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ABSTRACT
Nowadays computing is heavily-based on accelerators, however,
the cost of the hardware equipment prevents equal access to hetero-
geneous programming. In this work we present Brook GLES Pi, a
port of the accelerator programming language Brook. Our solution,
primarily focused on the educational platform Raspberry Pi, allows
to teach, experiment and take advantage of heterogeneous program-
ming on any low-cost embedded device featuring an OpenGL ES 2
GPU, democratising access to accelerator programming.

CCS CONCEPTS
• Computing methodologies→ Graphics processors; • Com-
puter systems organization → Heterogeneous (hybrid) sys-
tems; • Software and its engineering → Parallel program-
ming languages;
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1 INTRODUCTION
The pervasive presence of parallel programming in modern and es-
pecially future computing systems has increased the public interest,
as well as the importance of learning and experimenting with such
computing paradigms. However, the cost of current general purpose
accelerators (GPUs, FPGAs and many-core processors e.g. Intel’s
Xeon Phi) is high, since accelerators per se are expensive. Moreover,
accelerators cannot be used as standalone devices, but they require
a host computer, usually high-end, in order to be programmed and
used, increasing further the total cost.

In addition, the traditional educational model has shifted towards
self-education; valuable programming skills are acquired nowadays
by students practising their homework at home or by self-educated
individuals using online resources, Massively Open Online Courses
and educational computers. Inevitably, these target groups do not
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have access to such expensive hardware to experiment in an in-
dividual basis. On the other hand, emulators [Brochard 2011] and
simulators [Bakhoda et al. 2009] are not an appropriate option for
teaching and learning for several reasons: they are either slow, do
not provide performance speedups with respect to the CPU algo-
rithm implementation or do not model timing (e.g. for memory
transfers, CPU etc), which is essential for understanding trade-offs
and design considerations. More importantly however, they can-
not be used for realistic projects and real-life applications that can
keep the interested parties motivated in order to invest time and
keep improving their skills. For all the above reasons, accelerator
programming opportunities are very limited.

In this work, we propose Brook GLES Pi, a port of the accelerator
programming language Brook [Buck et al. 2004], which enables
GPGPU computing on the embedded GPU of the low cost ($25)
educational platform Raspberry Pi. Unlike other accelerators, it is a
standalone computer, allowing development directly on the target,
while it has a large and active collaborative community.

Although our implementation is optimised for this device, it is
completely portable, allowing teaching, experimenting and learning
GPGPU programming on any embedded device featuring at least
an OpenGL ES 2 GPU, which is currently the case of 99% of the
devices in mobile market [Khronos 2018], effectively democratising
access to heterogeneous programming.

2 RELATEDWORK AND BACKGROUND
Modern accelerators are programmed in OpenCL, CUDA or Ope-
nACC. However, those programming models require specific sup-
port not present in low-end embedded devices such the ones that
we enable with our proposal. Raspberry Pi, our platform of choice,
is a low cost educational computer with a VideoCore IV GPU.

VideoCore IV is the only mobile GPU in the market with open
hardware specification [Broadcom 2013], enabling low-level assem-
bly level programming [Müller 2015]. However, the increased pro-
gramming complexity limits the available applications to 3 [Lorimer
2014][Holme 2014][Warden 2014], while its need for root privileges
creates potential security and stability issues.

We opted to use the open source stream processing language
Brook [Buck et al. 2004], the predecessor of both CUDA andOpenCL
languages, originally designed to work over desktop graphics pro-
gramming APIs. Brook has been very popular, used by several
scientific projects as it is indicated the numerous citations of its
original publication [Buck et al. 2004], many of which are open
source and therefore offer a significant source of reference code.

Brook has been recently revived by researchers in the critical
embedded systems community [Trompouki and Kosmidis 2018],
who proposed the use of a subset of the language together with an
open source implementation of an OpenGL ES 2 backend, called
Brook Auto, in order to address the software certification issues
created by the use of GPGPU computing in the automotive domain.
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We further enhance their implementation with additional features
not implemented in original Brook, while we remove some features
which are not appropriate for modern accelerator programming.

3 WHY BROOK INSTEAD OF OPENCL?
The obvious programming choice for accelerators is nowadays
OpenCL due to its wide portability. However, for a number of
reasons we have decided not to use OpenCL.

First, there are practical limitations that prevent OpenCL to be
implemented over graphics APIs for low-endmobile GPUs: despite a
previous work [Leskela et al. 2009] claims such an achievement with
a limited experimental implementation which was never publicly
released, the OpenCL specification [Khronos 2009b], even in its
minimum Embedded Profile requires a set of properties that cannot
be implemented using OpenGL ES 2 [Khronos 2009a]:

• work groups: the OpenCL programming model organises the
computational instances of a kernel in groups. Those groups
can share read / write local memory and synchronise their
execution through barriers. However, OpenGL ES 2 provides
only a single group view of computational instances of a
kernel that cannot share any writable memory and does not
provide a synchronisation mechanism among them.

• atomics: OpenCL allows the use of atomic operations, how-
ever this functionality is not available in OpenGL ES 2.

• scatter output: OpenCL threads can write to any output
position, but OpenGL ES 2 allows only a predefined output
from each thread executed in the fragment shader.

• multiple outputs: OpenCL kernels can have arbitrary number
of inputs and outputs, while OpenGL ES 2 supports only a
single output, with up to four 8-bit components.

• IEEE754 floating point compliance: OpenCL implementa-
tions should be conformant with the IEEE floating point
standard, unless specific compiler optimisations are enabled.
Conversely, OpenGL ES 2 hardware and software does not
strictly adhere to this standard, for power, performance and
transistor count reasons.

In addition to the aforementioned limitations, we believe that
OpenCL’s programming model is quite low level for the general
public, since it requires a significant amount of boilerplate code
even for launching a basic kernel, while Brook is as easy to program
as CUDA. An overview of the language is provided in its seminal
paper [Buck et al. 2004].

Last but not least, Brook is probably the heterogeneous language
that supports more devices than any other. Every OpenCL or CUDA
capable device supports graphics APIs that are supported by Brook,
while Brook offers the advantage of working on top of legacy GPUs
without OpenCL/CUDA support. This in conjunction with our
OpenGL ES 2 implementation allows Brook to support also the 99%
of the devices in mobile market [Khronos 2018].

4 IMPLEMENTATION
We ported Brook on the Raspberry Pi, introducing an OpenGL ES 2
compiler and runtime backend. Both the compiler and the runtime
system were ported, in order to enable a completely standalone
solution for the Raspberry Pi. Although our code generation and the
runtime implementation is optimised for this platform, it is written

using only the core OpenGL ES 2 standard [Khronos 2009a], with-
out any vendor specific extensions, in order to ensure maximum
portability to any embedded device supporting this standard. Our
implementation which is available from [Kosmidis and et al. 2018]
has been merged with Brook Auto [Trompouki and Kosmidis 2018],
extending it with 2K LOC changed in the compiler and runtime and
an additional 4K LOC in regression tests and benchmarks. Next we
describe the additions and the dropped features.

Following our baselines, our solution is also based on the propri-
etary Cg compiler from NVIDIA, which only provides x86 binaries.
As one of our primary goals was to enable the development and the
deployment of Brook applications directly on the ARM-based Rasp-
berry Pi without requiring any host computer which can increase
the cost of our solution, we have employed the emulation of Cg
using the qemu-x86 binary translator [Bellard 2005]. The execution
time of the emulated compiler is similar to the native compilers on
the Raspberry Pi. Note that since we are only using the Cg compiler
but not its runtime, no additional emulation takes place when a
Brook GLES Pi application is executed and therefore there is no
performance penalty at program runtime.

The original Brook only supports floating point (and its vector
variants) in kernels [Buck et al. 2004]. We added support for the rest
of C data types (char, int) including their signed, unsigned versions
and vector extensions up to four components, identical to the ones
of CUDA and OpenCL. Due to the limitations described in Section 3,
we only support kernels with up to 32 bit output per thread, such as
char and vectors of char with up to 4 components, a single integer
or a single floating point value.

Iterators are an unusual Brook feature, which is syntactic sugar
for creating and initialising streams of indices. However, they do
not map to any related concept in modern accelerator or parallel
programming languages. In particular, the Brook+ [AMD 2009]
(AMD’s GPGPU language prior to OpenCL) applications found in
the AMD Stream SDK [AMD 2009] which we use in the Results
Section, uses the operator indexof instead. This is consistent with
the use of the thread identifier in modern accelerator programming
languages. For those reasons, we decided to drop support for this
feature without sacrificing performance or programmability.

Besides iterators, GatherOp and ScatterOp operators do not
have an equivalent in modern accelerator computing languages.
GatherOp performs indirect reads from a stream, which is also the
functionality implemented in array indexing. The reason behind
this operator was to allow Brook to be executed also on older
graphics hardware without this capability. As a consequence, the
operator was implemented on the CPU and therefore resulted in
poor performance. Since this functionality, also known as dependent
texture read is supported in all OpenGL ES 2 compliant hardware,
we consider it obsolete and we dropped its support in our backend.

ScatterOp emulates read-modify-write accesses in kernels, since
GPU fragment shaders lacked this functionality until the appear-
ance of CUDA and OpenCL compatible hardware. For this reason
this operator is also implemented in the CPU and yields low per-
formance. Several OpenGL ES 2 compliant GPUs also lack this fea-
ture, however, even when supported by the hardware, the scatter
parallel programming pattern is discouraged in modern accelera-
tor programming, due to its inefficient memory use [McCool et al.
2012][Kirk and Hwu 2016][Jeffers and Reinders 2013]. As a solution,
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the algorithm transformation to the gather pattern is recommended.
For this reason, we decided to drop the support for this operator as
well, in order to make sure that the end user acquires this skill. It is
worth to note that AMD in its Brook+ implementation kept those
operators for backwards compatibility reasons, but never provided
any example, application or documentation in its SDK [AMD 2009]
that made use of it, which confirms our decision.

Finally, Brook supports streams of structures for kernel input
and output in order to enhance programmability. However the use
of arrays of structures (AoS) in accelerators and in particular in
modern GPUs and many core accelerators like Intel’s Xeon Phi is
discouraged for performance reasons, because it limits vectorisation
opportunities and leads to underutilisation of memory bandwidth
due to inefficient caching and memory coalescing. As an alternative,
memory layout changes in the application in order to use structures
of arrays (SoA) are recommended [McCool et al. 2012][Kirk and
Hwu 2016][Jeffers and Reinders 2013].

For this reason, the support for structs in our implementation
has been rated as a low priority and it has not been implemented
yet, requiring AoS to SoA reorganisation. However, the significant
performance difference when AoS is used has an educational value,
so it is going to be implemented in the future.

5 RESULTS
Brook GLES Pi passes all the regression tests of Brook code base [Ian
Buck et al 2007] for the supported features, including the ones we
added for our language extensions. Our evaluation shows that
our implementation exhibits the same performance trends for an
application executed on the Raspberry Pi using our backend, as
the same application executed on state-of-the-art GPU systems. In
other words, an application that its GPU performance scales with
the input size (provides speedup) on a state-of-the-art systemwith a
GPU, it also scales on the Raspberry Pi’s GPU. On the contrary, the
applications which provide diminished performance (slowdown) in
a desktop system also have the same behaviour on the Raspberry
Pi’s GPU. This allows to experiment with accelerator programming
on a low cost platform. All parallel programming patterns that exist
for accelerators can be used also on our system, with the exception
of the ones based on scatter as discussed earlier.

We perform our evaluation with AMD’s Brook+ SDK Applica-
tions [AMD 2009], using the version of the applications released
by [Trompouki and Kosmidis 2018], which is compatible with
Brook’s OpenGL ES 2 backend. We execute Brook GLES Pi on
a $25 Raspberry Pi B+, featuring a Broadcom BCM2835 SoC with an
ARMCPU and 512 MB of memory, out of which we have configured
256 to be dedicated to the VideoCore IV GPU.

For comparison, we selected two more powerful state-of-the-art
(Q4 2017) systems. The first system is based on an AMD RYZEN 7
1800X CPU,with 32 GB of memory and total cost of $2500. It uses an
NVIDIA GeForce GTX 1050 Ti with 4 GB of memory and retail price
$250. The second system is the latest embedded development plat-
form from NVIDIA for advanced driver assistance systems (ADAS)
and autonomous driving, Jetson TX2. It contains 6 ARM CPUs, 8
GB of memory and an NVIDIA Pascal GPU with 256 CUDA cores,
with retail price $600.

In both high-end systems the benchmarks are executed using
Brook’s OpenGL backend on the GPU [Buck et al. 2004], while

Table 1: Relative performance and data transfer bandwidth
of the GPU of the considered platforms, compared to their
respective CPU as reported by the flops benchmark.

Platform (GPU/CPU) Perf. Ratio Bandwidth Ratio
Raspberry Pi 23× 1/33×
(VideoCore IV vs ARM)
NVIDIA GTX 1050 Ti 19× 1/11×
vs AMD
NVIDIA Jetson TX2 11× 1/4×
(Pascal GPU vs ARM)

their CPU version is executed without OpenMP, in order to have
a straightforward comparison with our single-core Raspberry Pi
system. Note that this setup plays against us, since otherwise the
speedups of the state-of-the-art systems would have been lower.

The metric we use is the relative performance (speedup) of each
benchmark when it is executed on the GPU, compared to its CPU
version. Table 1 shows the relative capabilities of each system’s
GPU compared to its CPU, using the flops benchmark. According
to this benchmark, the Raspberry’s Pi GPU has the highest relative
performance over its CPU compared to the other platforms (23 times
faster), but the lowest relative data transfer ratio to the accelerator.

For each of the benchmarks we show the speedups for each plat-
form while the input size varies up to the maximum supported by
the Raspberry Pi texture size, 2048. We notice that our implementa-
tion follows the same trend on the Raspberry as the OpenGL back-
end on the state-of-the-art systems, while the speedup or slowdown
is within the same or within an order of magnitude. [Trompouki
and Kosmidis 2018] distinguishes the applications in scalable and
non-scalable benchmarks. However, in this article we use the terms
benchmarks with strong scalability and benchmark with weak scal-
ability, which better describe their behaviour.

The applications (a)-(d) in Figure 1 exhibit weak scalability, there-
fore their relative performance does not increase much for input
sizes up to 2048. In fact, they run slower on the GPU, since they are
mainly constrained by the memory bandwidth for the examined
range of input sizes. As shown for this class of applications, our
Brook implementation on the Raspberry Pi provides the same be-
haviour of weak scalability with the two state-of-the-art reference
systems, obtaining relative performance of the GPU compared to
the CPU execution of each system in the same order of magnitude.

In Figure 1, the applications (e)-(j) exhibit a significant increase
in their relative GPU performance when the input size is increased.
We observe that our solution is able to provide speedups in the same
order of magnitude or in two cases (Floyd Warshall and sgemm)
within an order of magnitude with the other two systems, for ap-
plications with strong scalability, too.

Combining the results of both application categories, we showed
that Brook GLES Pi can be used in order to develop and evaluate
heterogeneous algorithms on the low-cost Raspberry Pi, observ-
ing similar performance trends with state-of-the-art accelerator-
based systems which are orders of magnitude more expensive. This
means that our solution can be used, for example, in order to reduce
significantly the educational costs for an introductory course in
accelerator programming.
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Figure 1: (a)-(d): Benchmarks with Weak Scaling, ie. small performance increase with input size. For the explored sizes, their
GPU vs CPU speedup is lower than 1, therefore their CPU version is faster.
(e)-(j): Benchmarks with Strong Scaling. Note the consistent behaviour for both classes across the three platforms (low-end
embedded, high-end embedded, high-end desktop), although with variations in magnitude.

6 CONCLUSION
In this paper we presented Brook GLES Pi, an OpenGL ES 2 back-
end particularly developed for the Raspberry Pi platform, in order
to democratise access to accelerator programming using low-cost
hardware. Our implementation offers correct functionality, and sim-
ilar speedup trends with other Brook backends for state-of-the-art
systemswith significantly higher cost, therefore providing a reliable
demonstration of the capabilities of heterogeneous computing.
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