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This STAR covers fundamental concepts and recent trends in 3D reconstruction of general non-rigid scenes. We discuss

techniques for reconstruction, decompositional scene analysis, editing and control, and generalizable and generative modeling. Image
sources: [FKMW*23, WZL*22, CB22, MPCVG23, LLM*23, LCW*24, SYD* 23, KKK* 23, XH22, NIT*22, ZLX23, SSR*23, TDD23, BSR*24]
©2024 IEEE.

Abstract

Reconstructing models of the real world, including 3D geometry, appearance, and motion of real scenes, is essential for com-
puter graphics and computer vision. It enables the synthesizing of photorealistic novel views, useful for the movie industry
and AR/VR applications. It also facilitates the content creation necessary in computer games and AR/VR by avoiding labori-
ous manual design processes. Further, such models are fundamental for intelligent computing systems that need to interpret
real-world scenes and actions to act and interact safely with the human world. Notably, the world surrounding us is dynamic,
and reconstructing models of dynamic, non-rigidly moving scenes is a severely underconstrained and challenging problem.
This state-of-the-art report (STAR) offers the reader a comprehensive summary of state-of-the-art techniques with monocular
and multi-view inputs such as data from RGB and RGB-D sensors, among others, conveying an understanding of different
approaches, their potential applications, and promising further research directions. The report covers 3D reconstruction of
general non-rigid scenes and further addresses the techniques for scene decomposition, editing and controlling, and generaliz-
able and generative modeling. More specifically, we first review the common and fundamental concepts necessary to understand
and navigate the field and then discuss the state-of-the-art techniques by reviewing recent approaches that use traditional and
machine-learning-based neural representations, including a discussion on the newly enabled applications. The STAR is con-
cluded with a discussion of the remaining limitations and open challenges.

CCS Concepts

e Computing methodologies — Reconstruction; Volumetric models; Point-based models; Mesh geometry models; Motion
capture; Shape representations; Appearance and texture representations;
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1. Introduction

3D reconstruction and rendering of non-rigidly deforming scenes
are fundamental problems in computer vision and graphics. De-
pending on the sensor types, underlying scene assumptions, and
types of motions and deformations, this problem is severely ill-
posed and highly challenging. Applications of non-rigid 3D recon-
struction pervade many domains of science, studying our world on
different scales: tracking of celestial bodies and their agglomera-
tions (cosmological scale); reconstruction and prediction of dynam-
ics in the troposphere of Earth from satellite observations; recon-
struction of melting glaciers over time (the scale of a planet and
its ecosystems); reconstruction of humans and animals in interac-
tion with their environments (level of ecosystems); non-rigid track-
ing of human faces, body parts, worn garments, and organ tissues
(level of living organisms); non-rigid objects even on smaller scales
(e.g. microorganisms). The intermediate scales involving humans
and their environments—the focus of this report—have recently
seen a lot of work due to their relevance to visual computing, while
others remain difficult to study. Moreover, end-users utilize and en-
joy technology involving non-rigid 3D reconstruction daily, such
as movies, computer games, AR/VR headset applications, driver
assistance systems, and mobile video editing applications, among
others.

The emergence of neural scene representations marked a
paradigm shift in non-rigid 3D reconstruction. Through the ad-
vances in differentiable rendering [TTM*22], these methods en-
able end-to-end optimization of the 3D scene representations di-
rectly from the available visual observations (images, videos, or
other sensing modalities). For example, Neural Radiance Fields
(NeRFs) [MST*20] represent a scene with a coordinate-based
multi-layer perception that maps a 3D position in space and a 2D
viewing direction into color and density. Using classic volume ren-
dering techniques, NeRF achieved unprecedented quality of view
synthesis. Compared to classical 3D reconstruction pipelines that
involve multiple disconnected stages (e.g., structure from motion,
multi-view stereo, surface reconstruction via depth fusion, and tex-
turing), such neural scene representation approaches offer signifi-
cantly more accurate geometry and appearance reconstruction.

Significant progress has been made in improving the accuracy
of geometry reconstruction, appearance modeling, training, render-
ing speed, and supporting various input modalities for general 3D
reconstruction tasks, from which the non-rigid setting [LNSW21,
TTG*21, GSKH21] has also benefited. Scene representations such
as hybrid neural representations [MESK22, XXP*22, CXG*22]
and 3D Gaussian Splatting [KKLD23]—introduced in the static
setting—have significantly reduced training times and enabled
fast rendering (real-time in the case of the latter) of non-rigid
scenes [CJ23, FYW*22, AHR*23, LKLR24, DWY *24]. Advances
in machine learning techniques and especially in generative mod-
eling [RBL*22] have enabled learning stronger priors for differ-
ent aspects of the non-rigid reconstruction task [LZYX22, TDD23]
and even generate new 4D sequences of scenes [SSP*23] and ob-
jects [EMS™*23] from the learned distributions. The general trend
of using self-supervised learning to discover underlying structures
and concepts has also been seen in the context of static-dynamic
scene decomposition [WZT*22, SCL*23] and joint/skeleton dis-

covery [NIT*22,YZH"*24]. Finally, the need to make non-rigid 3D
reconstruction methods more accessible for increased applications
has pushed development in challenging settings, such as recon-
struction from a monocular video [WMJL23, CFF*22] and com-
plex motion modeling without specialized templates [PMR*23,
YVN*22, YWRR23]. These trends motivate the scope of this re-
port, as shown in Fig. 1, which is described next.

1.1. Scope of the STAR

This state-of-the-art report (STAR) aims to provide researchers and
practitioners with the background knowledge necessary for under-
standing the vibrantly evolving field, describe the core new tech-
niques that recently (re-)shaped it, and discuss the recent progress
in non-rigid 3D reconstruction.

Each observation level and application necessitates suitable sen-
sor types ranging from LiDAR systems, specialized (multi-view)
camera systems, event cameras, and endoscopic visual devices to
becoming increasingly widespread RGB+depth (RGB-D) sensors
and cameras in mobile devices. We consider all of them in the con-
text of general non-rigid 3D reconstruction in this survey. Note that
we do not cover methods that make strong assumptions or lever-
age domain-specific constraints about the observed scenes, such as
parametric shape models (e.g., methods reconstructing humans or
human faces), which are investigated in different active sub-fields
by the community. In this report, we focus on aspects of general
non-rigid scenes, i.e., their reconstruction, decompositional scene
analysis, editability and control, and the emerging field of general-
izable and generative modeling.

Existing surveys cover subsets of these aspects of general non-
rigid scenes. The survey on Advances in Neural Rendering (2022)
by Tewari et al. [TTM*22] is distantly related to ours. It focuses
on Neural Radiance Field (NeRF)-based neural rendering methods
for static and dynamic scenes and includes only a few (the first
of their kind at the time) NeRF-based techniques for non-rigid 3D
reconstruction of deformable scenes. Since then, the field substan-
tially moved forward, and our STAR complements and covers the
progress in non-rigid reconstruction. Another related survey pub-
lished in 2018 focuses on 3D reconstruction with RGB-D cam-
eras [ZSG*18] and also briefly addresses dynamic scenes. Ours
provides a substantial update for non-rigid techniques and is signifi-
cantly more comprehensive by discussing the state-of-the-art meth-
ods introduced in recent years. The most closely related survey to
ours is Tretschk et al. [TKBR*23]. It also addresses non-rigid 3D
reconstruction but focuses on the monocular setting exclusively. In
contrast, this STAR addresses the 3D reconstruction of non-rigid
scenes from various sensor types, including multi-view, RGB-D,
LiDAR, and monocular data. Notably, these sensors enable a much
wider variety of applications in different contexts than monocular
cameras. For the monocular setting, we complement the discus-
sion of monocular methods compared to Tretschk et al. [ TKBR*23]
with techniques that appeared in the last twelve months. In addition,
we discuss decompositional scene analysis, editability and control,
and the emerging field of generalizable and generative models for
non-rigid scenes [PYG*23].

We predominantly include approaches published at top-tier com-
puter vision, machine learning, and computer graphics venues from
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late 2021 until late 2023. Since the field progresses rapidly, several
recent technical reports on arXiv.org are also included.

1.2. Structure of the STAR

The following Sec. 2 reviews the fundamentals necessary to un-
derstand and navigate the field. Sec. 3 then presents a comprehen-
sive discussion of the state-of-the-art techniques. It first addresses
the general non-rigid 3D reconstruction and novel view synthe-
sis methods in Sec. 3.1 and then proceeds with specific aspects,
namely to decompose scenes into parts in Sec. 3.2, and to enable
editing and controlling the scenes in Sec. 3.3. Finally, Sec. 3.4 dis-
cusses generalizable and generative modeling. The remaining two
sections conclude the report by presenting the open challenges in
Sec. 4 and giving a conclusion in Sec. 5.

2. Background

Non-rigid 3D reconstruction seeks to infer the time-varying geom-
etry and appearance of a scene. Modeling a deforming sequence
requires a scene representation that spatially captures a 3D scene
in one of two ways: either with a deformation representation to
parameterize how the scene changes from one time instant to an-
other, or an extension of the scene representation into the temporal
domain to model the evolution over time. This section overviews
these fundamental building blocks of non-rigid 3D reconstruction.
We assume knowledge about the fundamentals of computer vision,
computer graphics, and machine learning on the reader’s part.

We first look at capture settings that provide observations of
scenes in Sec. 2.1. In Sec. 2.2, we introduce the data structures
that form the basis for representing geometry and appearance. In
Sec. 2.3, we then review the fundamental challenges and look at
performing non-rigid 3D reconstruction with the given represen-
tations and observed data, where we discuss key aspects such as
modeling deformations, optimizing the scene model, and incorpo-
rating data-driven priors.

2.1. Sensors and Capture Settings

Reconstructing real-world objects and scenes requires capturing the
data first. The type and number of camera sensors used to observe
the scene influence how ill-posed the problem is and, therefore, in-
fluence the required priors and the overall reconstruction quality.
Every sensor set-up has advantages and disadvantages regarding
consumer availability, cost, and whether it is technically feasible to
use in a given setting. This section introduces the various aspects
of capturing real-world scenes with a sensor: different sensor types
and their parameterizations, and the sensor configurations for cap-
turing a scene.

2.1.1. Camera Model

The camera model defines how a position in 3D space is projected
to 2D image coordinates, given the intrinsic camera parameters. For
simplicity, most methods use a pinhole camera model, and real data
is often preprocessed to remove lens distortion in advance. Extrin-
sic camera parameters determine the pose of the camera in world
coordinates using a rotation R € SO(3) and a translation 7 € R3.

© 2024 The Authors.
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Online reconstruction methods usually track camera poses simul-
taneously while performing the reconstruction. However, it is com-
mon practice for most offline methods to compute camera poses
beforehand, using structure-from-motion (SfM) methods such as
COLMAP [SF16,SZFP16]. The accuracy of the estimated camera
poses is vital to the reconstruction quality; inaccuracies can lead to
blurry reconstruction results or even failure.

2.1.2. Sensor Types

RGB. Today, practically every smartphone has an RGB camera,
making it the most accessible sensor. Each pixel collects incoming
photons and generates analog electrical signals transformed into a
digital representation (i.e., an RGB image).

Passive Depth. Depth can be obtained passively by using two RGB
cameras and estimating the disparity between every pixel using the
principles of epipolar geometry, which constrains the observations
of a 3D point in two cameras to lie on the corresponding epipo-
lar lines [HZ03]. The baseline, focal length, and resolution of the
stereo pair determine the depth range. Notably, recovering the depth
from stereo RGB images is often ill-posed and results in poor per-
formance for texture-less surfaces and under low-light conditions.

Structured Light. Structured light sensors add to the cost, but pro-
vide better results by actively sending patterns of visible or infrared
light into the scene and observing and analyzing the distortion pat-
terns. However, in direct sunlight, infrared light interferes with
the projector’s emitted light and prevents the depth measurements.
Hence, these sensors are primarily suited for indoor applications.

Time-of-Flight. Analogous to echolocation in bats, these sensors
measure depth based on the principle of time-of-flight, i.e., the
time it takes for an emitted signal to reach the sender after reflec-
tion from the environment. The most common type in this class is
the LIDAR sensor, which uses a laser projector to measure depth.
While it allows for accurate measurements in sunlight and out-
door environments, the samples obtained are irregular and spatially
sparse due to sequential scanning of the scene.

Event. Event cameras are relatively new types of sensors that
output asynchronous per-pixel brightness changes over time in-
stead of 2D scene snapshots at pre-defined time instants [LPDO8]
(like RGB sensors). Each sensor pixel stores a reference bright-
ness and asynchronously fires an event when the brightness change
exceeds a threshold with respect to the reference. This results in
a sparse signal that only informs about the per-pixel brightness
changes in the scene. The main advantage of event sensors is the
high dynamic range, which enables accurate sensing even in low-
light conditions, and the high temporal resolution (on the order
of tens to hundreds of microseconds), which leads to significantly
lower motion blur in fast-moving scenes compared to RGB cam-
eras [RGW*21, RETG23, MLR*24].

2.1.3. Scene Capture

Capturing scene dynamics requires sensors to observe the environ-
ment across space and time. We define a frame as data captured
by different sensors at a given time instant. A single-view frame
contains the data from a single sensor, while a multi-view frame
contains data from multiple synchronized sensors. A video is a
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Figure 2: Capture Trajectories. A frame can consist of images from
a single or multiple cameras installed on a rig. The camera or rig
can move along a forward-facing, a 360-circle, or a freeform tra-
jectory. Image source: [WLC*23].

collection of frames acquired over time along a certain trajectory,
which may be forward-facing, a 360-degree circle, or freeform (see
Fig.2). Multiple videos of an object or category can be utilized to
build instance-level [YVN*22] or category-level [YWRR23] mod-
els. An image collection is a set of images of an object or category
captured under different states and in different scenes (e.g. images
of "dogs" found on the internet), which can be used to learn articu-
lated, category-level models.

2.2. 3D Scene Representations

Capturing a non-rigidly deforming scene requires suitable repre-
sentations to define various scene properties in space and time. Ge-
ometry informs us about where surfaces and occupied space are,
and appearance informs us about the properties of outgoing light
from a particular geometry point and how the occupied space looks
when rendered into an image. Deformation captures how the ge-
ometry moves from one time instant to the next. Furthermore, a
compositional scene representation provides a decomposition into
its constituent static and dynamic parts.

In the following, we summarize the most common types of rep-
resentations used for modeling 4D scenes. We describe a generic
3D representation as a function

y=p(x,1; ), )]

where p is the model of the representation, x € R are 3D coordi-
nates, H is a set of optional additional parameters (e.g., the view
direction), and 0 stores the scene information. The function outputs
scene properties y for the given position X, where some example
properties that can be represented with y are color, irradiance, oc-
cupancy, signed distance, density, and BRDF parameters. Naively,
all 3D representations can be extended to 4D (modelling time) by
introducing a dependency on ¢ for p.

An overview of common 3D representations is given in Fig. 3.
We first look at discrete representations, which explicitly store

scene information © at discretely defined nodes, with p defin-
ing the interpolation of information from these nodes to any 3D
point. Then, we describe continuous representations, usually im-
plemented as neural networks which store scene information 0 im-
plicitly in their weights, before introducing hybrid variants which
combine both forms of representations. Later in the section, we ex-
plore how scene properties y, i.e. geometry (Sec. 2.2.1), appear-
ance (Sec. 2.2.2) and deformations (Sec. 2.2.3) are defined using
these representations and how the scene can be decomposed into
its constituent parts and modeled using separate representations
(Sec.2.2.4).

Point Clouds. Point clouds consist of irregularly sampled points
in 3D space, which can host scene information 6. Point clouds
are adaptive in their sampling and can easily be edited by moving
points, unlike volumetric discretizations. A radius-based search is
usually employed to interpolate scene information from the near-
est points in the point cloud for an arbitrary 3D location x. A point
cloud is usually obtained by unprojecting and fusing depth maps if
the scene is captured with a depth sensor or sampling a 3D mesh.

Meshes. The natural extension of point clouds in traditional 3D
graphics—and the standard representation for any 3D graphics soft-
ware—is meshes, which add connectivity between points, defining
polygon primitives usually in the form of triangles, where any 3D
point on the polygon can be accessed via barycentric interpolation
from the respective vertices. Information can be stored not only on
vertices but also on the primitives via u-v mapping, e.g., textures or
normal maps. Differentiable renderers for mesh reconstruction al-
low optimizing elements in the representation [LLCL19,SGY*21].
In the context of deformations, a mesh can also be utilized as
an embedded deformation graph, where explicit edge connec-
tivity defines the neighborhood that moves together. The graph
can be built on multiple levels of resolution and the underlying
surface can be represented by TSDF voxel grids [NFS15], sur-
fels [GT18, CRG*23] or points [RMT23].

Voxel Grids. Voxel grids are a traditional volumetric data structure
and discretize a volume into regular, fixed-size voxels. The scene
information is usually interpolated from the grid using trilinear in-
terpolation. The main drawback is the cubic growth of memory re-
quirement with the resolution. The efficiency is usually improved
in one of the following ways (see bottom left part of Fig. 3):

e Hashing: Voxel hashing [NZIS13] introduces lookup hash tables
to retrieve the values stored at voxels, improving the efficiency
and scalability of voxel grids.

e Octrees: The 3D space is usually sparse and irregularly pop-
ulated, so voxel grids can be made more memory efficient by
using Octrees [Mea80] that hierarchically subdivide the utilized
space and allow adaptive resolution.

o Tensor Factorization: TensoRF [CXG*22] introduced classi-
cal tensor decomposition techniques [CC70, DLO8] in the con-
text of scene representations, factorizing a voxel grid using
low-rank vector and plane components, in turn allowing com-
pact, memory-efficient representation, and efficient sampling
for high resolutions. Interpolating scene information for an ar-
bitrary 3D position x usually requires projecting the coordi-
nates of x onto the respective low-rank components first. A spe-
cial case is planar factorizations of a volume, also called ri-
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Figure 3: Common Scene Representations for Non-Rigid Reconstruction. Scene representations can be discrete, such as point clouds,
meshes, and grids, or continuous, such as MLPs or Transformers. Both paradigms can optionally be combined, where feature embeddings
for continuous neural representations are stored in discrete structures. Some scene representations are only used for coarse deformation
modeling, such as those shown in the bottom right. Image sources: [JLX*23a, XH22, YVN*22, KKK*23].

planes [PNM*20, CLC*22a], which uses an axis-aligned plane
for each spatial dimension. These representations have been re-
cently extended to the temporal domain as well, by similarly
factorizing the time dimension along with the spatial dimen-
sions [CJ23,SZT*23, AHR*23, FKMW*23].

Multi-Plane Images (MPI). A static 3D scene can be represented
by a discrete set of planes at varying distances to the camera in the
camera frustum [ZTF*18]. Each plane encodes the RGB color and
the alpha values. The MPI representation supports efficient novel
view rendering, involving only homography warping and back-to-
front alpha blending, but is limited to small viewpoint changes.

Image Sets. A set of captured images, along with the reprojec-
tion function and a feature aggregation strategy, can be used as a
3D scene representation in an image-based rendering setup. Scene
properties at a 3D location are inferred by projecting it into all
the images and retrieving the information from there. Usually,
pixel-aligned features predicted by a CNN are used [YYTK21,
WWG*21,LWC*23a], which lift the color information to a feature
space with prior information about shape and appearance.

Multi-Layer-Perceptrons (MLPs) and Transformers. A few
years ago, several works [PFS*19, MON*19, CZ19, SZW19] in-
troduced using multi-layer perceptrons as a continuous represen-
tation for scenes. For such representations, called neural fields, p
is a coordinate-based MLP with parameters 0 that defines a con-
tinuous function over a volume, modeling properties of the scene
at every possible point x € R3. Neural fields hold the properties
of being resolution-independent, continuous, and biased towards
learning low-frequency functions [RBA*19]. To effectively allow
modeling higher frequencies, positional encodings in the form of
Fourier features are employed [TSM*20]. To consider relations be-
tween sample 3D points, usually spatial along a ray or temporal
across time, a transformer architecture [VSP*17] can be utilized
which adds a cross-attention mechanism to model these relations.

Hybrid. In the original continuous formulation, neural fields are
globally parameterized, meaning that one set of MLP parameters
encodes the representation of the whole scene. This entanglement
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slows optimization, as parameter updates for one location change
the scene in many places, and many iterations are required to coun-
teract this side effect. It also leads to scalability issues, as encoding
larger scenes requires larger MLPs for more representation capac-
ity. To mitigate these undesirable properties, MLPs are paired with
discrete data structures to restrict their domain to a localized scene
region [CLI*20]. Such pairing can be done by storing latent feature
embeddings in a discrete data structure z = p(x,0) (e.g., a voxel
grid or point cloud) and conditioning an MLP & with weights ®
on the spatially interpolated feature embedding y = ®(z; ®). Dur-
ing optimization, only the neural feature embeddings in the local
neighborhood of the input point—determined by the interpolation
used—are optimized (in auto-decoder fashion, see Sec. 2.3.4) to-
gether with the MLP weights. Hybrid methods usually gain effi-
ciency and rendering quality in exchange for memory consumption
and a locality assumption.

Coarse Deformation Structures. Certain representations are only
utilized to define deformations on a coarse level. These representa-
tions use coarse, low-dimensional structures—which drive finer de-
formations—mainly serving two purposes: articulated control over
object pose and motion regularization. Commonly used representa-
tions are:

e Kinematic Chain: These are defined by joints that are linked
together with bones, forming a skeleton. Each bone defines the
transformation relative to its parent bone in the skeleton up to the
root joint. The transformation is commonly parameterized either
as a screw [JLCN21,LDS*23], with two kinds of possible mo-
tion: a revolute rotation 8 € R or a prismatic translation ¢ € R,
or with six degrees-of-freedom using a rotation and a translation
(see Sec. 2.2.3 for more parameterizations). The skeleton is usu-
ally rigged to a geometry template. For category-specific meth-
ods, the topology and rest pose of the skeleton are pre-specified,
and the joint locations are fitted to the observations. Category-
agnostic methods use morphological techniques [Blu67] or data-
driven prediction [XZK*20] to extract the skeleton.

e Neural Bones: These are defined by bones only, which are vol-
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Figure 4: Representing Geometry. With the different representations introduced in Fig. 3, geometry can be modeled either as surface or as
volume. Image sources: [AP09, PES* 19, RBSC21, LCK*22, CLZ*22, GDWY22].

umetrically predicted using an MLP, making them a part of neu-
ral parametric models—a class of methods where the articu-
lation space of an object is parameterized by an auto-decoded
MLP (see Sec. 2.3.4), thus bypassing the hand-crafted, object-
specific constraints required by traditional parametric models
like SMPL [LMR*15]. Each bone is associated with a rigid
transform 7' € SE(3), which defines its location and orientation
in space. Its influence on the surroundings can be defined by a 3D
Gaussian ellipsoid that moves along with the bone [YVN*22].

e Cage: Rather than being inside the surface, like a skeleton, a
cage [SP86] is an instance of a general free-form deformation
scheme where the deformation of every point in space within an
enclosing volume is defined by the deformation of the enclosing
shape. The vertices of a cage are used as handles to deform the
underlying surface volumetrically and can model certain defor-
mations more naturally than a skeleton, e.g. a breathing charac-
ter, torsions, or local scaling.

Based on the coarse deformation structure, blend skinning is
used to deform geometry, modeling articulated, i.e. piece-wise rigid
motion. Skinning weights are defined for each point in the scene
representation with respect to each node, determining its influ-
ence on the point. Skinning then defines a deformation field over
the scene representation, which interpolates the node deformations
based on the defined skinning weights for each point, resulting in a
non-rigid deformation based on piecewise rigid segments. Standard
skinning functions are:

o Linear Blend Skinning (LBS): x' = Y. Tiw;x, where the T; €
SE(3) and w; defines the corresponding skinning weight for i-th
bone respectively. Point x is deformed to x’ through the corre-
sponding weighted transformation. Being a basic linear inter-
polation, it suffers from several visual artifacts, most notably
volume loss, self-intersection, and the candy wrapper artifact
around the joints.

e Dual Quaternion Blending (DQB): x' = SE3(”%+:}]’;_H)X,
where T; is replaced by a unit dual-quaternion q € R® and
SE3(-) converts a quaternion back to a rigid transform. It pro-
vides higher quality interpolation than LBS and resolves the
candy wrapping artifacts, but can exhibit bulging effects in some
areas.

2.2.1. Representing Geometry

Using the representations introduced in the last section, a scene’s
geometry can be described either volumetrically or by surfaces.

We provide an overview in Fig. 4. In the following, we first intro-
duce how geometry can be described via discrete primitives such
as points, meshes, surfels, and 3D Gaussians. Afterward, we look
at signed distance functions, density fields, and occupancy fields,
all of which can either be defined continuously or using regular
discrete representations such as voxel grids.

Points and Meshes. The already introduced representations
of point clouds and meshes can directly define a surface.
Points—called particles in this context—can also be used to rep-
resent objects and fluids volumetrically, usually when their physi-
cal properties, such as elasticity and viscosity, and the deformation
dynamics under applied forces need to be modeled based on the
principles of continuum mechanics [SB12].

Surfels. Surfels [PZvBGOO] are 2D disks hosted by point clouds,
which locally approximate a surface. They are defined by their cen-
ter, radius, and normal, determining the orientation. The density of
the point samples determines the fidelity of the sampled surface.

3D Gaussians. Similarly, rendering via splatting Gaussians or el-
lipsoids has been a traditional technique for many years [BHZKOS,
RPZ02,7ZPvBGO1]. Very recently, 3D Gaussians are going through
a renaissance, enabled by the introduction of a differentiable and
efficient method for view synthesis [KKLD23]. It allows obtain-
ing radiance fields of Gaussians via optimization from images. The
Gaussians are hosted by a point cloud and represented by a 3D scale
and a 3D orientation. In addition, view-dependent appearance pa-
rameterized through spherical harmonics, opacity, and other prop-
erties can be associated with the Gaussian. Rendering a scene com-
posed of 3D Gaussians is done by splatting all the Gaussians to an
image and performing alpha compositing based on depth.

Signed Distance Functions. A signed distance function (SDF)
specifies the distance to the closest surface at each point, with
the distance usually being positive outside and negative inside
the object, therefore implicitly representing a surface. Therefore,
the zero crossing of the SDF represents the surface and can be
found by methods such as sphere tracing [Har96] or marching
cubes [LC87]. Recent methods have combined SDFs with density
fields and volumetric rendering [WLL*21, OPG21, YGKL21], uti-
lizing the strength of both, i.e. obtaining accurate surfaces and uti-
lizing the graceful reconstruction properties from density fields.

Density Field. A density measure d € [0,00) models how much
light travels through a specific point in 3D space and how much
is reflected; together with color, it is suitable for representing non-
solid and solid volumetric objects.

© 2024 The Authors.
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Figure 5: Representing deformations. Parameterizations include transformations for directly deforming between two timesteps (left) or
modeling deformations over multiple timesteps (right). Image sources: [NMOGI9, LWC*23a].

Occupancy Field. An occupancy measure o(x) € [0,1] defines
the probability that the space is occupied. It can be considered
analogous to the opacity of a point. A common way of extract-
ing surface S is by thresholding the occupancy function with T:
S={x|o(x)=1}.

2.2.2. Representing Appearance

It is important to note that the observed color is not directly a prop-
erty of an object, but the result of an interaction of environment
light and the scene material properties. Let ®, be the outgoing
ray direction of a surface point x with normal n and L. (®,,x) and
L,(x,n) be the emitted and reflected light respectively. The render-
ing equation describes the physical light transport in the scene:

Lo =Le(00,%) + Lr(x,n) and 2)
Lixm=[ fpe.eoxLomde, G
0;EQ

with Q being the hemisphere around the surface point x and ;
the incoming ray direction. Here, f; is the Bidirectional Reflection
Distribution Function (BRDF) that models how the surface reflects
light and L;(;,n) is the incoming light from direction ®;, which
may either directly come from the environment, i.e. direct illumi-
nation, or may bounce around the environment before reaching x,
i.e. indirect illumination.

In the context of this report, which focuses on general scenes,
all methods either assume a Lambertian surface or use the sim-
plification of baking in the incoming radiance. The outgoing ra-
diance is either constant in all view directions or has a view-
dependence, often modeled as a radiance field. These fields rep-
resent the scene as tuples of density ¢ and view-dependent irradi-
ance c(x,d)—parameterized either by a view direction-conditioned
MLP [MST*20] or Spherical Harmonics [FTC*22] —in continu-
ous 3D space. The representation can be translated into images by
volume rendering, where the color C(r) of a pixel is determined by
weighted accumulation along a camera ray » [MST*20]:

1y

T(1)o(r(1))e(r(r),d), @)

In

C(r)=

where r(t) is the sample point along the ray at depth ¢, #, and
tr are the near and far sample points, 6(r(t)) is the density at
r(t) and T(r) = exp(—f,i o(r(s))ds) is the transmittance, spec-
ifying how much of the light emitted from r(¢) is visible in
the rendered image. To accumulate radiance, different sampling
strategies exist [LGTK23]. Some methods leverage ray transform-
ers [WWG*21,LWC*23a] to capture contextual information using
self-attention by modeling all ray samples simultaneously.

© 2024 The Authors.
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The simplification of baking in the incoming radiance does not
hold when an object moves as the incoming direction changes,
and modeling illumination accurately through the light transport
process remains an open challenge (see Sec. 4). It is common to
model the illumination changes due to motion by allowing unspe-
cific changes of the surface color and capturing them through a
per-time-step latent appearance code [PSH*21].

2.2.3. Representing Deformations

In the previous subsections, we examined how to represent static
scene geometry and appearance. For dynamic, non-rigid scenes,
the geometry deforms over time. Fig. 5 provides an overview of
representations for such deformations. Formally, a 3D deformation
d:R¥*xR—R3 maps a point at coordinates X € R? at time 7 to
deformed coordinates x’ € R? at time ¢": X’ = d(x,1’). Here, d per-
forms a forward warp. The inverse x = d ! (x',1) is called a back-
ward warp. We refer to models which have a well-defined forward
warp and backward warp as bidirectional. In general, we distin-
guish between the following basic deformation models, where all
parameters can either be defined explicitly or predicted by an MLP:

e Position: x' = ¢(x) where ¢ is usually a neural network. It can
model arbitrary non-rigid deformations of point X to point x’.

o Displacements: x’ = x -+ Ax describes a displacement of the data
point x, where Ax is known as scene flow [VBR*99].

e Rigid Transforms: x' = Rx+ A, where R € SO(3) is a 3D rota-
tion and A € R? is a translation.

o Affine Transforms: X’ = Ax+ A, where A € R33 and A € R3.
A allows scaling and shearing in addition to rotation.

The above deformation types are independent of time and allow
transforming only from one discrete time step to the next. In con-
trast, the following concepts allow us to model continuous transfor-
mations in time:

o A velocity field v(x;,#) (c.f. [INMOG19]) can model motion of a
particle x over a time interval T via integration over time: X' =
X+ Jo v(xi,1)dt.

e A motion trajectory can be defined over a sequence of mo-
tion basis vectors {hk}f:] as x(t) = ):,’f:] Ox khg, where Oy«
are the coefficients used to obtain the trajectory x(r) for point x.
Smaller K limits the expressiveness of the trajectory, thus intro-
ducing regularization. The displacement between two timesteps
is given as x(r) — x(f1). As a basis, discrete cosines are a com-
mon choice [WELG21,LWC*23a].

When modeling deformation, there is a trade-off between data
structure size and expressivity of deformation. Thus, a single affine
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transform would fail to accurately represent motions of most de-
formable scenes. In contrast, modeling the deformation through a
dense displacement field can describe arbitrary motion but requires
a larger data structure. Moreover, the expressivity of deformation
also acts as a regularization in reconstruction tasks. Note that these
representations are not approximations of the underlying physics-
based deformations. The latter can be modeled with physics simu-
lation, most commonly based on the Finite Element Method [ZT00]
or the Material Point Method [JST*16].

2.2.4. Compositional Representations

Real-world scenes are complex, consisting of multiple dynamic
objects, each undergoing different motion, along with a back-
ground. Scene-level methods reconstruct all elements while object-
level methods focus on reconstructing a single object. Furthermore,
modeling the whole scene with a single representation might not be
ideal. In this subsection, we introduce possible spatial and motion
decompositions.

Spatial Decomposition. Decomposing the scene into its con-
stituent parts allows modeling it more efficiently and enables cer-
tain useful properties. It can be represented either by one segmented
model or by individual models for each decomposed region. For the
latter, novel views can be compositionally rendered using blend-
ing weights (usually automatically arising from densities). Differ-
ent types of spatial decompositions are:

e Static/Dynamic Segmentation: Separates the scene into a static
background and dynamic foreground model. It is most com-
monly used as preprocessing to estimate the camera pose from
the static background [LGM*23].

e Instance Segmentation: Provides masks for each object, which
allows modeling individual object motion and inter-object dy-
namics [DHL*23]. Bounding boxes may further localize ob-
jects in the scene [TZFR23]. Identified scene elements can be
edited by manipulating the individual object models, while it
also makes it possible to introduce object-level priors.

e Semantic Segmentation: Additionally provides class labels for
each object. Allows modeling class-level properties, e.g. object
rigidity [CRG*23].

e Motion Segmentation: Groups parts with similar motion to-
gether. It is used commonly as a preprocessing step for methods
that enable articulated control over the object [YZH"24].

Motion Decomposition. The motion of an object can also be de-
composed according to different levels of expressivity. To model
the rigid motion of individual objects based on the spatial de-
composition, the root pose of each object can be estimated with
respect to world coordinates (e.g. a trajectory of multiple hu-
mans in a room), with residual motion modeled in the object’s
own space. The simpler modeling allows handling larger deforma-
tions [SYD*23, WDSY23]. The motion of an individual object can
be further decomposed into articulated and non-rigid (e.g. cloth-
ing deformation on top of human motion), where the articulated
motion can be represented with a coarse deformation structure (see
Sec.2.2).

Slow cam. I m}t
=0 Slow scene — 0
Strict Effective Strict
monocular multi-view multi-view

Figure 6: Effective Multi-View Setting. A combination of fast
scene motion and slow camera movement does not give enough ob-
servations of each point in the monocular setting, and depth ambi-
guities remain. Fast camera motion with slow scene movement pro-
vides plenty of observations for each scene point in a specific state,
resolving depth ambiguities and effectively turning the monocular
setting into multi-view. Image source: [GLT"22].

2.3. Reconstruction

In the previous sections, we looked at the sensors and the cap-
ture settings that provide us with observations of a non-rigid scene
and the models to represent it. Reconstructing a non-rigid scene
requires optimizing one of these models to match the observed
data. Once the reconstruction of geometry and appearance is ob-
tained, novel view synthesis can be carried out by rendering the
scene from unobserved viewpoints or times. In this section, we
briefly outline the main challenges of non-rigid reconstruction in
Sec. 2.3.1 and take a brief look at the key aspects of reconstruction:
the design choices for modeling deformations of a non-rigid scene
(Sec. 2.3.2), optimizing the scene model (Sec. 2.3.3) and leveraging
data-driven priors (Sec. 2.3.4).

2.3.1. Challenges of Handling Non-rigid Scenes

Obtaining a 3D reconstruction of a non-rigid scene from a set of
view-dependent observations is an inherently ill-posed problem, es-
pecially from a monocular sensor, as only one observation is avail-
able for each surface point undergoing deformation and multiple
scene configurations can project into the same set of sensor read-
ings. Depth sensors and multiview capture settings alleviate some
issues by providing more constraints but suffer from inaccuracies
and occlusions. We briefly discuss the main challenges in recon-
structing non-rigid scenes in the context of different sensor and
capture settings.

Depth Ambiguity. Depth cannot be recovered from a single
monocular RGB observation, as all 3D points along a ray project
to the same 2D observation. If the scene stays static and the cam-
era moves, we can reconstruct depth where discriminative image
features are present. However, if the object deforms, the relative
motion between the camera and the scene can result in ambiguity
and prevent reconstruction (see Fig. 6). Using a multiview capture
setting reduces the ambiguity for reconstructing depth at each time
step while using a depth sensor allows surface reconstruction, sub-
ject to the accuracy and noise of the sensor.

Occlusions and Non-Rigid Loop Closure. Even in dense multi-
view capture setups, self-occlusions still occur. A significant chal-
lenge is recognizing when an occluded region becomes visible and
whether it has been seen before. As the region may undergo non-
rigid deformations while occluded, reintegrating new observations
into the reconstruction, i.e. non-rigid loop closure, becomes hard.

© 2024 The Authors.
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Figure 7: Spatio-temporal Modeling. We categorize different spatio-temporal models according to the time consistency of their 3D repre-
sentation. On one end of the spectrum, a representation with time-global consistency is assumed, which can be warped to all timeframes. The
other end shows purely local models that allow the representation of each frame individually.

View-Dependent Appearance. If observed surfaces have a view-
dependant appearance, different colors of the same geometry point
might be observed from different views and if the object deforms.
In the inverse rendering setting, attributing the difference to geom-
etry or view-dependent effects is ambiguous, as different 3D points
with different view-dependent appearances can produce the same
observations. A depth sensor can alleviate this ambiguity by pro-
viding geometry measurements.

2.3.2. Spatio-Temporal Modeling

When designing a model to capture a non-rigidly deforming scene,
one important design choice that needs to be considered is con-
sistency over time. A globally consistent model tracks a canon-
ical geometry over all time steps. Such a property is helpful for
tasks like virtual asset creation as well as motion analysis and edit-
ing, where a consistent geometry is required with correspondences
to each deformed state. However, canonical space modeling limits
the model’s ability to handle large motions and topology changes,
which deviate significantly from the canonical geometry. On the
other extreme of the spectrum is modeling a separate geometry per
time step, in which consistency is sacrificed, and individual recon-
struction is performed. According to consistency, we structure ex-
isting models into four different categories: (1) global canonical
models, (2) deformation bases, (3) canonical first frames, and (4)
individual frame modeling. An overview is given in Fig. 7.

Global Canonical Model. In this paradigm, the scene represen-
tation is defined in a canonical space, i.e. a temporally global
3D representation. The motion representation is disentangled from
this scene representation and modeled by a 4D deformation field.
This automatically ensures long-term correspondences and explic-
itly defines a mapping between canonical points and their deformed
states that correspond to the live frame, allowing consistent novel
view synthesis and smooth interpolation in the time dimension. As
the ability to handle topology changes is limited, this paradigm
is more suitable for object-level modeling that has a temporally
global representation. The generalizability of the deformation to
new poses and novel views greatly depends on the direction of the
modeled deformation field:

e Backward Models: For such models, the 4D deformation field
represents the mapping of deformed states back to the canoni-
cal state at each time step. Backward models are based on the
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Eulerian view, i.e. how material flows through a fixed location
over time. Hence, canonical frame tracking with these models is
not temporally smooth, as over time different parts of the scene
geometry will occupy a certain 3D location (see Fig. 8). This
hampers generalization to new poses in the case of skinned mod-
els [CZB*21] and makes it hard to be represented by smooth
models like MLPs [GSD*23]. Note that the geometry fused in
canonical space can exhibit distortions due to imperfect back-
ward warps [GSD*23].

e Forward Models: These models define the 4D deformation field
from the canonical space to the deformed state of the frame at
each time step (also referred to as live frame). The canonical ge-
ometry is either given as a template [LM18], fused from obser-
vations [LZYX?22], or generated by a neural network [UEK23].
Tracking fixed points on a canonical geometry is temporally
smooth (see Fig. 8). This allows better fitting of the deforma-
tion fields with MLPs [GSD*23] and better generalization to
new poses in the case of skinning since time-invariant skinning
weights can be learned in the canonical space [CZB*21]. How-
ever, to define warps to the live frame, the canonical space needs
to be discretized. Forward modeling is based on the Lagrangian
view, i.e. tracking motion over time associated with the same
scene element. Thus, it allows defining classical spatial con-
straints on the deforming surface like ARAP [SA07] and isome-
try [PMR*23], and is easier to edit.

e Bidirectional Models: Non-rigid deformations are naturally bi-
jective. Modeling backward and forward warps to and from
the canonical space, and defining cycle consistency between
them [CFF*22,YVN*22] enforces this natural property, improv-
ing the quality of the learned canonical representation.

Deformation Basis. Geometry in live frames can be represented
as a combination of basis elements [CJ23, NRS*22]. The num-
ber of basis elements controls the amount of consistency over time
and exposes control over the global vs. local trade-off. Intuitively,
each basis vector can represent the scene in a certain state, and the
combination of these states defines the extent of deformations that
can be modeled, restricting the dimensionality of the model and
thus providing regularization. Low-rank basis representation can
also be introduced in the latent space, e.g. for auto-decoded latent
codes of neural parametric models [YVN*22] or scene deformation
MLPs [SGP*22].
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Figure 8: Backward vs. Forward Flow. (a): A dynamic scene
across time t; (b & d): Backward flow fp that maps the live point
P to the canonical frame with the corresponding norm, which is
not smooth; (¢ & e): Forward flow fy that maps the canonical
point q to the live frame with the corresponding norm, which is
smooth and continuous, benefiting motion model learning. Image
source: [GSD*23].

Canonical First Frame. These models propagate canonical geom-
etry forward by defining deformation between time steps. In con-
trast to model-to-frame tracking of forward models, the trajectories
obtained by frame-to-frame tracking are more susceptible to drift.
Paradigms include tracking points across frames using rigid trans-
forms [LKLR24] and using velocity fields as deformation represen-
tation [NMOG19], both of which are naturally invertible.

Individual Frame Modeling. Instead of tracking geometry from
a canonical frame, a separate geometry can be reconstructed at
each time step. These models directly add a time dimension to
the scene representation. Due to a lack of geometric constraints
between time steps, they can model a larger range of motion and
arbitrary topology changes. However, because of the lack of time
consistency, their novel view synthesis ability heavily depends on
observation density. Common paradigms include extending the 3D
neural field to 4D by additionally conditioning the MLP on time
(or a per-time latent code, which provides a more compact repre-
sentation [LSZ*22)), called Space-Time Neural Fields [LNSW21,
XHKK?21], and using a view-dependent scene representation at
each time step, such as Mulitplane Images [TS20,ZW22]. Individ-
ual frame representations can be made locally consistent by mod-
eling:

o Flow Fields: These define a warp to the next and previous state
for each visible point.

e Local Trajectories: These allow extrapolating a point’s motion
across several time steps in the visible temporal neighborhood.
A low-rank linear basis usually represents the trajectory, e.g.
DCT [WELG21], which provides motion regularization.

Local consistency is then achieved by using the field or trajectory
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to do cross-time rendering [LWC*23a, LNSW21] or enforce cycle
consistency [GSKH21,LNSW21, TZFR23].

2.3.3. Model Optimization

Optimization-based reconstruction involves finding model param-
eters 0, which are most likely to have produced the observed data.
The optimization consists of a data term, which forces the solution
to match the observations, and optional prior terms, which regular-
ize the solution:

0" = a—rg(_l)ninLdata(e) +Lprior(e)- )]

Next, we describe the most commonly used data terms, strategies
for regularizing the solution and metrics used to evaluate the quality
of reconstruction.

Data term. If the 3D capture data is available, e.g. from depth sen-
sor or synthetic scenes [LTT*21], then the model can be directly
supervised in 3D using a geometric loss. If only 2D image obser-
vations are used, we can render the scene into the observed views
using a differentiable renderer and either apply a photometric loss,
like [; and [, or a perceptual loss like LPIPS [ZIE*18].

Constraints, Regularization and Priors. The non-rigid recon-
struction problem is highly underconstrained, as a potentially in-
finite number of solutions can explain an object’s deformation be-
tween two timesteps (see Sec. 2.3.1). Many methods leverage off-
the-shelf approaches to extract additional information from obser-
vations and utilize it to constrain the reconstruction. Common tech-
niques are:

e Object Masks: Segmentation (see also Sec. 2.2.4) can be en-
forced either by applying the mask to the image as preprocessing
or through a segmentation loss between the rendered mask from
the model and the extracted mask from an off-the-shelf method.

e Optical Flow: To enforce 2D-3D motion consistency, pre-
dicted scene flow—which is the 3D variant of optical flow—
can be constrained to match 2D optical flow after projection.
RAFT [TD20] is a popular method for computing optical flow.

e Feature Distillation: Information from 2D features like Dense-
Pose embeddings [GNK18] can be distilled to 3D canonical fea-
ture embeddings for long-term registration [YVN*22]. 3D se-
mantic features can also be distilled from 2D feature embeddings
like DINO [CTM*21].

e Pseudo Depth: If a depth sensor is not available to measure the
scene geometry, then a monocular [RLH*20] or video [ZCT*21]
depth estimator could be used to get pseudo-depth estimates and
impose constraints on the optimized geometry.

Further, techniques for soft regularization can be used to drive
the optimization to a better local minimum. Representing deforma-
tions with an MLP for example inherently provides some regular-
ization, as MLPs are smooth function approximators. Another way
to provide regularization is to use skinning with a coarse deforma-
tion structure (see Sec. 2.2.3). For an explicit surface representa-
tion, spatial and temporal regularization can be introduced on the
geometry points. Common geometric priors are:

e Local Rigidity: Specifies that neighboring geometry points
should deform similarly, commonly known as the as-rigid-as-
possible (ARAP) constraint [SA07].

© 2024 The Authors.
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Figure 9: Methods for Data Priors in Non-Rigid Reconstruction. The figure shows methods to capture dataset distribution in the context of
non-rigid reconstruction. Prominent are different types of encoder-decoder architectures, autodecoders, GANs, and recently diffusion models.
Typically, shape/appearance priors are learned from static datasets. Non-rigid aspects can be learned on top by modeling optical/scene flow,
articulation spaces, or 2D/3D correspondences. Image sources: [PBT*21, VHTS* 22, SSN*22, MSP*23].

Isometry: Preserves distance between two points on a manifold
in some reference geometry, when they are deformed to an ob-
served state [PMR*23, RMT23].

Small Motion: Real motion, when captured at a high enough
frame rate, is similar for deformations that are temporally close.
This can be enforced through a similarity loss between the sub-
sequent deformations [PPGT*23].

Other strategies include coarse-to-fine optimization [TGZ*24,

MESK?22], introducing a total variation loss which forces the fea-
ture embeddings for a representation to be spatially and tem-
porally smooth [CJ23, WYF*24] and online tracking, where the
model at the current time step is initialized from the previous time
step [WHH*23b, TGZ*24,PMR *23]. The introduction of differen-
tiable physics simulators [HMC*21,LLK19] has also allowed them
to be used as a prior for the deformation modeling in reconstruction
tasks [YYZ*23,KTE*22].

Evaluation Metrics. Evaluating the quality and faithfulness of
the reconstructed scene requires comparing it to ground-truth data.
Common ways to evaluate are:

Rendering Quality: In the case of 2D observations, renders
of the reconstructed scene can be compared with the observed
views or ground-truth novel views using Peak Signal-to-Noise
Ratio (PSNR), which measures faithfulness in absolute terms, or
perceptual metrics like Structural Similarity (SSIM) [WBSS04]
and LPIPS [ZIE*18].

Geometry Quality: If 3D ground-truth data is available, then
the reconstructed 3D geometry can be compared directly using
chamfer distance in the case of point sets or mean absolute er-
ror (MAE) in the case of SDFs. Estimated normals can also be
evaluated using mean angular error (MAE).

Trajectories: The deformation of a scene can be evaluated
using 3D point trajectories or their projection in 2D views.
Absolute Trajectory Error (ATE) or Median Trajectory Error
(MTE)—which is more robust to outliers—checks the global
consistency with the ground-truth trajectory. Robustness can fur-
ther be measured using average position accuracy, which mea-
sures the percentage of point tracks within a threshold distance
to ground-truth, and survival rate, which is the average num-
ber of frames until tracking failure [ZHS*23]. Along with ATE,
methods that also track camera poses [LGM*23, RMT23] usu-
ally evaluate the estimated camera trajectory using Relative Pose
Error (RPE), which is well-suited to measure the drift [PZB*19].
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2.3.4. Learning Data-Driven Priors

An alternative way to introduce additional constraints into the op-
timization framework of Eq. 5 is to model the distribution of a
given dataset and use this distribution as a data prior for the re-
construction task. Four general techniques for modeling data priors
with deep learning in non-rigid scenarios are (see Sec. 3.4 for ad-
vancements): encoder-decoder architectures, autodecoders, gener-
ative adversarial networks, and diffusion/flow models. The first two
provide maximum likelihood estimates. The latter two naturally en-
able to sample from the learned distribution, which makes them
ideal candidates for generative methods. While variational autoen-
coders, as part of the first category, also allow sampling from the
posterior, they are rarely seen in the context of 4D modeling.

Naively applying these methods in a general 4D setting is in-

tractable and requires quantities of data that do not exist today.
Thus, the trend is to learn data priors in more creative ways, focus-
ing on certain aspects instead of on the full data distribution. We
categorize data priors of existing works into the following types:

3D Shape/Appearance Priors: Learning common geometry
and appearance distributions from a dataset of static objects and
scenes. If the learned latent spaces are global, they often already
enable deformation via interpolation and latent trajectories.

3D Deformation/Flow Priors: Learning to predict where a set
of entities will move in the immediate future, or how a canoni-
cal representation deforms over time. Learned from a dataset of
videos or 4D scenes.

Articulation Priors, learning how a category of objects can ar-
ticulate from a dataset of moving/deforming objects. Usually
controllable with a low-rank decomposition representation.

2D Correspondence Priors: Learning to find correspondences
between images or between images and 3D from a dataset with
correspondence labels or via optical flow.

To model individual distributions of these kinds, data priors are

captured individually and used as constraints in the full reconstruc-
tion setting. In the following, we describe the individual building
blocks and their application in more detail (see Fig.9).

Encoder-Decoder Architectures. A standard technique in model-
ing data distributions is autoencoders or more general, dense pre-
diction architectures in which input and output modalities can dif-
fer. In the scope of this work, they appear in their 3D and 2D vari-
ants: some 3D variants take voxelized point clouds as input and
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decode them into dense occupancy, SDF, or 3D flow fields (see
Sec. 2.2.3). Other 3D variants directly work on sparse point clouds
and produce point-level predictions, such as scene flow [LQG19].
Encoder-decoder architectures on 2D data also come in many dif-
ferent flavors. A dominant category is 2D-to-3D models, which
take images as input and produce (temporal) feature volumes,
which can be rendered from arbitrary views [RZS21]. Also, sev-
eral 2D-to-2D models find their application as an additional con-
straint on 3D modeling, such as optical flow predictors (e.g.
RAFT [TD20]), surface embeddings (e.g. CSE [NNS*20], Dense-
Pose [GNK18]), or semantic features (e.g. DINO [CTM*21]). An
advantage is that these data priors often come off-the-shelf as pre-
trained (foundation) models and do not need to be trained on large-
scale 3D or 4D data.

Autodecoders. The second category is autodecoders [PFS™19]. In
comparison to general encoder-decoder architectures, they omit the
encoder and find the latent representation via optimization instead.
During training, the decoder learns a function space, which is fixed
during inference, where the representation is found via test-time
optimization, selecting a specific instance in the function space.
They can be used in settings where designing an encoder is dif-
ficult or where the encoder fails to capture fine-grained details in
the observation. As a downside, test-time optimization is typically
slower than forward encoding during inference. Autodecoders are
typically used to learn spaces of deformable or articulated SDFs, or
deformable point templates [PBT*21, WISL23].

Generative Adversarial Networks. GANs as traditional genera-
tive models for 2D data find their application for non-rigid gen-
eration as well. Since generating dense 3D/4D data with GANs
is computationally challenging, existing approaches generate some
intermediate representation, such as triplanes for shape [CLC*22b]
or neural field MLP weights [BPP*23].

Diffusion Models. The last approach that appears, and arguably the
most important for the immediate future, is diffusion models. Given
a high-dimensional random variable X € R? (which can model the
representation or the data itself), diffusion models [HJIA20], and
related methods, such as score-based modeling [SSK*21] and the
recent flow matching [LCBH"23], model the distribution p(x) im-
plicitly by modeling the score function Vxlogp(x) instead. This is
done by training a score estimating neural network F : R? — R?
that allows sampling from the distribution, i.e. x ~ P(X), through
iterative application. The network is trained to follow a path from
corrupted to clean states, where the corruption is usually Gaussian
noise. The trained network can be used in different ways:

e Sampling x ~ P(X): Sample Gaussian noise Xy ~ A/ (0,I) and
iteratively apply F.

¢ Evaluating p(x): We can obtain a value that correlates with p(x)
via score distillation sampling [PIBM22], allowing the model to
be used as data prior for 3D or 4D reconstruction tasks.

e Editing and In-painting: We can conditionally re-sample part
of the representation via Repaint [LDR*22], allowing to replace
certain parts of the representation with other content.
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3. State-of-the-Art Methods

Our discussion starts with reviewing state-of-the-art methods for
non-rigid reconstruction and view synthesis in Sec 3.1. Afterwards,
we categorize the methods based on the added functionality incor-
porated into the non-rigid reconstruction. In Sec. 3.2, we provide
an overview of methods that further decompose the scene into its
static and dynamic parts. Sec. 3.3 discusses editable methods that
provide control over the reconstruction. Finally, we turn to gener-
alizable and generative methods in Sec. 3.4.

3.1. 3D Non-Rigid Reconstruction and View Synthesis

In this section, we discuss recent scene representations and defor-
mation models for general non-rigid reconstruction and view syn-
thesis. These are evaluated on the quality of the reconstructed ge-
ometry and renderings from observed and novel viewpoints, which
should look as realistic as possible. One essential criterion for cap-
turing scene dynamics is the ability to capture large, unconstrained
motion while providing temporal correspondences across frames
(see Sec. 2.3.2 for the trade-off between the two). Another impor-
tant aspect for evaluation is the efficiency of the method in terms
of memory consumption, training time, and rendering speed. In
Sec. 3.1.1, we first look at recent advances in neural scene rep-
resentations, the introduction of which significantly advanced the
state-of-the-art for high-fidelity view synthesis. Then, we discuss
the hybrid neural representations in Sec. 3.1.2, which significantly
improve the efficiency of the neural scene representations and have
become the de facto standard. Lastly, Sec. 3.1.3 looks at the non-
neural scene representations, which have traditionally been used by
classical methods and are often capable of real-time performance.
We provide an overview of selected methods in Tab. 1, comparing
across the introduced representations.

3.1.1. Neural Scene Representations

After the introduction of neural fields in 3D reconstruc-
tion [MON*19,PFS*19,CZ19] and subsequently, in neural render-
ing [MST*20, TFT*20], the use of neural fields as the underlying
scene representation has also gained popularity for non-rigid 3D re-
construction and view synthesis problems. The significant increase
in neural field-based methods can be attributed to its simple, flex-
ible architecture and state-of-the-art performance. Most works use
a deformable neural scene representation combined with a differ-
entiable rendering technique (e.g., volume rendering). The flexible
formulation and continuous nature allow for optimization with var-
ious types of inputs, ranging from monocular to multi-view videos
to per-point space-time trajectories. In the following, we discuss
state-of-the-art methods structured by how they represent the defor-
mation (see Sec. 2.3.2 for background information). More specif-
ically, we categorize methods into a.) Space-Time Neural Fields,
the class of 4D extensions of neural fields, b.) Deformable Neural
Fields, variants of neural fields that are equipped with a deforma-
tion operation, and c.) Velocity Fields, neural fields combined with
motion-describing vector fields.

Space-Time Neural Fields. The majority of space-time neural
fields build on the NeRF [MST*20] formulation (see Sec. 2.2) and
provide time as an additional input to the neural field. Given the

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



R. Yunus et al. / Recent Trends in 3D Reconstruction of General Non-Rigid Scenes

Method | s SR DR STM Sp
Neural Scene Representations
DyNeRF [LSZ*22] g9 > — (m] €]
PREF [SGP*22] 82 > >~ (m) (€]
HyperNeRF [PSH*21] o > be A& [©]
Unbiased4D [JHS*23] o JORS | 28 | e k& €]
4DRegSDF [CCP*23] ] | 3 >~ & O
NDR [CFF*22] Fhie > s > he O
DySurf [CLF*23] ) [ > &ha O
DE-NeRF [MPCVG23] 54 3 be &h&a O
FSDNeRF [WMJL23] 8-> > bel & O
RFNet-4D [VNH*22] o B > .2 (m] o
Hybrid Neural Scene Representations
Hexplane [CJ23] G182 (212P) > A () S}
K-Planes [FKMW*23] G182 (AIAD) — (m) S}
Tensor4D [SZT*23] 5182 a» — (m) €]
Park et al. [PSJ*23] ] By — (m) ©
Wang et al. [WZL*22] g2 By — 0o o¢
HyperReel [AHR*23] E o 2 >~ A& O
Guo et al. [GSD*23] o] By Byl A (€]
MixVoxels [WTL*23] 8 By — 0O o¢
DeVRF [LCM*22] 89 > By 2] he O
SceNeRFlow [TGZ*24] 82 By 2] A& @
ReRF [WHH*23a] 82 By — o o¢
StreamRF [LSW*22] g By — (m) ®
TiNeuVox [FYW*22] & By be AH&aO O
DynIBaR [LWC*23a] &> bd [=hs} > i (m] o
4K4D [XPL*24] ) LBp _ 0 o¢
Im4D [LPX*23] 8% Pu=] 3 — 0 o¢
PAC-NeRF [LQC*22] 8? $z:] 3 = o )
Non-Neural Scene Representations

NR-SLAM [RMT23] & e &2 5 @®

OccFusion [LZYX22] Fhd > Bx &Q b O

Temp-MPI [XC22] 82 = > A 0 o¢
Prokudin et al. [PMR*23] o o e & ©
Luiten et al. [LKLR24] 8% O t [OX*4
Yang et al. [YGZ*24] ) O | 2% & OF
Wu et al. [WYF*24] 5192 © P Ao O
Yang et al. [YYP*24] 9] 82 © ® (m)] X
NPGs [DWY*24] [ B © > A 0o o¢
3DGStream [SJL*24] . © 2] 0O o¢

Table 1: Selected Non-Rigid Reconstruction and View Synthesis
methods. Supervision (S): Video 8, Multi-view Video 82, Depth b,
Event 4, Mask ®, Optical Flow -, Pseudo Depth bd; Scene Rep-
resentation (SR): Density =, Occupancy 8, SDF *, Radiance --;
Deformation Representation (DR): Position e, Displacement 7,
Rigid Transform ~, Affine Transform ~ %, Velocity Field |, Motion
Trajectory §, DQB Q; Spatio-Temporal Modeling (STM): Canon-
ical ¢, Deformation Basis A, Canonical First Frame %, Individ-
ual O, Forward #, Backward &, Bidirectional <; Speed (Sp): Of-
fline ©, Online ®, Real-time Rendering %, Real-time ¥ (more than
20 FPS). Data structures used for SR and DR are (appears first):
MLP ¥, Transformer 3%, Voxel Grid BB, Octree &, Tensor Factoriza-
tion 2, Triplane ~, MPI &, Images 2, Point Cloud <, 3D Gaus-
sians O, EDG &, Physical Simulation Z.
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simplicity of this approach, space-time approaches have also been
investigated with other parameterizations, e.g. with hybrid meth-
ods, as we will see in Sec. 3.1.2. While early works use monocu-
lar videos as input [LNSW21, XHKK21,DZY*21, GSKH21] and
often rely on pre-computed optical flow and depth maps from off-
the-shelf methods, You et al. [YH23] extend [GSKH21] to circum-
vent the need for pre-computed input by employing surface con-
sistency and patch-based multi-view constraints. This leads to im-
provements, especially when off-the-shelf predictions are inaccu-
rate. DCTNeRF [WELG21] is a space-time neural field that also
predicts coefficients for discrete cosine transforms (DCT). This
way, they model deformations to a canonical field for the entire
trajectory, leading to sharper reconstructions in dynamic parts. In
Neural Scene Chronology [LWC™*23b], the space-time neural field
is optimized from time-stamped internet photo collections of land-
marks. While the geometry is assumed to be static, the neural field
is optimized with per-image illumination embeddings, and learned
step functions are employed for temporally varying scene changes
to enable spatial, illumination, and time view synthesis.

Space-time neural fields have also been used to perform 4D
reconstruction from multi-view video captures (see also Tab. 1).
DyNeRF [LSZ*22] optimizes a space-time neural radiance field
in a coarse-to-fine manner with importance sampling to speed up
optimization. They, among others, show the compression prop-
erty of neural fields: a 28-camera multi-view video clip can be
compressed from over 1GB of storage to 28MB in MLP weights.
PREF [SGP*22] optimizes a space-time neural field along with
a time-embedding predictor and a time-embedding-conditioned
motion field. They train the space-time neural field directly and
with the motion field’s predictions, resulting in time- and space-
interpolating view synthesis and correspondences over time. Zhang
et. al. [ZLC22] train a space-time neural radiance field from multi-
scopic capture recordings. Optical flow-based predictions [JSJ*18]
are used to also supervise between time frames, and the camera
parameters are optimized jointly next to the scene representation.

Deformable Neural Fields. Another popular class of approaches
combines a canonical static neural field and a deformation field
(also called a “ray bending field) to perform 4D non-rigid recon-
struction [PCPM21,PSB*21, TTG*21]. A key property of this ap-
proach is that any arbitrary 3D point can be evaluated for its de-
formation, rendering this approach very flexible and this idea has
hence been explored also in the context of e.g. particle-based meth-
ods (see Sec. 3.1.2) as well as editing approaches discussed in
Sec. 3.3. Recently, in HyperNeRF [PSH*21], Park et al. extends
Nerfies [PSB*21] to model the canonical neural field in a higher-
dimensional hyperspace to better handle topological variations. In
DyLiN [YIJM™23], this representation is distilled into a neural de-
formable light field, leading to a significant inference speed-up.

Another line of work focuses on enabling mesh extractions after
optimization, directly enabling multiple applications such as the us-
age in traditional graphics software (see Sec. 2.2 for an overview).
To this end, the density-based representation in the canonical neu-
ral field is exchanged with the NeuS [WLL*21] signed distance
formulation in Unbiased4D [JHS*23] to enable mesh extractions
via marching cubes. Notably, their approach requires a proxy ge-
ometry as input to stabilize the deformation field optimization.
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inputs w/o flow supervision

with flow supervision

Figure 10: Optical Flow Supervision for Monocular Deformable
NeRF. Novel view images and depth maps for a monocular video
with rapid object motion. Results from FSDNeRF [WMJL23].

4DRegSDF [CCP*23] further proposes additional surface regular-
ization strategies based on local rigidity leading to improved sur-
face reconstructions. NDR [CFF*22] uses monocular RBG-D input
and the canonical hyperspace is combined with a similar SDF rep-
resentation, and the deformations are modeled via bijective map-
pings implemented as invertible neural networks.

Due to its efficient and simple design, the deformable field repre-
sentation has recently been used for other downstream tasks or data
modalities including 4D reconstruction from sinograms [RKA*21],
point cloud interpolation [LCQ*21,ZQZ*22, ZWL*23], and de-
formable tissue reconstruction from a stereo video [ZCL*23,
WLFD22]. Multi-view video input has also been investigated. In
DySurf [CLF*23], an SE(3) deformation field is combined with
a canonical field in hyperspace, and they employ the SDF formu-
lation from [YGKL21] to enable marching cube-based mesh ex-
traction next to view synthesis. To model fast-deforming scenes,
DE-NeRF [MPCVG23] combines sparse RGB input with a dense
asynchronous capture from an event camera (see Sec. 2.1.2 for
context), and the radiance field is optimized jointly with the un-
known event camera poses. In EvDNeRF [BMC*24], the batch-
ing of events is performed progressively, leading to an increase
in time resolution for each update. This way, fine temporal details
can be reconstructed. TORF [ALG*21] directly uses phasor images
obtained from raw ToF sensor measurements to regularize recon-
struction from a monocular video, reducing the number of required
views and achieving sharp details. Using raw sensor measurements
helps the methods bypass issues with processed depth maps, such
as limited depth range and difficulty with low-reflectance objects
and regions affected by multi-path interference.

Velocity Fields. Occupancy Flow [NMOG19] introduced combin-
ing a static canonical occupancy field with a neural time-dependent
velocity field (see Sec. 2.2.3 for background information) for 4D re-
construction from point cloud input. Forward and backward trans-
formations are solved using neural ODEs [CRBD18], thereby natu-
rally providing dense correspondences. CaSPR [RBZ*20] extends
this representation with a spatio-temporally-canonicalized object
space and solves the neural ODE in a latent spatio-temporal space.
In RFNet-4D [VNH*22], the objective is split into reconstruction
and correspondence optimization with a joint point cloud encoder
leading to improved results. Chu et. al. [CLZ*22] propose a com-
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bination of a space-time neural radiance field and a velocity field
enabling dynamic fluid reconstruction from monocular input. They
optimize the velocity field with a reconstruction loss consider-
ing adjacent frames and solve the resulting ODE with the Euler
method. In FSDNeRF [WMIJL23], Wang et. al. show that the in-
verse Jacobian of an ordinary, non-invertible deformable radiance
field can be used to construct a local velocity field, which they solve
with the fourth-order Runge-Kutta. This enables direct flow super-
vision leading to improved reconstructions of dynamic parts of the
scene (see Fig. 10).

3.1.2. Hybrid Neural Scene Representations

This section focuses on hybrid representations for non-rigid 3D re-
construction that recently became popular. They combine neural
components with explicit structures such as voxel grids, feature
planes, images, and particles, bringing advantages of better fea-
ture localization, reduced training and inference time, and reduced
memory requirements.

Planar Factorization. HexPlane [CJ23] extends the factorized ten-
sor representation—introduced in TensoRF [CXG*22] for static
scenes—to dynamic scenes, representing them by six planes of
learned features and achieves 100 x speedup in rendering non-rigid
4D volumes compared to previous methods with a single MLP. It
computes features for points of a non-rigid scene by fusing the pre-
plane feature vectors (using various feature fusion policies). A con-
current and related approach, K-Planes [FKMW *23] decomposes
a D-dimensional space into (?) feature planes (e.g. dynamic 4D
volumes are factorized into six planes: three for space and three for
spatio-temporal variations) and compresses the full 4D grid of data
by three orders of magnitude, without requiring any GPU kernels.
Both HexPlanes and K-Planes decode features with a small MLP
to regress the output scene colors in the hybrid verison and utilize
spherical harmonics in the explicit version. Inspired by priors from
the non-rigid-structure-from-motion literature [STG*20, PPB21],
BaLi-RF [RSAH23] represents a scene as a low-rank tensor de-
composition similar to TensoRF [CXG*22] and the time dimension
as a finite linear combination of neural time-basis functions which
they empirically observe to be more expressive than DCT, Fourier,
and Bernstein basis functions. They show that this representation of
scenes as a composition of band-limited, high-dimensional signals
can better reconstruct long-range dynamics. Peng et al. [PYS*23]
predict per-scene MLP maps by a 2D CNN decoder. Instead of di-
rectly storing features on the six spatio-temporal planes, Guo et
al. [GPY*23] introduces a dynamic codebook to store such fea-
tures, with the planes just storing the index of features in the code-
book, thus achieving further compression.

Other methods use factorized 4D spatio-temporal tensors to rep-
resent scenes in more specialized settings. Tensor4D [SZT*23] as-
sumes four sparse input RGB views of a dynamic scene (e.g. from
the corners of a holographic display); motion and detail changes
are learned from coarse to fine with the hierarchical tri-projection
decomposition policy, which results in nine decomposed planes.
HyperReel [AHR*23] adopts the triplane representation for novel
view synthesis from multi-view camera rigs (small baselines) in
the context of 6-DoF videos. It combines a ray-conditioned sam-
pling network with a keyframe-based dynamic volume represen-
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Figure 11: Results of SceNeRFlow [TGZ*24] for an example
multi-view video sequence. (Left column): Two rendered RGB
novel views for the same time instant; (middle column): Their cor-
respondence visualizations; (right column): Their temporally con-
sistent recoloring. Image source: [TGZ*24] ©2024 IEEE.

tation and allows immersive AR/VR experiences. Feng and col-
leagues [FAR*23] propose a new method for synthesizing novel
views of a motion-magnified non-rigid scene with subtle deforma-
tions; it is a combination of non-rigid NeRF and the Eulerian prin-
ciple for motion magnification. 4D volumes factorized into explicit
static and dynamic fields were also used for non-rigid NeRF recon-
struction of endoscopic scenes [YWW™*23], resulting in a compact
memory footprint and significantly accelerated optimization.

Voxel Grids. Voxel grids have the same goal as planar factor-
ization approaches, namely accelerated training and inference.
NeuS2 [WHH*23b] is a general multi-view 3D reconstruction ap-
proach on individual frames which is accelerated by InstantNGP
[MESK22], with incremental learning for consecutive frames. Sim-
ilarly, OD-NeRF [YLL23b] utilizes the occupancy grid estimated
from the previous frames by tracking correspondences between the
neighboring frames. It achieves 6 fps during training and on-the-
fly rendering speed of dynamic scenes. Residual radiance fields
(ReRF) [WHH"23a] is a compact representation for free-viewpoint
rendering of long dynamic scenes relying on compact motion- and
residual feature grids to exploit inter-frame feature similarities.
Next, Li et al.’s NeRF streaming approach [LSW*22] uses an ex-
plicit grid with incremental learning and difference-based NeRF
compression. This allows on-the-fly handling of new observations.

A few other recent methods using voxel grids push the fron-
tiers of novel view synthesis and reconstruction through various
alternative formulations (problem settings) and further extensions.
Bozi¢ and colleagues [BPZ*21] introduced an encoder that works
on a voxel grid filled with SDF values and outputs a deformation
graph with local SDF fields. Park et al. [PSJ*23] propose a non-
rigid NeRF method which is based on temporal interpolation of fea-
ture vectors, either on neural networks or voxel (hash) grids. Their
method is remarkable due to its simplicity, as it avoids deformation
or flow estimation modules. The MixVoxels approach [WTL*23]
represents a dynamic scene as a mixture of static and dynamic vox-
els and processes them with separate networks, which results in fast
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training and rendering. The method can efficiently perform multi-
ple queries simultaneously, thereby improving the rendering qual-
ity of dynamic objects. Another advantage of MixVoxels is that
static voxels can be processed with a lightweight model. Fourier
PlenOctrees [WZL*22] combine generalized NeRFs, plen-octrees,
volumetric fusion, and Fourier transforms for real-time rendering
of general dynamic scenes. It maintains an implicit network to
model the Fourier coefficients of time-varying density and color
attributes. ENeRF [LPX*22] builds a cascade cost volume to pre-
dict a coarse scene geometry, which allows for sampling of fewer
points near the surface (thereby achieving substantial acceleration).
MoNeRF [KGC*24] performs non-rigid NeRF reconstruction from
multi-view data; only a single RGB frame is provided to the method
per each timestamp, which the authors introduce as monocularized.
The deformation module of MoNeRF decouples the processing of
spatial and temporal information for the acceleration of training
and inference. The authors emphasize monocularization as a way
to accelerate the training. Moreover, MoNeRF can also reconstruct
multi-view sequences.

TiNeuVox [FYW*22] uses a very light MLP for the deforma-
tion network to model coarse trajectories and achieve fast training
while enhancing the temporal information in the radiance network
through multi-resolution temporal embeddings. DeVRF [LCM*22]
uses a hybrid, voxel-based 4D deformation field to model motion.
To relax optimization, a canonical representation of the static scene
is first learned through multi-view images, which is used as the ba-
sis for dynamic scene reconstruction from a few multi-view videos.
SceNeRFlow [TGZ*24] addresses the joint novel view synthesis
and long-term correspondence estimation for general scenes from
multi-view RGB videos. Even though SceNeRFlow achieves im-
proved results compared to previous techniques, the new setting
with correspondences remains an open challenge in the field, see
Fig. 11 for the visualizations. Instead of modeling the backward
deformation from time steps to a canonical field (see Fig. 8 for
its downside), ForwardFlowDNeRF [GSD*23] models the forward
deformation and uses splatting and inpainting modules to deal with
many-to-one and one-to-many mappings. The explicit voxel grid
representation allows efficiently registering the canonical frame
to the live frame, leading to smoother object motions. Dynamic-
Surf [MA24] utilizes a canonical feature grid, trained in a coarse-
to-fine manner, and a topology-aware deformation field to speed up
neural surface reconstruction.

Image-based. Recently, a few works aim to combine image-based
rendering techniques with neural fields. Inspired by static hybrid
methods [LPL*22,SESM22, WWG*21], these approaches propose
to use image-based features obtained via backprojection in combi-
nation with the neural representation enabling reconstructions of
non-object-centric scenes with long-range trajectories. Based on
PIFu [SHN*19]—one of the earliest approaches utilizing image-
based features for single-view or multi-view static reconstruc-
tion—FunctiondD [YZG*21] extends the representation to real-
time dynamic scene reconstruction from a few synchronized multi-
view RGB-D inputs. Using the SDF-based surface reconstructed
by a DynamciFusion-based [NFS15] pipeline, a transformer-based
image-feature aggregation scheme from multi-view SDF projec-
tions is proposed which learns a more detailed and complete oc-
cupancy and appearance representation. In DynIBaR [LWC*23a],
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Figure 12: Image-based rendering via motion-adjusted feature
aggregation. DynIBaR [LWC™ 23a] uses motion trajectories to ag-
gregate features from temporally neighboring frames, improving
time consistency and increasing the range of novel view synthe-
sis. Image source: [LWC*23a].

learned trajectory basis functions (initialized with DCT coeffi-
cients) are used to aggregate features from nearby views efficiently
leading to improved space-time view synthesis results particularly
for long-range captures with complex camera motion (see Fig. 12).
With a focus on real-time 4D rendering, Im4D [LPX*23] combines
a grid-based representation for a space-time neural field with an
image-based appearance prediction module utilizing nearby views.
While the grid-based backbone enables fast training and infer-
ence, the image-based rendering module allows for reconstruct-
ing fine texture details. The very recently proposed method 4K4D
[XPL*24] uses a related hybrid representation with a similar focus
on real-time rendering. A 4D point cloud representation is com-
bined with 4D feature planes to represent the time-varying geom-
etry. A piece-wise constant IBR term and a continuous spherical
harmonics module are combined to achieve high-quality appear-
ance reconstruction with 80 FPS at 4k resolution.

Particle-based. Point-NeRF [XXP*22] inspired several recon-
struction approaches, which adopt the idea of using point
clouds—or, generally, particles—as geometric proxies in neural
rendering and reconstruction of non-rigid scenes. For instance,
DAP-NeRF [LL23] quantizes the dynamic motion field as a collec-
tion of appearance particles, each of which carries the semantically
meaningful visual information of a small dynamic scene element.

Some particle-based methods target long-term novel view syn-
thesis scenarios (with the input monocular videos following dy-
namic objects) [PK24] or reconstruction and editing of dynami-
cally vibrating scenes [PPGT*23], while other ones estimate phys-
ical parameters of non-rigid objects (such as stiffness and vol-
ume preservation coefficients) from multi-view videos [CTS*22,
LQC*22] or infer fluid dynamics from sequential image observa-
tions [GDWY22]. Point-DynRF [PK24] analyses the entire long
sequence and distinguishes the background from the moving ob-
jects; its joint optimization scheme alleviates degenerate solutions.
ModalNeRF [PPGT*23] uses a particle-based deformation field
to bend the observation-space rays into the canonical space. The
trained deformation field can be used for modal analysis and syn-
thesis (e.g. to magnify the observed motions and increase oscilla-
tion amplitudes). The VEOs approach [CTS*22] estimates a point
cloud of an object non-rigidly deforming under the influence of
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external forces observed in a multi-view video. The material pa-
rameters of the object—estimated with a differentiable particle-
based simulator—ensure that the reconstructions match the obser-
vations. They also can be used for finding new non-rigid states (in
response to new force fields and collision constraints), which can
be re-rendered as 2D images, thanks to integrating the new simula-
tions with NeRF. Another approach, PAC-NeRF [LQC*22], uses a
hybrid Eulerian-Lagrangian NeRF representation with Lagrangian
particles and applies the conservation laws of continuum mechan-
ics for the object states to be physically plausible. Finally, Neu-
roFluid [GDWY?22] is a recent intuitive physics approach to infer-
ring the 3D dynamics of a fluid from its 2D surface observations.
At its core is the particle-driven neural renderer which helps to op-
timize the particle transition model and minimize the discrepancy
between the rendered and observed images.

3.1.3. Non-Neural Scene Representations

Before the recent popularity of neural methods for non-rigid scenes
(see Secs. 3.1.1 and 3.1.2), the main approaches for monocular non-
rigid reconstruction for general scenes were Shape-from-Template
(SfT) [SGTS19, CPPFJ*21, FJPCP*21, KTE*22, SWK24] and
Non-Rigid Structure-from-Motion (NRSfM) [GIST20, STG*20,
KVG22, WLPL22,ZYMY?22,GB22,PPB21,ZDY *21]. ST works
with a pre-acquired template, deforming it to fit the observations
over time. NRSfM does not require a template but relies on the in-
formation provided by deformation cues in the form of point tracks
across 2D images [GJST20, STG*20]. In comparison to these ap-
proaches, differentiable neural rendering-based methods are more
flexible and achieve reconstruction with higher fidelity. Because of
the significant training time required by the neural approaches, real-
time online non-rigid reconstruction methods still predominantly
use classical scene representations and data structures like meshes,
voxels, and point clouds. Moreover, point-based representations
have been living through a renaissance recently, as they are often
very efficient and can profit from recent advances in optimization
algorithms. We next categorize and discuss methods that use these
classical representations exclusively; non-rigid SLAM and dense
RGB-D reconstruction for the online setting, and point-based re-
construction and multiplane images-based view synthesis for the
offline setting.

Monocular Non-Rigid SLAM. Non-Rigid Simultaneous Local-
ization and Mapping (SLAM) is a challenging problem, especially
in the underconstrained setting of monocular RGB observations
[SGM*19]. Most SLAM methods operating in dynamic environ-
ments only segment the scene to use the static region for map-
ping and subsequent camera tracking [BFCN18,YLL*18,BBLT18,
NDS*20]. However, in specific environments, discarding dynamic
regions of the scene is not feasible since it can either consist of
most of the observed environment, as in incorporeal scenes, or the
reconstruction of deforming objects is essential to understand and
interact with the scene, as in AR/VR applications.

Lamarca et al. [LM18] provide the first real-time camera track-
ing method that operates in deformable scenes, based on an SfT
method working with a pre-acquired template. It is extended by
DefSLAM [LPBM20], which proposes the first SLAM approach to
build and extend a deformable map. They use an isometric NRSfM
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Figure 13: Occlusion-aware Reconstruction. OcclusionFu-
sion [LZYX22] pretrains a GNN on DeformingThings4D [LTT"21]
to estimate the motion of occluded regions. Image source:
[LZYX22].

approach [PPB17] to acquire surface templates at keyframe rate,
while the SfT method of Lamarca et al. is employed to track those
templates at frame rate. SD-DefSLAM [GRLM*21] adds photo-
metric tracking to perform data association on top of DefSLAM,
improving robustness and accuracy in varying illumination and
strongly deforming environments. Two significant limitations of
these approaches are the use of a triangular mesh, which cannot
model discontinuous changes to the surface, and the isometric de-
formation assumption, which limits the use cases significantly. The
recently proposed NR-SLAM [RMT23] solves these shortcomings
by proposing a time-varying point cloud representation for the de-
formable map, coupled with a Dynamic Deformation Graph and a
Visco-Elastic Deformation model for physically-inspired regular-
ization, allowing more expressive deformations than the isometric
case. However, it requires the camera-over-deformation assump-
tion, which states that most image change comes from camera
motion. This assumption is used to initialize and extend the map
with rigid Structure-from-Motion and results in a limitation of use
cases. A common setting for these methods is incorporeal scenarios
such as endoscopic videos, where most of the results are demon-
strated [ASF*23, MSY10]. A few methods [LPBM20, GRLM*21]
also show results on small-scale non-rigidly deforming objects such
as a kerchief.

Online Dense RGB-D Non-Rigid Reconstruction. These object-
level methods focus on accurate surface reconstruction and de-
formation tracking by fusing RGB-D data, with camera pose
estimates emerging from such tracking. The seminal Dynam-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

17 of 42

icFusion [NFS15] and its follow-up VolumeDeform [IZN*16]
introduced the paradigm of using an Embedded Deformation
Graph [SSP07] (EDG) with the extracted mesh from a TSDF voxel
grid or volumetric control lattices for non-rigid deformation mod-
eling. However, due to fixed connectivity, meshes cannot handle
topology changes well when the deformation is discontinuous over
3D space. SobolevFusion [SBI18] tackles this issue by removing
the deformation graph and directly optimizing for the deformation
field, i.e. scene flow, which registers the live TSDF volume with
the canonical one. It performs gradient updates in Sobolev space in-
stead of L2 space [SBCI17] first, which favors coarse-scale changes
over fine-scale ones in the beginning, making the optimization less
susceptible to local minima. AcceleratedFusion [SBI20] further in-
corporates a fast numerical optimization scheme based on Nestrov
accelerated gradient descent [Nes83]. Li ez al. [LG20], on the other
hand, handle topology changes by allowing non-manifold volumet-
ric grids for both TSDF and EDG, where node connectivity can be
updated through cell splitting and replication.

SurfelWarp [GT18] replaces the performance- and memory-
intensive TSDF voxel grid with surfels. It leads to a 50% decrease
in frame processing time and a 98% decrease in memory con-
sumption compared to DynamicFusion, albeit at a slight cost of
quality. Explicit surfel representation also supports handling erro-
neous observations and topology change issues more efficiently. In
Chang et al. [CB22] and MonoSTAR [CRG*23], a more sophisti-
cated topology-change handling approach, based on the historical
distance between the nodes of the deformation graph, and addi-
tionally on object rigidity from semantic information in the case
of [CRG*23], results in the surfel-based deformation graph being
split up to represent separate objects (see Sec. 3.2.2).

In recent years, data-driven learned modules have also
been introduced for improved non-rigid reconstruction. DeepDe-
form [BZTN20] and Bozic et al. [BPZ*20] learn 2D feature cor-
respondences to guide the reconstruction in case of little geomet-
ric variation, although the exhaustive correspondence computation
hinders real-time performance (see Sec.3.4.2 - Correspondence pri-
ors). OcclusionFusion [LZYX22] learns a data-driven motion prior
to estimate complete object motion, including occluded regions
(see Sec.3.4.2 - Scene flow priors). Such motion estimation and
2D optical flow constraints allow it to achieve state-of-the-art re-
sults for real-time non-rigid reconstruction. DeepDeform provides
a dataset for benchmarking results, though most methods also con-
duct experiments on self-acquired sequences. Moreover, other than
SobolevFusion, none of the methods reconstruct appearance.

Efficient Point Representations for Offline Reconstruction. The
main drawback of neural scene representations (see Sec. 3.1.1) is
the prohibitively long training and rendering times, as thousands
of MLP evaluations are required to render the scene at high res-
olutions. While hybrid approaches (see Sec. 3.1.2) have drasti-
cally reduced training and rendering times, no neural approach has
produced scalable reconstructions of dynamic scenes that produce
high-quality novel views while training quickly and rendering in
real-time. Recently, such results have been achieved by explicit
point-based representations, which are fast to process, scalable, and
allow adding spatial deformation constraints. While still requiring
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offline training, these approaches achieve state-of-the-art results re-
garding reconstruction and view synthesis quality.

Prokudin et al. [PMR*23] introduce a compact and efficient
point-based canonical surface representation with a flexible and
accurate neural deformation field for each frame to model fine-
grained surface deformations from ground truth meshes, outper-
forming alternative neural scene representations in terms of re-
constructed quality, training time, runtime and model size. The
method can capture intricate non-rigid deformations, e.g. of a
skirt, where traditional linear blend skinning-based models fail
by incorporating regularization techniques such as as-isometric-
as-possible [KMP0O7, HAWGO8] and additionally supervising for
highly dynamic and complex deformations with keypoint corre-
spondences. They also show the results of their surface modeling
method for dynamic reconstruction from multi-view videos. Zhang
et al. [ZBRH22] proposes a dynamic view synthesis method from
multi-view videos by differentiably splatting point primitives, with
learnable spherical harmonics to represent color. The method re-
quires an object mask to generate the point cloud and learns the
model per frame.

Luiten et al. [LKLR24] is one of the first extensions of 3D Gaus-
sian splatting [KKLD23] for general dynamic scenes. They param-
eterize the Gaussians with 6-DOF rotation and translation, each
equipped with a color and opacity, and impose multiple physical
regularizers (e.g. local rigidity and local isometry). Without need-
ing an MLP to regress the radiance, they can render novel views
of dynamic scenes with state-of-the-art quality and efficiency from
multi-view videos, see Fig. 14. Dense, consistent trajectories for the
Gaussians also emerge naturally from the dynamic view synthesis.
[LKLR24] allows the Gaussians only to move and rotate over time.
Concurrent works [YGZ*24, WYF*24] model the deformations
more faithfully by learning static Gaussians in the canonical space,
and a deformation field, which allows the scale of the Gaussian to
change, along with the position and rotation, from monocular ob-
servations. NPGs [DWY *24] utilize 3D Gaussians initialized on a
coarse point model to tackle the issue of high-quality novel view
synthesis (from camera poses that are significantly different from
the training views) for casual monocular video captures. A coarse
point model—constrained by a low-rank deformation basis—is first
obtained for the observed object at each timestep, which is then
used as an anchor for 3D Gaussians, providing regularization for
the reconstruction of the sparsely observed dynamic object.

Instead of canonical modeling, [YYP*24] directly extends 3D
Gaussians into the time domain as 4D Gaussians, each with a
4D rotation, 4D scale, and 4D spherical harmonics to represent
the view-dependent color that can change over time, achieving a
rendering speed of 114 FPS. SpacetimeGaussians [LCLX?24] also
extend 3D Gaussians with an extra 1D Gaussian to represent the
temporal opacity at any time. Instead of spherical harmonics, they
store feature embeddings on the Gaussians for appearance, which
are splatted and then decoded by an MLP to achieve high-fidelity
renderings of up to 8K resolution at 60 FPS. While all the meth-
ods discussed in this subsection so far require offline training,
3DGStream [SJL*24] achieves high-speed, compact, and on-the-
fly per-frame reconstruction within 12 seconds and with up to 200
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Figure 14: Dynamic View Synthesis by Tracking 3D Gaussians.
(Left:) Gaussian centers, (right:) Rendered image and depth from
unseen view with 3D trajectories (including occlusions). Luiten et
al. [LKLR24] parameterizes each scene with 200 to 300k Gaus-
sians, tracked across frames with an accuracy 10x better than
previous state-of-the-art while also rendering at 850 FPS. Image
source: [LKLR24] ©2024 IEEE.

FPS rendering speed by utilizing a multi-resolution hash grid as a
cache for the transformations of the 3D Gaussians.

Multi-plane Images for Novel View Synthesis. Multi-plane Im-
age (MPI) representations have been successfully applied for
view synthesis from multiple posed images [FBD*19], a narrow
baseline stereo pair [ZTF*18, STB*19], a single image [TS20]
or semantic maps [HTLH20]. They can also be augmented to
model view-dependent appearance [WPYS21] and time-dependent
variations [LXDS20]. Several recent works have extended the
MPI-based representations for modeling dynamic video [LXL*21,
ZW22,XC22,MLLS23]. Using a stereo video, Lin et al. [LXL*21]
decompose the dynamic scene into a static and a dynamic MPI rep-
resentation and blend them with a predicted 3D mask volume. The
decomposition helps to enable temporally stable view extrapola-
tion. Instead of explicit dynamic/static decomposition, Temporal-
MPI [XC22] proposes to learn a low- and high-frequency tempo-
ral basis to model the dynamic scene. The plane representation in
MPI can also be extended to a sphere to support a larger field of
view. For example, MatryODShka [ALG*20] trains multi-sphere
image (MSI) representations for real-time view synthesis of dy-
namic video from 360° omnidirectional stereo video.

3.2. Decompositional Scene Analysis

Real-world complex scenes usually comprise static regions and
dynamic objects undergoing different motions. Decomposing the
scene into multiple parts based on their motion is a natural choice
that enables many downstream applications, including interaction
analysis, scene editing, and future prediction. It is a challeng-
ing task, especially when no direct decomposition supervision or
category-level prior is available. Scene-level methods discussed in
Sec. 3.1 mostly capture the scene using a single geometry and de-
formation representation. In this section, we focus on decompo-
sitional approaches (see Sec. 2.2.4 for types of decompositions)
applicable to non-rigid dynamic scenes, excluding methods re-
lated to static decomposition [NG21, YZX*21, YGW21, YSL*22]
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Figure 15: Decompositional Scene Analysis. We show repre-
sentative methods for static-dynamic decomposition [WZT*22],
multi-object decomposition [WDSY23], and part-level decomposi-
tion [LMAS23], respectively. The left illustrates the input whereas
the right shows the decomposition results.

or rigid-only decomposition [OMT*21,KGY *22]. Tab. 2 provides
an overview. As illustrated in Fig. 15, we find three categories of
granularity: static-vs-dynamic decomposition (Sec. 3.2.1) divides
the scene into moving and stationary components, multi-object de-
composition (Sec. 3.2.2) goes one step further by separating indi-
vidual objects, and finally part-based decomposition (Sec. 3.2.3)
operates at the level of parts. In the following sections, we will dis-
cuss these types of decomposition and all relevant works in detail.

3.2.1. Static-Dynamic Decomposition

Methods in this category decompose the scene into static and dy-
namic regions, yet do not consider further decomposition of dif-
ferent dynamic objects. We introduce these methods based on the
supervision signals that are leveraged for their decomposition.

Mask-based. DynNeRF [GSKH21] is one of the first approaches to
combine a dynamic scene representation with a static one through
a learned blending weight field, leveraging a coarse binary mo-
tion segmentation mask to help decomposition. Similarly, NeRF-
DS [YLL23a] leverages masks of moving objects to guide the train-
ing of the deformation field, providing a strong cue to decompose
the moving foreground from the static background. It allows them
to handle the specular effects of moving objects separately from
the background. Assuming binary masks of articulated objects for
decomposition, PPR [YYZ"23] proposes a first end-to-end frame-
work for jointly optimizing dynamic 3D reconstruction and phys-
ical systems. While all aforementioned methods utilize decompo-
sition to improve the reconstruction quality, RoDynRF [LGM*23]
is the first method for jointly estimating static and dynamic radi-
ance fields and the camera parameters. To facilitate robust camera
parameter estimation based on the static regions, RoDynRF con-
structs a binary motion mask based on Mask R-CNN and optical
flow estimation to enable static-dynamic decomposition. Another
interesting application enabled by static-dynamic decomposition is
creating endless looping 3D video [MLLS23].

Self-supervised. In contrast to the aforementioned methods that
rely on motion masks for decomposition, another line of methods
studies self-supervised decomposition. NSFF [LNSW21] is one of
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Table 2: Selected Decompositional Scene Analysis methods. Su-
pervision (S): Video B, Multi-view Video 8%, Depth b4, LIDAR O,
Mask €, Semantic Segmentation €, Optical Flow >, Image Fea-
tures 5, Pseudo Depth v, Bounding Box [0; Scene Representa-
tion (SR): Density =, Occupancy 8, SDF , Radiance -, Seman-
tics ©; Deformation Representation (DR): Position e, Displace-
ment 2, Rigid Transform ~, Screw Transform ¢, LBS X, DQB Q;
Spatio-Temporal Modeling (STM): Canonical s, Canonical First
Frame %, Individual O, Forward #, Backward &, Bidirectional <;
Tracking Type/Speed (T/Sp): Camera ©®, Object Root Pose @, Of-
fline ©, Online ®, Real-time ¥ (everything above 20 FPS). Data
structures used for SR and DR are (appears first): MLP », Voxel
Grid B, Octree B, Point Cloud <z, Surfels ®, EDG &, Joint &, For-
ward Dynamics Model ».

the first approaches that decompose the static and dynamic re-
gions based on an unsupervised 3D blending weight field, with
the intuition that static regions can be rendered with higher fi-
delity with static representation. Following NSFF, [CT22] demon-
strates that proxy 2D optical flow can help decomposition in driv-
ing scenes by encouraging the static branch to model regions of low
scene-flow magnitude. Without relying on proxy flow supervision,
D?NeRF [WZT*22] achieves decomposition with a novel skewed-
entropy loss to regularize a position being either occupied by the
static scene or a dynamic object, but not both. NeuralDiff [TLV21]
encourages the foreground occupancy to be sparse and learns to
decompose an egocentric video into static parts, dynamic objects,
and the actor. A few hybrid methods, discussed in Sec. 3.1.2, also
decompose the scene into static and dynamic parts, achieving com-
putational efficiency by using a more lightweight model for the
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static part [WTL*23, PSJ*23, LL23]. NeRFPlayer [SCL*23] fur-
ther segments the newly observed areas of the scene, along with
static and deforming parts, using a decomposition field regularized
with a global parsimony loss. A streaming-friendly hybrid repre-
sentation is further proposed based on the scene decomposition.

3.2.2. Multi-Object Decomposition

We now introduce methods that aim to decompose the scene into
multiple dynamic objects, optionally along with a static part. In
addition to offline methods that decompose the scene for motion
decomposition or semantic understanding, many online dynamic
reconstruction methods also fall into this category.

Mask-based Motion Decomposition. Building on the single dy-
namic object reconstruction method BANMo [YVN*22], both
RPD [WDSY23] and Total-Recon [SYD*23] learn a decompo-
sitional scene representation for multiple objects, assuming that
segmentation masks of objects are given. Both methods decom-
pose object motion into root and articulated motion to model large
deformations. Enabled by root pose decomposition and RGB-D
data, Total-Recon shows the ability to synthesize views from ex-
treme viewpoints while also enabling embodied view synthesis,
i.e., point-of-view of moving actors and 3rd-person follow cam-
eras (see Fig. 1, top row, on the right). RPD reconstructs the dy-
namic objects given only a monocular video and is the first method
to estimate object root poses without any category-specific priors.
BANMO further decomposes the object motion into articulated and
non-rigid motion, from which both RPD and TotalRecon benefit.
FactoredNeRF [WM23] assumes the root motion and segmentation
masks of objects are provided at keyframes, enabling the decom-
position of the scene into the background and multiple moving ob-
jects. This factored representation allows for object manipulations
including removing an object or changing an object’s trajectory.
Instead of focusing on reconstruction, Driess et al. [DHL*23] pro-
poses a novel approach to combine implicit object representations
with graph-based neural dynamics models to enable future predic-
tion, achieved by learning a compositional NeRF auto-encoder.

Data Prior-based. Several recent methods omit the requirement of
segmentation masks or bounding by distilling 2D self-supervised
features into the 3D space. While this feature distillation idea is
firstly applied to static scenes [KMS22, TLLV22], SUDS [TZFR23]
and SAFF [LLM™23] extend it to dynamic scene decomposition.
SUDS distills 2D DIVO-ViT features into dynamic urban scenes,
where unsupervised instance segmentation masks and 3D bound-
ing boxes can be obtained by geometric clustering in the feature
space. Similarly, SAFF distills 2D DINO-ViT semantic and atten-
tion saliency features, allowing for extracting segmentation masks
based on their clustering.

Online Decomposition. Decomposing the rigid and non-rigid dy-
namic content during real-time reconstruction, e.g., in SLAM, is
also common for scene understanding tasks in robotic vision. As
shown in Tab. 2, these methods are distinguished from offline meth-
ods as they usually take unposed RGB-D sequences as input, and
leverage surfels or voxel grids as the scene representation to enable
real-time reconstruction and tracking. One line of work [BLL19,
LZNH20,BLL22] exploits semantic instance segmentation models
to decompose each observed RGB-D frame into several dynamic
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parts along with a static background, performing tracking and fu-
sion on each segmented surface independently. In contrast to the
aforementioned methods, STAR-no-prior [CB22] reverses the or-
der of segmentation and reconstruction. By segmenting dynamic
objects based on detecting topology changes, STAR-no-prior does
not assume category-level priors. Mono-STAR [CRG*23] modifies
the STAR-no-prior framework for the monocular RGB-D case. It
uses the semantic class information obtained by segmentation to
constrain the embedded deformation graph, modeling the rigidity
usual for objects in that class.

3.2.3. Part-level Decomposition

A few methods take a further step to decompose objects into mul-
tiple parts. As part-level supervision is hard to obtain, most works
focus on self-supervised part discovery. PARIS [LMAS23] decom-
poses articulated objects into a static and a dynamic NeRF in a self-
supervised manner given two articulation states of a single object.
ArticulatedFusion [LZG18] is an online method that clusters the
nodes of the deformation graph with similar trajectories, thus reg-
ularizing the motion while segmenting the model into parts. Simi-
larly, MovingParts [YZH*24] studies self-supervised parts discov-
ery by a motion-based grouping mechanism that uses slot-based
attention, assuming each group follows a rigid motion. Watch-it-
move [NIT*22] is the first approach that learns re-poseable part
decomposition from multi-view videos and foreground masks with-
out any prior knowledge of the structure. Skeletonization of these
part-level decomposition methods enables object re-posing, as dis-
cussed in Sec. 3.3.3.

3.3. Editability and Control

Many applications require editing properties of the scene, for exam-
ple, to control the location, appearance, and pose of objects in the
scene while keeping photo-realism. A key challenge when building
such models is how to make models coherent under the considered
edits: If an object is moved, the model should be able to fill in the
dis-occluded background, and the object needs to be rendered in a
new pose which potentially has not been seen during training. De-
formable objects will non-rigidly deform when they are articulated.
Editing the texture/appearance of scenes requires reasoning about
lighting, shadows, occlusions, and temporal coherency.

In contrast to non-neural representations in Sec. 3.1.3 which can
be edited by manipulating the explicit primitives, one limitation
of the pure neural field representations of Sec. 3.1.1 is that they
lack controllability. We refer to [YLW*21] for editing mesh-based
representations and focus on editing of reconstructed neural scenes
in this section. We consider methods that either allow editing of
dynamic scene reconstructions or allow deformable editing of static
scene reconstructions. An overview of selected methods is provided
in Tab. 3.

We classify methods according to the type of control they
achieve. Editability requires disentangling the scene representation
and conditioning it on a set of control parameters, which can then
be manipulated. Sec. 3.3.1 introduces methods that allow changing
the scene’s contents. In Sec. 3.3.2, we discuss methods that allow
scene dynamics manipulation, while Sec. 3.3.3 focuses on methods
that provide control over the object’s pose.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



R. Yunus et al. / Recent Trends in 3D Reconstruction of General Non-Rigid Scenes

Method | sp SR DR STM  CP
Scene Editing

FactoredNeRF [WM23] | Bhd= ] | 30 > he O

Control-NERF [LGO*23] 8o 2] 3 — —

NeuVV [ZWL*22] 82 > i} > A 0 0O=

Dyn-E [ZPS*23] 89 - > >~ o

DynVideo-E [LCW*24] [ pc > oD N & VA

Scene Dynamics Control

CoNeRF [KYK*22] [ 4 be &
EditableNeRF [ZLX23] 5 > bl > >e A&
Wang et al. [WMDH22] o) > | 2 ka2
VIRDO++ [WZFF22] Fid | 2 | W kA
Lietal. [LLS*22] 8? > | kA
ACID [SIC*22] bl A b8 ApaA kA
Object Pose Control
NeRF-Editing [YSL*22] 88 > 2 &t
NeuMesh [CTH*22] S > _ o
NeuralEditor [CLW23] 88 o — (m)
NeuPhysics [QGL22] o) | 2 Ed & &
FAST-SNAREF [CJS*23] By 88 *EXZ & &
TAVA [LTV*22] By > ol 2 & w
DANBO [SBR22] % B» & (w) *®
NPC [SBR23] o 4 4 ‘rX A2 & A w
HOSNeRF [LCY*23] Fhe > ‘XA dhe %
CAMM [KKK*23] -8 > = "X he w
Uzolas et al. [UEK23] RO 4 2 ‘X & w
Transfer4D [MNH23] [ )7 (&MERZE) ha w
Liu et al. [LGW23] o o ®é ho &
CageNeRF [PYL*22] g8 > (Z17) 2 dhe
Xu et al. [XH22] L 4 I he
BANMo [YVN*22] FRE | P | X dhe o)
MoDA [SCC*23] e b EE >P#QA dhe [
RAC [YWRR23] [= 19 | P EPFQ2A he O

Table 3: Selected Editable and Controllable methods. Supervi-
sion/Priors (S/P): Video &, Multiple Training Scenes os, Multi-
view 8, Multi-view Video 82, Depth W, External Forces/Contact
Point &, Optical Flow >, Mask €, Pseudo Depth b, Diffusion
Prior 5; Scene Representation (SR): Density =, Occupancy 8,
SDF *, Radiance -, Canonical Features Z=; Deformation Repre-
sentation (DR): Position e, Displacement », Screw Transform &,
LBS %, DOB Q, Forward Dynamics #; Spatio-Temporal Model-
ing (STM): Canonical s&, Deformation Basis A, Canonical First
Frame %, Individual O, Forward #, Backward &, Bidirectional <;
Control Parameters (CP): Neural Features =5, Appearance B,
Edited Image B, Style Reference o, Keypoints &, Attributes =, Ac-
tion 7, Mesh &, Cage ©, Driving Video 3. Data structures for SR
and DR are (appears first): MLP ¥, Voxel Grid 8, Octree &, Point
Cloud ::, Skeleton %, Neural Bones #, Cage ©, EDG &.

3.3.1. Scene Editing

This section discusses methods for scene editing, e.g. moving ob-
jects around, removing them, changing their appearance, or com-
posing a new scene with different objects and backgrounds. We
categorize and discuss these approaches next.

Compositional NeRFs. The original NeRF formulation does not
directly allow editing scene content, as it encodes the full scene
within a neural network. One way to gain control is to decom-
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pose the scene into its constituent objects by learning per-object
models and composing them at rendering time, as described in
Sec. 3.2. Once the per-object model is learned, individual objects
can be moved, removed, duplicated, or their trajectories can be
changed [WM23]. For scenes with many objects, this might be im-
practical as one NeRF per object needs to be learned, and control-
ling general properties of the scene, such as global illumination,
is more challenging. Controlling a compositional dynamic scene
is significantly more complicated than static scenes, as it requires
tracking individual objects.

Decoupled scene representation and rendering. For neural rep-
resentations, another way to edit the scene is to decompose the
rendering network from the scene representation, as done in Neu-
ral Sparse Voxel Fields [LGZL*20] and Control-NERF [LGO*23].
These methods store neural features at a coarse voxelization of the
3D scene, and the radiance is predicted as a function of learnable
scene-specific neural features. The rendering network is trained on
multiple scenes to make it generalizable, which allows it to ren-
der a new scene after edits not seen during training. The scene can
then be composed literally by merging different geometries rep-
resented as voxel-based neural features, and they can also be de-
formed directly with non-rigid geometric deformations. The main
limitation of such methods is that storing high-dimensional features
in a 3D grid is memory-consuming. While [LGZL*20, LGO*23]
model static scenes, [TDD23] achieves similar editing capabili-
ties for dynamic scenes as a by-product of generalizable model-
ing (see Sec. 3.4.2) by learning 3D point features for multiple dy-
namic scenes, which are aggregated from 2D image feature grids
in an image-based rendering setup. Non-neural representations are
already decoupled from the rendering pipeline. The approach pro-
posed by Luiten ez al. [LKLR24] (discussed in Sec. 3.1.3) allows
adding or removing subsets of 3D Gaussians, or combining Gaus-
sians from multiple scenes together. Edits to one frame automat-
ically propagate to other frames over time due to their consistent
Gaussian tracking.

Appearance Editing. A sub-class of editing methods leaves the
scene’s geometry intact and solely edits the appearance. NeuVV
[ZWL*22] extends the PlenOctrees approach [YLT*21] introduced
for static scenes to dynamic NeRFs, enabling real-time rendering.
PlenOctrees bakes the color and density attributes from the under-
lying NeRF into an octree representation. As editing these color
attributes directly (i.e. spherical harmonics coefficients) does not
produce meaningful edits, NeuVV stores additional color values
for the voxels edited by the user, which are blended in during
rendering, thus enabling appearance editing. In Dyn-E [ZPS*23],
the appearance of a local region on the surface representation is
edited using a reference image, which can then be propagated to
the rest of the dynamic scene consistently through invertible net-
works. Recently, style transfer was also introduced for dynamic
scenes. DynVideo-E [LCW*24] transfers style separately to the
background [BMV*22] and foreground [LCY *23] model—learned
from monocular video—from corresponding reference images. The
foreground style transfer is made consistent under animation and
large-scale view and motion changes by additionally supervising
with Score Distillation Sampling [PJBM22] from (1) a 3D diffu-
sion prior [LWVH?*23] to distill the inherent geometric information
from the 2D reference image, and (2) a 2D text-based diffusion



22 of 42

Figure 16: Novel Attribute Rendering. Interpolation of user-
annotated attributes learned by CoNeRF [KYK*22]. The expres-
sion in green border is not seen during training. Image source:

[KYK*22].

prior [RBL*22] to guide the rendered views, which is finetuned
to the reference image using DreamBooth [RLJ*23]. A few meth-
ods [XLSL23,ZLY*23a] allow deformable style transfer for static
scenes by incorporating deformation fields into their approach to
cater to the geometric differences between the source observation
and target style image.

3.3.2. Scene Dynamics Control

Next, we look at methods that enable users to manipulate scene dy-
namics through different types of control parameters. We structure
the method based on the type of control variable, i.e. control based
on attributes, keypoints, or actions.

Attribute-Based. Attributes are specific properties of an object that
can exhibit different states, e.g. an eye being open, closed or in an
intermediate state. CoNeRF [K'YK*22] is the first method to extend
neural radiance fields, specifically HyperNeRF [PSH*21], to allow
user control over the scene dynamics, by treating these attributes
as latent variables that a neural network can regress. It requires a
few annotation masks from the user, as little as two throughout the
video, for each region that needs to be controlled. The changes ob-
served throughout the video for a particular annotated region are
captured into a latent attribute, which the user can toggle at test-
time to interpolate between the states and even generalize to com-
binations not seen in the video (see Fig. 16). DyLin [YIM*23] ex-
tends the method introduced in [KYK*22] to dynamic light field
networks.

Keypoint-Based. CoNeRF provides control over the scene regions
only using one-dimensional attributes and requires manual annota-
tions from the user. In contrast, EditableNeRF [ZL.X23], also build-
ing on HyperNeRF [PSH*21], proposes an approach that condi-
tions the radiance of a sample point in the canonical space on a
weighted combination of automatically detected keypoints. This al-
lows deforming the overall scene into a new state by just deforming
the keypoints, providing multi-dimensional control over the scene,
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which is consistent under novel views. However, the ability of the
method to handle edits with large and complex motion is limited.

Action-Based. Recently, 3D neural scene representations have also
been introduced for goal-driven deformable object manipulation
and visuomotor control in robotics. For these tasks, typically, the
future state of the scene is predicted by a forward dynamics model
based on an action (e.g. parameterized control commands for a
robotic arm like grasp, move, and release). Such a model learns the
dynamics of the scene, taking non-rigid deformations into account,
and is driven by the visual observations obtained from the scene,
auto-decoded using the given state. The learned predictor can then
be used to find the optimal set of actions to achieve the goal state
in the target visual observation. In Wang er al. [WMDH?22], the
NeREF is conditioned on a set of 3D keypoints encoded from cam-
era observation. The forward dynamics model predicts keypoints
for the next time step given the current keypoints, gaining control
over the representation. Li e al. [LLS*22] achieves similar con-
trol from multi-view observations using a state embedding rather
than keypoints and an additional time contrastive loss to distin-
guish different views in one frame from views at another time step.
ACID [SJC*22] encodes an RGB-D observation into canonical tri-
plane features, which are decoded to learn an occupancy field for
the current scene state and a correspondence field to the target ob-
servation. Control is achieved by predicting a flow field from ac-
tion, which utilizes the correspondence field to drive to the tar-
get state. VIRDO [WFZF22] pretrains an object module to learn
the nominal shape of the object, i.e. the shape before deformation
and utilizes an encoder to incorporate measured external forces and
contact points in learning the deformation field. It serves as a foun-
dation for VIRDO++ [WZFF22], which uses an action module to
predict the force and contact points for the next state, thus control-
ling the deformation dynamics. Finally, Driess et al. [DHL*23] use
a compositional NeRF representation to model inter-object dynam-
ics and learn a collision-aware dynamics prediction module from
multi-view observations.

3.3.3. Object Pose Control

The methods discussed in this section either deform objects through
explicit geometry manipulation or model object articulations using
one of the coarse deformation structures introduced in Sec. 2.2.3.
We categorize the works into those using explicit geometry defor-
mation, skeletons, or cages.

Geometry-based. Unlike neural fields, explicit geometry represen-
tations, like meshes and point clouds, are easier to edit as they pro-
vide direct access to the surface. Non-rigid transforms can be di-
rectly applied by deforming the vertices. Recent methods gain con-
trol over the neural field-based geometry by linking it with explicit
representations. The neural model is then trained under deforma-
tions of the explicit geometry to produce the correct renders. NeRF-
Editing [YSL*22] uses the extracted mesh from NeuS [WLL*21]
to gain control over its geometry. After the user edits the mesh,
the offset from the original state is calculated, and rays are de-
formed accordingly, with the help of tetrahedralization of the
mesh [HSW*20]. VolTeMorph [GKE*22] proposes a method to
directly deform a tetrahedral mesh for editing the geometry rather
than editing a surface mesh and transferring the motion to the vol-
umetric one, like in NeRF-Editing. NeuPhysics [QGL22] extends

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



R. Yunus et al. / Recent Trends in 3D Reconstruction of General Non-Rigid Scenes

the concept of NeRF-Editing to dynamic scenes by adding an addi-
tional bending layer on top of the motion field to account for defor-
mations due to edits, which is further regularized by strong physics
priors using physical simulation. NeuMesh [CJH*22] proposes a
hybrid representation by directly storing a separate latent code for
appearance and geometry on mesh vertices extracted from a pre-
trained NeuS. The deformed mesh, after editing, can be rendered
by interpolating vertex codes along the ray. It also allows texture
editing by replacing the appearance latent codes with ones from a
different scene. Bypassing the expensive extraction step and lim-
ited topology change handling of meshes, NeuralEditor [CLW23]
directly stores neural features on a point cloud and renders via in-
terpolating the point features, similar to Point-NeRF [XXP*22].
However, they show that directly deforming the points in Point-
NeRF does not lead to high-quality renders of the deformed object.
They incorporate more geometric information, like point normals,
to guide the editing process, which also enables modeling the color
with the Phong reflection model [Pho75], obtaining a much more
precise point cloud overall. The method achieves high-fidelity ren-
dering results on deformed scenes, even in a zero-shot inference
manner, without additional training.

Skeleton Prior. The deformation of humans, animals, and many
other articulated objects can be represented and controlled by an
underlying skeleton. Such skeleton-based rigging is common for
meshes, and it has recently been used to control neural scene repre-
sentations as well, enabling articulated deformations to novel, un-
seen poses. When using a neural field representation, the task is
to infer the geometry or radiance for every 3D point in the live
frame (or posed frame) as a function of the pose - while also in-
ferring the influence of each bone transform on every point via
blend skinning - and learn the deformation from a canonical pose
or vice versa. Now we look at methods where the skeleton is fit-
ted to the observations a priori using off-the-shelf methods, and
only the shape or appearance of the object is learned on top, along
with the skinning weights. Note that we do not focus on human-
specific [JYS*22,PZX*21,XAS21,LHR*21] or human body part-
specific [MBW*23, BZH*23, SWW*20] methods which are based
on surface templates and skinning weights from parametric models,
such as SMPL [LMR* 15]. We cover methods that can conceptually
generalize to generic objects beyond humans and do not require
massive amounts of human-specific data.

The first work to demonstrate articulated pose control of a neu-
ral field is NASA [DLJ*20] via a backward model. The main idea
is to consider objects as a collection of rigid part-based models
and transform a posed point back (hence backward model) to the
canonical space according to the inverse rigid pose of the part.
Since the part association for the point is unknown, the method
transforms the point according to each part separately (most ba-
sic form of inverse skinning). It obtains occupancy as the maxi-
mum of the part-based model occupancies (a point is occupied if
any of the parts occupies it). The part-based occupancy models are
learned as a function of pose to deal with non-rigid deformations.
A common limitation of pure inverse skinning methods is that they
do not consider non-rigid deformation beyond articulated effects.
For this, inverse skinning has been generalized further to repre-
sent deformable shapes in Neural-GIF [TSTPM21]. Inspired by
the idea of deforming the input points before the evaluation of the
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SDF or occupancy [SP91], it learns both articulated and non-rigid
deformation (e.g., clothing and soft tissue) by first un-posing the
points with inverse skinning and then further deforming them with
a learned deformation field to the canonical space. Inverse skin-
ning is made smooth by linearly blending body-part deformations
weighted by skinning weights predicted by the network. Like dy-
namic NeRFs [PCPM21], learning the deformation field instead of
an occupancy/distance field as a function of deformation parame-
ters leads to more detail with smaller models.

While models like Neural-GIF [TSTPM21] produce highly de-
tailed surfaces, the inability of inverse skinning to generalize to
highly articulated poses remains (see Fig. 8 for the same issue
of backward modeling in dynamic NeRFs). To address this is-
sue, SNARF [CZB*21] was the first method to propose forward
skinning (forward model), directly finding the point in canonical
space that will deform to the target posed point by numerically
solving a non-linear equation. Time-invariant skinning weights are
predicted in canonical space, removing the pose dependency of
inverse skinning. Forward skinning is shown to generalize bet-
ter to new, unseen poses, albeit with some loss of surface detail.
FAST-SNARF [CJS*23] achieves a 150x speed-up over SNARF
by parameterizing the skinning weights field using a low-resolution
voxel-grid, which works, as they demonstrate that the field does not
contain high-frequency details.

The use of a canonical representation coupled with either for-
ward skinning [LTV*22] or inverse skinning [NSLH22] has been
exploited to represent articulated neural radiance fields as well.
The main difference with neural implicit surface models is that su-
pervision is done via rendering loss instead of direct 3D ground
truth. TAVA [LTV*22] builds on SNARF and learns the deforma-
tion through multi-view images. It further demonstrates general-
ization to articulated animals. Since learning the backward map-
ping from the live frame to the canonical spaces is, in general, hard
for novel poses, DANBO [SBR22] leverages the skeleton struc-
ture by predicting a localized volumetric representation of each
body part with a graph neural network and biasing the model to at-
tend to nearby body parts, reducing spurious correlations. Recently,
NPC [SBR23] replaced the purely volumetric NeRF representation
of the scene with a collection of canonical neural points, which can
be posed and volume rendered by interpolating the neural features.
While all the previously discussed methods reconstruct only the ob-
ject, HOSNeRF [LCY *23] learns to reconstruct the background as
well from a single monocular in-the-wild video, along with a fore-
ground model which is based on a skeleton (human-based in the
paper [WCS*22]) extended with bones to represent objects, mod-
eling human-object interaction. The smoothness and consistency of
human-object deformations is further improved by defining cycle
consistency between a forward and backward deformation module.
These modules add a non-rigid deformation field on top of linear
blend skinning to model fine deformations. GART [LWP*24] and
ASH [PZK*24] learn a Gaussian Splatting representation on top of
skeletons, achieving fast reconstruction and real-time rendering of
avatars.

Skeleton Discovery. The aforementioned methods achieve a higher
level of control by relying on an underlying skeleton model. While
it is reasonable to assume such prior knowledge in the case of hu-
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a) Learned Kinematic
Model

b) Simplified
Kinematic Model

) Reposing using
Kinematic Model

Figure 17: Skeleton Discovery and Reposing. Shown are LBS
weights learned by Uzolas et al. [UEK23] from multi-view image
data before (a) and after (b) post-processing. Using the learned
LBS weights, the full models can be reposed by skeletal animation
(c). Image source: [UEK23].

mans, it might be hard to obtain such skeletons for general shapes.
Hence, several methods learn the skeleton structure directly from
the observed data. CAMM [KKK™23] learns the skeleton struc-
ture via inverse rendering from monocular videos of a deform-
ing object. First, the canonical shape is estimated with learnable
anchor points, representing surface deformation via blend skin-
ning and learned weights. Then, a skeleton initialized with a pre-
trained RigNet [XZK*20] is hooked to these anchor points us-
ing the proposed association mechanism, which can then be used
to drive surface deformations. To avoid the aforementioned chal-
lenges of backward modeling (generalization issues, non-invertible
mappings), the recent work by Uzolas er al. [UEK23] uses a
point-based representation, coupled with forward skinning to learn
the canonical space, time-varying body-part deformations, and the
skeleton. The skeleton is initialized with the medial-axis transform
instead of RigNet, which is further refined by pruning or merg-
ing bones, as shown in Fig. 17. Transfer4dD [MNH23] proposes
a pipeline to automatically track non-rigid objects and extract a
skeleton as a post-process, which is used to re-target motion to se-
mantically similar shapes. Liu ef al. [LGW23] optimize part seg-
mentation, skeleton, and kinematics from point cloud videos. As
the problem is under-constrained, a two-stage approach is proposed
which first optimizes the more tractable 6-DOF rigid model with-
out kinematic constraints, later projecting it to a 1-DOF model with
screw-parameterized joints and a valid kinematic tree.

Neural Parametric Models. Another way to avoid the object-
specific constraints of pre-defined skeletons is to model the articu-
lation space of an object using an auto-decoded MLP, a paradigm
introduced by NPMs [PBT*21]. Once the latent codes are op-
timized for poses at observed timesteps, they can be interpo-
lated in the latent space to get novel poses. They also allow mo-
tion retargeting by using pose embeddings from a driving video
sequence, given that the geometry model has been learned and
fixed for another sequence. Building on previous works on ar-
ticulated shape reconstruction from a few (or single) monocular
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videos [YSJ*21a, YSJ*21b], BANMo [YVN*22] represents the
articulation space of an object using neural bones instead of dis-
placements like NPMs [PBT*21]. Bone positions and orientations
are predicted for each timestep and volumetric skinning is used to
articulate the object space using these bones. Both forward and
backward skinning weights are learned to induce cycle consis-
tency. Follow-up work MoDA [SCC*23] replaces the linear blend
skinning of BANMo with dual quaternion blending, enabling bet-
ter surface reconstruction and fewer skin-collapsing artifacts than
the former. Both methods demonstrate the ability to transfer mo-
tion between structurally similar avatars. RAC [YWRR23] extends
BANMO to reconstruct a category-level model and skeleton, where
the auto-decoded MLP predicts the instance-level joint locations
for the category-level skeleton, allowing additional pose control.
NPGs [DWY *24] use a deformation basis to constrain the articula-
tion space, optimizing the basis coefficients for the poses observed
at each timestep, which can then be interpolated to get novel inter-
mediate poses.

Cage-based. Concurrent works [PYL*22,XH22] introduced cages,
well-known in computer graphics for mesh editing, to neural fields.
CageNeRF [PYL*22] optimizes a cage with respect to the mean-
value coordinates (MVC) [JSW23] of the vertices of the underlying
mesh, which is extracted from the SDF-based radiance field using
marching cubes. The cage is edited using the module deforming it
based on a given target mesh of the deformed state. Since MVCs
are invariant under cage deformations, an MVC field is built using
the deformed cage, which is then used to access the canonical ra-
diance field while rendering views from the deformed state. Taking
a different approach, Xu et al. [XH22] compute the reverse defor-
mation of the deformed cage to the canonical cage to query the
radiance and density while rendering. They also propose a faster
cage coordinates computation method based on harmonic coordi-
nates [JMD*07]. Overall, cages enable category-agnostic control
over object geometry and are easy to generalize under various set-
tings; however, the deformation quality is significantly dependent
on the cage generation process, requiring manual refinement for
complex shapes.

3.4. Generalizable and Generative Modelling

Previously described methods in Sections 3.1, 3.2, and 3.3 fol-
low the approach of pure optimization, which finds an optimal 4D
representation that respects a given set of observations and man-
ually defined constraints. As a natural extension of this principle,
one can try to learn constraints from data. This principle can serve
two goals: to be applicable in much more under-constrained sit-
uations with few observations by generalizing from training data
(generalizable), or without any observations at all to sample from
the learned model itself (generative). To follow this principle, a
model—sometimes called a data prior—has to be learned from a
large amount of data that optimally captures the scale and variety of
natural non-rigid scenes. In the setting of general non-rigid recon-
struction, the amount of datasets that allow us to learn large-scale
models is very limited, which is why we are still in the early stages
of this research area and only a few approaches exist. Please refer
to Sec. 2.3.4 for an overview of fundamental techniques.

In this section, we will discuss the early steps in the direction
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Dataset | #v M R A Size
Fauna Dataset [LLL*24] 1 = v o 78,168 [
EPIC Fields [TDZ*23] 1 = v @ o9 18.8k =
Common Pets in 3D [SSR*23] 1 = v — 4.2k 3
BEHAVE [BXP*22] 4 [=],¥] v @& R 32168
SAIL-VOS 3D [HWYS21] 1 [=1- X op & 237.6k [
DeformingThings4D [LTT*21] — b 7 1.9k 5
DeepDeform [BZTN20] 1 SR v =T 390k =
Dynamic Scene [YKG*20] 12 [=],¥] 4 ® 8§
3DPW [VMHB* 18] 1 = v =& 51k =
D-FAUST [BRPMB17] — b v 7R 1298

Table 4: Large Datasets. A list of datasets that are or have the
potential to be used for generalizable non-rigid 3D modeling. We
exclude datasets that cover only one domain (such as humans)
while making an exception for D-FAUST, as it has been used in
many general methods. # Views (#V). Modality (M): RGB =, with
Depth 4, 3D Objects ©. Real Data (R): Yes v, No X. Annotations
(A): Camera Poses ©, Registered Templates %, 3D Meshes ¥, Seg-
mentations s, Animated Models 7 , Optical Flow », IMU Poses %,
Matchings 2. Size: # Frames =, # Sequences .

of generalizable and generative non-rigid reconstruction. We begin
by introducing existing large-scale datasets in Sec. 3.4.1, which are
required to learn effective models from data. We summarize gener-
alizable models in Sec. 3.4.2 and generative models in Sec. 3.4.3.

3.4.1. Datasets

Datasets to learn generalizable or generative models for non-rigid
reconstructions are still rare. An overview is given in Tab. 4. We
restrict ourselves to datasets that have been or can probably be
used to learn data priors, requiring scale and generality. We ex-
clude datasets that capture only a single domain, such as humans
or hands, except when they are used for general methods. Existing
generalizable methods in the scope of this work learn models from
two types of datasets: (multi-view) video datasets and datasets con-
taining animated 3D models.

3.4.2. Generalizable 4D modeling

The bulk of generalizable methods for non-rigid reconstruction
work on the level of objects. Thus, we start by first introducing
these methods. Then, we turn to more general, scene-level meth-
ods, which include learning priors for scene flow, temporal corre-
spondences, or scene radiance fields.

Object-level models in 3D space. We start with Occupan-
cyFlow [NMOGI19], which models forward and backward flow
between occupancy fields as continuous neural fields while solv-
ing a neural ODE for deformation. Tang et al. [TXJZ21] learn
to autoencode object scan sequences with a spatio-temporal au-
toencoder that predicts occupancy and correspondences. Similarly,
Jiang et al. [JZW™*21] learn to disentangle object identity, ob-
ject pose, and motion by formulating a neural ODE in the latent
space. All these methods are trained on D-FAUST. A slightly dif-
ferent trend for object-level reconstruction is using neural para-
metric models [PBT*21]. They learn a deformable template as
an MLP autodecoder from a dataset of 3D objects. Neural tem-
plates have several useful properties. They can disentangle identity
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Figure 18: Category-level Shape and Articulation Prior.
RAC [YWRR23] learns a category-level 3D model and skeleton
from a collection of internet videos, which can then be fitted to spe-
cific instances. Image source: [YWRR23].

from deformation [XMY*21, MA22], automatically perform part
decomposition [PSTD22], and provide correspondences between
instances [MA22].

Object-level Models in Image Space. Previously described ap-
proaches take 3D input to predict deformation. In contrast, a par-
allel line of work, started by REDO [RZS21], makes predictions
about deformation from images. REDO learns to recover shapes
from videos by training CNNss to predict flow fields in pixel space
for each time step. The CNN is trained on SAIL-VOS 3D, De-
formingThings4D or 3DPW. In the last two years, this principle
gained more traction. TrackeRF [SSR*23] learns object-level non-
rigid deformations by predicting trajectories of 3D points, given
image-aligned feature information. Tan et al. [TYR23] use a dataset
of pretrained dynamic NeRFs obtained by BANMo [YVN™*22] to
train a video encoder to predict viewpoint, appearance, and articu-
lation from a video of a novel object.

Articulation Priors. A special case of object-level non-rigid re-
construction concerns articulated objects with multiple rigid parts.
Works discussed in Sec. 3.3.3 - Skeleton Priors assume that a skele-
ton is already available, predicted using an off-the-shelf method.
Such methods learn category-level articulation priors using a large
amount of 3D data, which is usually only available for charac-
ters [XZK*20]. Rather than 3D data, RAC [YWRR23]—following
the neural parametric model paradigm—Iearns category-level 3D
models and skeletons from monocular internet videos of a cat-
egory. Using a 3D background model to separate objects from
the background, it learns a structured latent space within a cate-
gory, optimizing over multiple instances by specializing the skele-
ton to instance morphology, as shown in Fig.18. In contrast,
BANMO [YVN*22] learns articulations on instance-level only.

Another line of work with significant recent progress learns de-
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formable templates for generalizable, category-level few/single-
view reconstruction from image collections instead of temporal
data, which can then be animated or optimized for per-frame video
reconstruction [YRH*23, YHL*23, WLJ*23, AMA24, LLL*24].
Hi-LASSIE [YHL*23] extracts a class-level part-based skeleton
from around 20-30 images of an articulated animal class using se-
mantic cues from DINO features [CTM*21]. The skeleton is then
specialized to instances and textured during test-time optimization.
ARCTIC3D [YRH*23] improves the robustness and quality of Hi-
LASSIE by introducing 2D diffusion-based priors, which are uti-
lized during input preprocessing, shape and texture optimization,
and animation.

A few methods [WLJ*23, AMA24, LLL*24] enable direct
test-time prediction of shape, articulation, texture, and view-
point from a single view using embeddings from an image en-
coder. MagicPony [WLJ*23], which removes the requirement of
DOVE [WIJRV23] for explicit video data during training, initializes
a heuristic-based skeleton from the learned category shape which is
then specialized to instances while SAOR [AMA?24] directly pre-
dicts the part-based segmentation and the corresponding transfor-
mations to get the instance shape, which is then articulated using
skinning weights. Building on MagicPony, 3D-Fauna [LLL"24]
exploits the 3D shape similarities across different animal categories
by predicting the category shape as a combination of latent shape
bases, retrieved based on similarity to the image embeddings.

Considerable effort has also been made recently to learn artic-
ulation states of object-categories [MQK™*21, HJZ23, WCM*22,
TLYCS22], to allow articulated reconstruction from image or scan
inputs. The learned articulated states (e.g., joint angles) can be used
to repose the object, enabling control similar to the methods dis-
cussed in Sec. 3.3.3. Recently, CARTO [HIZ*23] brought this con-
cept to the scene level by learning to jointly predict object locations,
their 6D pose, and their articulation in a scene of multiple objects.

Scene Flow Priors. Another line of work combines traditional non-
rigid reconstruction techniques with a scene flow prior, e.g. by
utilizing FlowNet3D [LQG19, WLHJ*20]. 4DComplete [LTT*21]
utilizes FlowNet3D and a 4D voxel encoder to learn scene motion
over time. OcclusionFusion [LZYX22] trains a motion estimator
based on GNNs and LSTMs to predict the motion of points for an
embedded deformation graph on the canonical model (see Fig. 13).
Both learn to propagate motion from visible to occluded regions
and are trained on DeformingThings4D [LTT*21]. 4DComplete
additionally predicts the occluded geometry as well. Trained on D-
FAUST, Zhou et al. [ZFB23] use MLPs to decode flow and SDF
from 3D feature volumes unprojected from depth frames, which
are enhanced by self- and cross-attention between the source and
the target frame.

Correspondence Priors. Priors can be learned from data to re-
cover correspondences between different frames. As an exam-
ple, DeepDeform [BZTN20] trains a Siamese CNN architecture
to perform non-rigid matching between RGB-D frames, trained
in a semi-supervised setting on their own DeepDeform dataset
with sparse correspondence annotations. The matches are then
used as a constraint in the reconstruction pipeline. Neural Non-
Rigid Tracking [BPZ*20] follows a similar principle but predicts
dense correspondences instead in an end-to-end learnable frame-
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Method | Type Prior Data
Generalizable - Object-level Input
GNPM [MA22] | w bud
SPAM [PSTD22] < w bud
TrackeRF [SSR*23] > BH s )
Tan et al. [TYR23] > & & )
RAC [YWRR23] 4 ] o
SAOR [HIZ*23] > w (]
Generalizable - Scene-level Input
MonoNeRF [TDD23] > B ~s 88
FlowIBR [BBNB23] g B2 s 88
Van Hoorick et al. [VHTS*22] > B~ 9 58 b
Zhou et al. [ZFB23] > 2 bud
OcclusionFusion [LZYX22] > 2 3 b
CARTO [HIZ*23] »< iy B8
Generative Approaches Train
Kim et al. [KY22] s &= 2 o)
HyperDiffusion [EMS*23] s w®
Bahmani et al. [BPP*23] L4 B~ 5
GenCorres [YHS*24] >4 iy
Tang et al. [TMW*22] >4 iy
NAP [LDS*23] p w
PGM [MSL*24] s 2] o)
MAV3D [SSP*23] 5 & o]

Table 5: Generalizable and generative methods. Recent works
on generalizable or generative non-rigid reconstruction. Method
type: Encoder-Decoder 4, Autodecoder 4, GAN ®, Diffusion S.
Learned priors: Shape ©, Appearance B, 3D Deformation/flow 7,
Articulation %, 2D Correspondences . Input or training data:
Image =, Video 8, Multi-View 8, Depth td, Shapes

work. Another way to find dense correspondence matches is to
distill pre-trained image features (e.g. 2D DensePose CSE em-
beddings [NNS*20]) from observations into the canonical 3D
model. Such 3D features are constrained to match the correspond-
ing 2D features across observations, providing long-term registra-
tion [YVN*22,SCC*23, YWRR23, KKK*23].

4D Scene Generalization. The first data-driven methods for gen-
eral non-rigid scenes appeared in the past two years. MonoN-
eRF [TDD23] combines off-the-shelf optical flow with a model that
provides pixel-aligned volume features for generalization to novel
videos. It jointly learns to predict dense motion, shape, and appear-
ance and is trained on the Dynamic Scene dataset. Van Hoorick
et al. [VHTS*22] train a point transformer on multi-view RGB-
D videos to learn to track occluded objects from a single view. The
transformer attends to other timeframes, which enables it to look up
currently occluded information and fill in missing information. Re-
cently, FlowIBR [BBNB23] combines a learned static scene prior
with a 2D optical flow prior for fitting a single dynamic scene.
During test-time optimization, the method optimizes ray bending
in the inferred static representation to minimize optical flow and
cycle consistency losses. Zhao et al. [ZCM*24] shows that given
monocular depth estimation and optical flow priors for geometry
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and motion learning, their pseudo-generalized method is able to
avoid costly scene-specific appearance optimization and still give
results on par with scene-specific methods.

3.4.3. Generative Models

The field of generative models on general non-rigid objects
and scenes is in the early stages of development. We include
them in this survey because recent work in rigid 3D reconstruc-
tion [CNC*23,ZT23] indicates that generative models will also be
used as data priors for non-rigid reconstruction in the near future.
Generating large, general scenes is already very challenging in a
rigid setting, due to the lack of large-scale datasets and scalable
generative models. Thus, most existing non-rigid generative meth-
ods either focus on single objects or lift 2D priors into 3D.

Generation of Articulated or Deformable Objects. Generative
models for deformable objects have seen progress in recent years.
ShapeFlow [JHTG20] learns the deformation space of an ob-
ject category by training an SDF neural field and a flow field
on ShapeNet. Using an explicit representation of meshes, ARA-
PReg [HHS*21] designs a spectral ARAP regularization for graph
shape generators, constraining them to produce a series of shapes
that move as rigidly as possible [SAO7]. Recent advances include
GenCorres [YHS*24], which brings the ARAPReg-like principle
to implicit neural fields, enforcing cycle consistency and rigidity
constraints, and the work of Tang et al. [TMW*22], which further
extends the modeling of deformation spaces by allowing generation
conditioned on user-given constraints via dragging handles, expos-
ing more control over deformation. HyperDiffusion [EMS*23] can
sample from a 4D shape distribution by training a diffusion network
to generate MLP weights of an SDF neural field. Further, for artic-
ulated objects with non-rigid parts, NAP [LDS*23] trains a diffu-
sion model on articulation trees of objects to generate partially rigid
shapes in different articulation states. Another line of work is 3D
video generation. Bahmani et al. [BPP*23] train a GAN that mod-
ulates neural field weights to generate 3D videos of faces. Kim et
al. [KY22] generate a deformation sequence of medical image vol-
umes with a diffusion model synthesizing intermediate 3D frames.
Similar to object-level approaches, their method focuses on a very
narrow data domain.

General 4D Generation. The previously described methods gen-
erate articulated or deformable objects but are not able to generate
full scenes. Non-rigid scene generation was largely out of reach,
until the appearance of foundational diffusion models. These pow-
erful open-world generators also made their impact in the field
of 4D generation. PGM [MSL*24] generates frames with a 2D
diffusion model, conditioned on a 4D game engine state consist-
ing of several explicit parts. MAV3D [SSP*23] uses two types of
diffusion models, text-to-image and text-to-video generators, and
fuses the generated images/videos into 3D with a two-step pro-
cedure. First, a static scene is generated by fusing the outputs of
the text-to-image generator into a HexPlane representation via 3D-
aware score distillation sampling (see Sec. 2). Then, the text-to-
video generator is used to animate the generated scene. The gen-
eration results depend on those given by the diffusion generators.
The method can generate multiple objects at once but is still limited
to very small scenes. 4D-fy [BSR*24] introduces a 3D-aware text-
to-image model to deal with the Janus problem—a scene that has
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repeated 3D structure when seen from multiple viewpoints—and
optimizes the scene using text-to-image, 3D-aware text-to-image,
and text-to-video models in an alternative fashion to retain the de-
sirable qualities from each model (see Fig. 1, bottom row, on the
right).

4. Remaining Challenges and Discussion

Despite the remarkable and rapid progress in non-rigid 3D recon-
struction of general scenes, multiple challenges remain. This sec-
tion highlights the key open challenges and future directions.

Intrinsic Decomposition and Relighting. In static reconstruction
methods, it is common today to model view-dependent appear-
ance [MST*20, WLL*21]. However, in dynamic scenes, not only
the view direction changes but also the incoming light direction to
moving elements in the scene. This implies that accurately recon-
structing a non-rigid scene requires modeling physical light trans-
port and environment maps. Doing so is also necessary in order to
be able to relight objects with new illumination conditions if the
objects from a reconstructed scene are to be edited or extracted and
placed into a new scene. However, current non-rigid view synthesis
approaches for general scenes are based on the simple emission-
absorption model, which cannot model such changes. They either
ignore illumination changes entirely, implicitly capture them us-
ing per-time step latent codes, or model appearance individually
for different time steps. Modeling surface materials and environ-
ment maps is already well-explored for static scenes [ZXY*23,
JLX*23b,ZSD*21, SDZ*21, BBJ*21], albeit the use of data pri-
ors is minimal, and most of the methods rely on a sufficiently large
number of views to perform a per-scene reconstruction. For non-
rigid scenes, methods that do intrinsic decomposition are based
on human-specific templates [ICN*23, CL22, ZYW*23, BLS*21,
LMM™*22, TAL*07, WSVT13,LWS*13]. A few early approaches
exist for general non-rigid scenes [WZN* 14, GLD* 19] but investi-
gation with the new neural implicit representation paradigms is still
missing. Transparent materials are, even for static methods, rarely
addressed [WZS23,CLZ*23].

Faster Scene Representations. 3D Gaussian splatting [KKLD23]
is a recent method for novel-view synthesis that has enabled real-
time rendering for static scenes, resulting in quick adoption of
the representation across all applications such as editing [CCZ*23,
FWZ*24], surface reconstruction [GL24,CLL23], generative mod-
eling [CWL23, TRZ*24] and SLAM [KKJ*23, YLGO23], among
others. As 4D scenes take longer to optimize because of the extra
time dimension, a faster representation will be even more useful
and will improve scalability. A few initial works have already been
proposed for the general non-rigid setting [LKLR24, WYF*24,
DWY*24] and extension to non-rigid applications discussed in
this report are likely to follow. However, even the 3D Gaussian
Splatting representation requires offline, scene-specific optimiza-
tion. Real-time, online geometry reconstruction and tracking is pos-
sible using classical representations and RGB-D input [LZYX22].
Doing the same for high-fidelity appearance reconstruction would
open up significantly more AR/VR applications.

Reliable Camera Pose Estimation. Even when using offline re-
construction, estimating camera poses in a strongly deforming
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scene and removing the dependency on reliable pose estima-
tion from rigid Structure-from-Motion remains challenging. Ro-
DynRF [LGM™23] is a step towards this goal but requires addi-
tional optical flow and monocular depth supervision.

Long-Term Dense Correspondences. While many works propose
systems that allow for establishing 3D correspondences over time
on synthetic or lab-captured data [TGZ*24, LKLR24], most of
these methods do not yield satisfactory results for general real-
world scenes with long-range and complex camera trajectories.
Methods that model changes over long timespans [LWC*23a] do
so at the expense of 3D correspondences. One step in the direc-
tion of improving these correspondences is provided by TotalRe-
con [SYD*23], which uses depth information and motion decom-
position into each object’s root body and articulated motion to scale
to minute-long videos containing challenging motion. OmniMo-
tion [WCC*23] can also establish dense, occlusion-aware motion
trajectories. However, they use a quasi-3D representation that does
not explicitly disentangle the camera and scene motion; thus, the
resulting representation is not a physically accurate 3D scene re-
construction.

Reconstruction from Sparse Casual Captures. Most works re-
quire at least a dense video stream as input, while the majority
of videos captured in the real world cover the scene relatively
sparsely, with small view baselines, occlusions, and fast object mo-
tion relative to the camera. Most current approaches are evaluated
on datasets that contain multi-view signals in [GLT*22] and they
perform poorly in the sparse capture setting. How to enable dense
4D reconstruction from such sparse coverage is one of the key fu-
ture challenges.

Specialized Sensors. As we have seen in this report, utilizing
multi-view capture systems or RGB-D cameras is common but only
few works utilize specialized sensors such as LiDAR [ALG*21,
TZFR23] and event cameras [MPCVG23, BMC*24, MLR *24] for
non-rigid 3D reconstruction. LIDARs are commonly used in au-
tonomous vehicles to get reliable depth estimates in outdoor urban
scenes, while they are also becoming common in mobile phones,
with the potential to enable a whole host of AR applications.
Event sensors provide high temporal resolution, especially for fast-
moving scenes. Incorporation of these sensors in a multimodal set-
ting could be highly beneficial for non-rigid 3D reconstruction and
view synthesis in these varied and challenging scenarios.

Compositionality and Multi-Object Interaction. Reconstruc-
tion of two or more general deformable objects interacting with
each other remains an open challenge. Most discussed methods
capture dynamics for single objects or on a scene level, dis-
regarding the interaction between different scene parts. A few
category-specific methods explicitly model human-object interac-
tions [SXZ"22, ZLY*23b, JYS*23, JJS*22], hand-object interac-
tions [QCZ*23,XYZ*23,HYZ*22, HJH"22,ZBYX19, TA18] and
interaction between different human parts [SGPT23,MDB*19], but
only a few approaches exist for modeling interactions between gen-
eral dynamic objects [LSS*22]. Initial steps have been taken in
this direction by the compositional methods discussed in Sec. 3.2,
which incorporate physically plausible background-foreground in-
teractions [YYZ*23], occlusions [WDSY23] and collision dynam-
ics [DHL*23] between multiple objects. However, more mature
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handling remains elusive. Such interaction handling is also impor-
tant for geometry and pose editing, where objects come into contact
and separate again over time.

Vision-Language Models for Non-Rigid Scenes. While text-
driven generative models have become popular for static 3D con-
tent [PYBM22, HTE*23], the relationship between text and general
non-rigid scenes has not been explored until very recently. First
examples of Text-to-X tasks relevant for non-rigid scenes, namely
4D [SSP*23] and Articulated 3D [KAZ*23, LDS*23] have ap-
peared recently. Text-driven editing [MPE*23] and motion synthe-
sis [DMGT23] has also been proposed for non-rigid scenes but they
remain human-specific for now. Other than generative use cases,
imbuing non-rigid scenes with language embeddings—already
achieved for static scenes [KKG*23, QLZ*24]—will result in a
richer representation and enable more interactive use cases.

Fakes and Authenticity. Many recent methods for general non-
rigid 3D reconstruction can provide photo-realistic novel views of
recorded scenes with humans, as this report evidences. Such syn-
thetic views usually do not deviate much from what has been ob-
served, though they hallucinate small details (e.g. in the areas oc-
cluded in the input views). If, however, the methods allow editing
of any kind (e.g. appearance editing or adding or removing the en-
tire scene elements; automatically or with manual assistance), the
generated scenes pose a risk of being perceived as real and should
be declared as edited. Moreover, in this case, the consent of the
participants regarding possible scene edits and their intended us-
age is required. At the same time, the concern of imagery falsi-
fication does not only apply to scenes with humans. Detection of
synthesized imagery and forensics of visual data, including gen-
eral non-rigid scenes, is a sub-field of research with its own body
of work [ZGLA23], and approaches discussed in this STAR could
assist in detecting synthesized content more effectively.

Physics-based Methods. While physics-based priors have been
successfully applied in sparse 3D reconstruction (e.g. 3D human
motion capture) [SGXT20, [YOK20, SGX*21, DSJ*21, GAXS22,
XWI*21,LBX*22], only a few methods adopt them in the non-
rigid 3D reconstruction of general and dense scenes or objects
[CLZ*22,QGL22, YYZ*23,LQC*22].All physics simulators—as
sophisticated and accurate as they can be—make assumptions and
simplifications, where it is impossible to model all effects that influ-
ence 2D observations and the underlying 3D reconstructed states.
Hence, hard physics-based constraints have upper bounds on the
accuracy they can provide. Consider the differentiable physics-
based simulator used in ¢-SfT [KTE*22], imposing hard physics
constraints. It remains open if the relaxation of such constraints
could improve the 3D surface reconstruction accuracy of such
methods. Furthermore, methods jointly estimating physical param-
eters and the geometry [KTE*22, QGL22] allow editing of the es-
timated dynamic 3D scenes in a physically meaningful way, and
more works exploring this are foreseeable in the future.

Generalizable Modeling and Generative Priors. Existing re-
search on 3D non-rigid generalizable and generative models fo-
cuses on learning data priors on an object level, such as for hu-
mans, faces, or simple object categories. Models for general non-
rigid scenes remain a challenge since large-scale datasets with dy-
namic scenes are rare and existing generative models do not scale
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well to general 4D data. Probabilistic diffusion models [HJA20]
or flow matching [LCBH*23], for example, are promising candi-
dates for both generalizable and generative models, and are chal-
lenging to scale to 3D data. They only have been applied in rigid
object-level settings [KVNM23, MSP*23, MKRV23, CGC*23] or
to generate intermediate representations so far, such as the weights
of an MLP [EMS*23]. The recent trend to distill knowledge from
2D diffusion models, such as Stable Diffusion [RBL*22], Control-
Net [ZRA23], or Instruct-Pix2pix [BHE23], might be a promising
way forward, also for the non-rigid setting. However, the challenge
to solve is how to efficiently achieve spatial and temporal consis-
tency when different views or frames are generated independently.
MAV3D [SSP*23], for example (see Sec. 3.4.3), takes multiple
hours to generate a very simple scene in low resolution. For a com-
prehensive review of diffusion models in visual computing, we re-
fer to the recent survey of Po et al. [PYG*23].

5. Conclusion

This state-of-the-art report focused on the recent trends in the fast-
growing research field of non-rigid 3D reconstruction of general
scenes. Its central aspects are deformation modeling, different ways
to learn data-driven priors, and leveraging inductive biases of neu-
ral methods. While the reviewed approaches allow reconstructing
deformable geometry from different sensor types and producing
different 3D output representations, the latest methods have been
strongly influenced by computer graphics and versatile implicit 3D
representations. The vast majority of the reviewed methods are neu-
ral, although remarkably, not all of them. Two major upcoming
trends that we observe are real-time capable Gaussian Splatting
and diffusion-based priors for generalizable models. Furthermore,
we see models leveraging pre-trained features or segmentation ap-
proaches to move towards compositionality, as this simplifies mod-
eling geometry and motion priors and enables editing capabilities.
Another trend is moving towards self-supervised learning for scene
decomposition, e.g. for structure and skeleton discovery, instead
of relying on masks or templates. We conclude the report by pre-
senting an overview of the open challenges and promising future
research areas. It is expected that ideas developed first for the static
setting will be quickly adopted for the non-rigid case, e.g. leverag-
ing priors from diffusion models or introducing surface materials,
and other rapidly evolving research directions such as generative
Al will continue influencing it likewise.
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