
This cycle of updating the dataset and then training the NeRF with
the refreshed images is termed ’Iterative Dataset Update’ or Itera-
tive DU. Initially, the edits will be inconsistent, but with continued
iterative updates, the NeRF and the rendered images progressively
align and converge to achieve a uniformly consistent scene.

Instruct 3D-to-3D. Kamata et al. [KSH*23] similarly uses In-
structPix2Pix for guiding the editing process of a NeRF scene with
a text prompt. However, they instead leverage the modified score
estimate in InstructPix2Pix to calculate the SDS loss which is used
to optimize the scene. Together with a dynamic scaling scheme, the
number of voxels in the DVGO model used for training is gradu-
ally reduced than increased again during training to facilitate global
edits of the global structure then fine details.

Room Dreamer. Song et al. [SCX*23] transforms the scene tex-
ture of an input room scene given a text prompt while improving
the geometry. They start off by rendering a cube map of images,
depths and distance maps from the center of the input room scene.
Then leveraging these and the text prompt as input they generate
stylized images through a T2I model. Gaps in the scene not ren-
dered by the cube map are outpainted and filled. The images are
then used to optimize the textures of the original input scene. To
address potential artifacts in the original scene, a geometric loss is
incorporated, ensuring that both the rendered depth and the depth
predicted by an estimation network remain consistent and smooth.

8.3 Texturing

One common edit operation on 3D shapes is re-texturing, which
can help to create a variety of fine-grained surface appearance for
the same shape geometry. The papers in this section utilize depth
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conditioned image generation diffusion models for texture genera-
tion of 3D objects.

TEXTure. Richardson et al. [RMA*23] proposes a method for tex-
ture generation of 3D meshes using Stable Diffusion-based depth-
to-image and inpainting models. Their method involves a progres-
sive process of rendering depth images from different views of the
3D object. Then, they use the depth-to-image diffusion model to
generate images based on the text prompt and depth. The image
is written back to a texture atlas of the 3D object with UV map-
ping calculated by XAtlas. To ensure local and global consistency
of the painted textures from different views, they use another meta-
texture map to keep track of which regions of the texture are clas-
sified as “keep”, “refine” or “generate”. The “keep” regions are re-
gions that are fixed during the update process as other views have
already generated the texture for the region. The “refine” regions
occur when the view used to paint the region is oblique resulting in
high possibility of distortions. The “generate” regions have yet to
be generated by other views. Given these segmented regions of the
meta-texture, a mask is generated during the sampling steps of the
image to keep regions marked as “keep” unchanged, as well as al-
lowing for changes in “refine” and “generate” regions. The authors
also find that alternating between the depth-to-image and inpainting
models during the sampling steps help with consistency. Finally,
the generated image is used to update the texture map for regions
marked as “refine” and “generate”. They show that the generated
textures can have higher quality as well as consistency compared to
prior methods. Additionally, their method can be utilized for other
tasks such as texture transfer, texture from images and texture edit-
ing. However, some drawbacks include global inconsistencies and
the fixed viewpoint selection resulting in some geometries not be-
ing fully covered by the texture generation process.

Text2Tex. Chen et al. [CSL*23] is concurrent work to TEXTure
and offers a similar strategy for generating textures by progres-
sively painting textures from different views with a depth-to-image
model. First, given a set of fixed viewpoints, they calculate simi-
larity masks which indicates how perpendicular the view direction
is to the face normals of the mesh. Using the similarity masks they
segment into generation masks of “new”, “update”, “keep” and ““ig-
nore” regions similar to TEXTure. The “new” regions are inpainted
from random noise, and the “update” regions have a smaller de-
noising strength. Other regions are fixed and masked respectively.
Different from TEXTure, Text2Tex adds an additional texture re-
finement stage with an automatic viewpoint selection scheme. For
the views sampled in this stage, a view heat is constructed with the
generation mask indicating areas that may have artifacts in textures.
They then dynamically select views with high view heat and update
those using their algorithm. This helps to eliminate additional dis-
tortions in the texture that were not visible from the fixed camera
viewpoints. This method generates high quality textures, with the
automatic viewpoint selection helping to eliminate additional arti-
facts.

SceneTex Chen et al. [CLL*23] proposes an optimization-based
approach for generating scene textures. They parameterize the
scene appearance with a multi-resolution texture field with cross at-
tention texture decoder. The implicit textures are optimized through
a VSD loss and a diffusion model with depth prior as well as the in-
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put text. This method generates textures with more detail and con-
sistency with the text compared to prior methods, but comes at the
cost of long optimization times per scene.

9 Evaluation

As text-to-3D shape generation methods develop, there will be an
increasing need for systematic evaluation to assess the strengths
and weaknesses of the different methods. Recent work [WYL*24]
recognizes the need for automated evaluation of text-to-3D and pro-
poses the use of large vision-language models such as GPT-v4 for
automated evaluation. In this section, we start by identifying crit-
ical dimensions along which text-to-3D shape generation methods
should be evaluated (Section 9.1), and then summarize current eval-
uation methodologies (Section 9.2).

9.1 Desiderata

Following work in text-to-image generation, it is critical to evalu-
ate text-to-shape generation along the following dimensions which
characterize the output.

Quality. This axis measures how good are the generated shape?
The simplest way to think of this dimension is in terms of how
realistic the generated shape appears to a human observer. With
3D shapes, there are additional properties of quality of the output
shape including geometric consistency (does the shape exhibit the
Janus problem, are there disconnected parts when there should not
be any), mesh quality (is the mesh topology smooth where it should
be, and does it have enough geometric detail in complex regions),
as well as color and texture quality.

Fidelity. This dimension involves measurement of do the gener-
ated shapes match the text prompt? In text to 3D shape generation,
it is important not only that that the shape is of high quality but that
it also matches the text specification. Characterization of such fi-
delity measures requires computing the degree to which properties
specified by the text are respected in the output 3D shape.

Diversity. This axis answers do the generated shapes exhibit vari-
ety? In other words, another important property for a good genera-
tive model is the ability to generate a diverse set of shapes. Given
that a variety of shapes can satisfy the same text description (e.g.
there are many chairs that match the description black chair), it is
important that multiple, diverse shapes can be generated. However,
it is difficult to know the full distribution of the space matching
the text description and measuring whether the full set shapes is
covered that distribution well is challenging.

Compositionality. Metrics measuring this dimension attempt to
answer the question can the method handle text describing differ-
ent combinations of parts, attributes, and spatial relations? Only
recently has text-to-2D generation work started to more systemati-
cally investigate this aspect [PAL*21]. Measurement in this dimen-
sion requires systematic evaluation of generations for text descrip-
tion that exhibit the compositional nature of language (e.g. black
chair with gray legs vs gray chair with black legs).

Speed and efficiency. In addition to assessing the above qualities,

it is also important to compare the speed and memory resources
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Type Method  Train  Per-prompt Device Gen time
3DPT TITG3SG [LWQF22] yes no V100-32G  2.21s (24.44s)
3DPT Shap-E [JN23] yes no V100 13s
3DUT TAPS3D [WWF*#23] yes no V100-32G  0.05s (7.09s)

CLIP-Guide DreamFields [JMB*22] no yes TPU cores 72m
CLIP-Guide PureCLIPNeRF [LC22] no yes GTX 2080t 20m
Diff-Guide DreamFusion [PTBM23] no yes TPUv4 90m
Diff-Guide SJC [WDL#23] no yes RTX A6000 25m
Diff-Guide  Prolific Dreamer [WLW#*23] no yes A100 several h
Diff-Guide Magic3D [LGT*23] no yes 8x A100 40m
Diff-Guide DreamGaussian [TRZ*23] no yes V100 2m
Diff-Guide GSGEN [CWL23] no yes  4x RTX 3090 30m
Diff-Guide =~ GaussianDreamer [YFW#23] no yes RTX 3090 15m
Diff-Guide Fantasia3D [CCJJ23] no yes  8x RTX 3090 31m
Diff-Guide MVDream [SWY*#23] no yes V100 1-1.5h
Diff-Guide SweetDreamer [LCCT23] no yes 2/4x V100 20m/1h
Hybrid3D Point-E [NJD*22] yes no A100 25s
Hybrid3D Direct2.5 [LZL#23b] yes yes A100 10s
Hybrid3D Instant3D [LTZ*23] yes no A100 20s

Table 8: Comparison of reported speed and memory needed for
different methods. Numbers in parentheses indicate type to gener-
ate a mesh representation from the base 3D representation (neural
fields or voxels for TITG3SG). Average per-shape inference time
estimates are taken fron the respective papers, except for TITG3SG
which was from TAPS3D [WWF*23]. Point-E [NJD*22] gave a
range for inference time depending on model size (ranging from
165 to 1.5m for 40M parameter to 1B), we take the 300M parame-
ter condition that Shap-E [JN23] also uses for comparison.

required. Methods are typically measured in terms of wall clock
time for training, generating a single output (i.e. inference), and
the memory needs for either training or generation. For reference,
Table 8 provides a summary of reported speed and memory con-
sumption for methods in this survey.

9.2 Existing evaluation

Pioneering works such as Text2Shape [CCS*19] and Dream-
Field [JMB*22] not only show that is possible to generate 3D
shapes from text, but also propose quantitive evaluation protocols
that can be used. However, many followup works do not perform
any quantitive evaluation and provide qualitative examples only.
This is especially true for works that focus on proposing new guid-
ance losses [WDL*23; WLW#*23] and improved 3D representa-
tions [MRP*23; CCJJ23]. Below we organize the types of evalu-
ation protocols in prior work, and outline directions for more com-
prehensive evaluation of text-to-3D shape generation.

User studies. As it is challenging to evaluate the output of a gen-
erative model, it is typical to use user studies that compare the out-
put from different systems. One type of user study is A/B testing
where users are asked to compare outputs from two systems. As
the user response can depend on the specific question asked, it is
common to pose several different questions to users to extract user
judgements corresponding to different dimensions such as quality
and fidelity. For instance, Tsalicoglou et al. [TMT#*23] asked users
preferences on natural colors, detailed textures, and visually pre-
ferred. However, this principle is not always followed. Some work,
such as [LGT*23], only ask users to broadly judge the quality of
the generated shape (they ask users to select the one that is more
realistic).

Evaluation against ground-truth shape. Text2Shape[CCS*19]
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evaluated generation results using several quantitative metrics that
required access to a ground-truth shape: Intersection-over-Union
(IoU), Earth Mover’s Distance (EMD), and classification accuracy
(Class Acc). The metrics aimed to evaluate the geometric accu-
racy (IoU) and color (EMD) against a ground truth shape asso-
ciated with the description, and in general whether the generated
shape matches the class (table vs. chair in their case). These met-
rics are easy to compute algorithmically and quantify the under-
lying properties precisely. However, there is a strong assumption
of only one ground truth output which is unrealistic and in ten-
sion with the desire for diversity in the output. In addition to the
above, Text2Shape also evaluated their results using a variant of
the Inception Score[SGZ*16] using a shape classifier. The Incep-
tion Score metric combines guality (can the classifier identify be-
tween the shapes) and diversity (do generated shapes exhibit the
class distribution).

FID. Another way to measure the quality of a generated shape is to
evaluate how natural the rendered images of the generated shapes
appear to be to a neural architecture that was trained on image data.
For instance, Tsalicoglou et al. [TMT*23] evaluated renderings us-
ing an FID metric based on CLIP. Other papers that use this FID
metric to evaluate quality include Xu et al. [XWC*23] and Wei et
al. [WWF*23].

Point cloud metrics. In addition to evaluating the quality of the
renderings, it is also possible to attempt to measure the qual-
ity of the geometry of the shape using point clouds. Recently,
point-based versions of the inception score [SGZ*16] (P-IS) and
Frechet Distance [HRU*17] (P-FID) were introduced by Nichol
et al. [NJD*22] and used in follow-up work [ZLC*23]. Similar
metrics include the Frechet Point Cloud Distance (FDP) which
has been used in the shape generation community [ADMGI18].
This metric has also been used for evaluating text-to-shape gen-
eration [WWEF*23].

Automated pairwise comparison. Given a set of shapes (targets
and distractors) for a text description, these evaluation protocols
train a neural evaluator to select the correct shape. The neural eval-
uator can then produce a confidence score for each shape. This eval-
uation protocol was introduced by ShapeGlot and trained with the
ShapeGlot dataset [MCST22; CLT*23]. This evaluation strategy is
used to compare two methods, given a shape generated by method
1 and shape generated by method 2. If the confidence score for the
two methods is within a certain threshold (0.2), then the evaluator
cannot determine which of the two classes the shape is from, and is
confused. The method selected more often by the neural evaluator
is said to perform better.

Retrieval model R-Precision. The CLIP R-Precision metric was
introduced by Park et al. [PAL*21] and popularized for evalua-
tion of text-to-3D shape generation in DreamFields [JMB*22]. R-
Precision measures the fraction of generated shapes that are re-
trieved correctly using a retrieval model based on CLIP similarity
of rendered views to the text prompt. DreamFields used a set of 153
text queries and corresponding generated shapes (two per query).
If a specific CLIP is used in the optimization, then the CLIP R-
Precision is more meaningful with a different CLIP encoder (i.e.
different backbone). Papers that use this evaluation protocol in-
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clude Jain et al. [JMB*22], Lee and Chang [LC22], Poole et al.
[PIBM23], Mohammad Khalid et al. [MXBP22], Tsalicoglou et al.
[TMT#*23], and Xu et al. [XWC*23]. This metric is an approxima-
tion of the fidelity of the description to the generated shape.

Shape-text score (ST-S). Another metric that measures the fidelity
of the shape to the text is the shape-text (ST-S) score. Given an
aligned shape-text space, it is possible to compare methods by com-
puting the similarity between the input text and the generated 3D
shape. Zhao et al. [ZLC*23] measured ST-S using ULIP [XGX*23]
and their own aligned space SITA [ZLC*23].

Pretrained LVLM. The rise of Large Vision-Language Models

(LVLM) is enabling automated metrics that act as a ‘proxy’ for
human judgement. [WYL*24] demonstrated that GPT-V4 can eval-
uate the quality of generated 3D shapes through an A2C test for the
LVLM. Given two generated 3D assets, they provide the LVLM
with 2D renderings for each, (arranged as a grid of multi-view im-
ages), paired with text instructions describing the criteria to judge
the renderings (different prompts and different rendering styles are
used depending on the criteria of interest). The LVLM outputs
whether the left or right asset is better, together with an analysis.
Given a set of text prompts, and a set of models, the pairwise rank-
ings are then combined to form an overall score by using the Elo
score (commonly used for chess rankings). This strategy enables
automated evaluation of criteria such as the fidelity (or alignment)
of the text to the 3D shape, plausibility of the geometry, geometry
details, texture details, and diversity of the shapes.

10 Discussion

This survey has summarized and categorized work on text-to-3D
shape generation. Despite the explosion of interest in this area,
text-to-3D research is still far behind text-to-image generation with
many challenges and opportunities. Below, we conclude by outlin-
ing some promising directions for future investigation.

Data scale. With the development of ever-larger 3D datasets such
as Objaverse [DSS*23] and Objaverse-XL [DLW*23], there are in-
creasing amounts of 3D shape data available to the research com-
munity. This trend is likely to continue along with better 3D scan-
ning techniques, and easier 3D content design tools. This data will
will likely be highly valuable for training better generative 3D
models. Moreover, while this data will not necessarily be naturally
paired with text descriptions, advances in image captioning will al-
low generation of text captions at scale. Thus, we anticipate further
opportunities in developing better methods that can leverage both
paired and unpaired 3D and text.

Hierarchical and part-based generation. As was apparent from
this survey’s section on scene-level generation, much work remains
to be done to enable generating hierarchical compositions of scenes
from high-quality objects, or similarly, hierarchical compositions
of objects from parts. Progress in this direction will enable fine-
grained editability, since many editing operations revolve around
properties of specific parts, or specific objects within a scene.
Moreover, generation of animated 3D content whether at the ob-
ject or scene scale, will likely benefit from such hierarchical meth-
ods, as many motions are typically characterized well through rigid

H. Lee, M. Savva & A. X. Chang / Text-to-3D Shape Generation

transformations of parts or whole objects. This latter generation of
dynamic 3D content is a prominent “grand challenge” in this area.

Focus on language. Much of the development in text-to-3D gener-
ation has been driven by advances in 3D representations and gen-
erative models from other domains, text to image being the promi-
nent example. While this transfer of knowledge led to an explosion
of interest, an important and currently under-studied area is gener-
ation that better matches language to the generated shapes in a fine-
grained manner (e.g., respecting detailed part and material proper-
ties). In addition, questions such as what kinds of natural language
are handled well by particular methods remain unanswered. A key
challenge for future work is shape generation that respects the fine-
grained compositionality of the input language (e.g., "chair with
black arms and red seat). In order to make progress in this direc-
tion, the community will also need to devote focus on evaluation
protocols that can quantify progress in these directions.

Improved speed and memory. Methods that rely on 3D data typ-
ically require large amounts of compute and memory to train, but
are generally fast at inference time. In comparison, methods that
do not rely on 3D data typically rely on per-prompt optimization
which is very slow, and currently highly impractical for real-world
deployment. Thus, another promising direction for future work is
developing strategies to improve the efficiency, speed, and memory
consumption characteristics of text-to-3D shape generation. At the
time of writing this survey, there have been exciting recent devel-
opments that leverage 3D Gaussian Splatting [KKLD23] as back-
bones for the SDS loss [TRZ*23; CWL23; YFW*23], leading to
significant improvements in training and rendering speeds.

Conclusion. We hope that this survey will catalyze further work
in text-to-3D shape generation, and enable researchers to advance
the state of the art. Progress in this direction has the potential to
democratize 3D content creation by enabling people to turn their
imagination into high-quality 3D assets, and to iteratively design
and control these assets for a variety of application domains.
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