Bubble Hierarchies

Marcel Hlawatsch, Michael Burch, and Daniel Weiskopf*
Visualization Research Center (VISUS), University of Stuttgart

(a)

(b) (©

Figure 1: Different bubble hierarchies created with our method. (a) Multiple seeds generate bubble hierarchies around several rectangular
obstacles. (b) The visual look of bubble hierarchies also depends on the applied color map. (c) With multiple seeds, such merging structures
can be generated. A color map with transparency is used to create an impression of depth.

Abstract

We introduce bubble hierarchies as an approach to generating al-
gorithmic art from random hierarchies. The technique is based on
repeatedly drawing color-coded circles to illustrate parent—child re-
lationships. The algorithm is simple and produces densely packed
structures similar to the concept of Apollonian gaskets. We demon-
strate the influence of different parameters on the visual outcome,
such as the number of created circles or the color encoding. Our
algorithm also supports multiple seeding points and obstacles that
can be used to influence the layout of the hierarchy.

CR Categories:
eration

1.3.3 [Computer Graphics]: Picture/Image Gen-

Keywords: Hierarchies, hierarchical structures, randomness, frac-
tal structures, algorithmic art

1 Introduction

Hierarchical structures occur in a variety of forms stemming from
different fields of application. In biology, e.g., all living organ-
isms are hierarchically structured in the NCBI taxonomy [Federhen
2012]. In computing, file systems are organized in a hierarchical
way. One aspect of hierarchical structures is that they can be the
basis for aesthetically appealing visualizations. We focus in this
paper on this aspect by visualizing randomly generated hierarchies.

Our bubble hierarchies are fractal-like representations for large hi-
erarchies. Starting from an initial seed point, the hierarchy is cre-
ated by connecting circular shapes to represent the relationships in
the hierarchy. To achieve aesthetically appealing hierarchical struc-
tures, our proposed algorithm avoids any overlap between circles.
Furthermore, it maintains a decreasing size order between circles

*e-mail:{marcel.hlawatsch;michael.burch;daniel. weiskopf } @visus.uni-
stuttgart.de

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions @acm.org.

CAe 2014, August 08 — 10, 2014, Vancouver, British Columbia, Canada.

2014 Copyright held by the Owner/Author. Publication rights licensed to ACM.

ACM 978-1-4503-3019-0/14/08 $15.00

77

that are in a parent—child relationship. Color coding is used as an
additional visual feature that can indicate, e.g., the size of the circles
or their depth in the hierarchy.

Besides describing our algorithm, we discuss and exemplify the
effect of several parameters on the visual outcome, including the
number of circles, the ratio of parent—child circle sizes, and color
coding. Moreover, we demonstrate the effect of multiple initial
seeds and the impact of obstacles on bubble hierarchy layouts.

2 Related Work

Bubble hierarchies exhibit similarities to Apollonian gas-
kets [Bourke 2006b]—fractal structures generated with circles.
However, these fractals base on more restrictive rules and have a
more symmetric and regular visual appearance than the outcome
of our approach. Bubble hierarchies are related to the concept of
Rapidly-Exploring Random Trees (RRTs) described by LaValle and
Kuffner [2001]. For RRTs, points are set at random positions in
the domain and connected to the nearest existing point. This gener-
ates a link-based hierarchical structure. Burch and Weiskopf [2013]
rendered RRTs in an aesthetical way by applying a color coding de-
pending on the depth of an RRT link in the hierarchy. Besides us-
ing circles to represent the elements of the hierarchy, our algorith-
mic generation exhibits a few other differences to their work. We
also use points at random positions to create new elements. How-
ever, we have the restriction that the visual objects representing
the elements—circles in our case—do not overlap. Furthermore,
they must be smaller in size than the ones of the related parent ele-
ments. Other approaches that can be used to generate space-filling
structures include methods based on the Traveling Salesman Prob-
lem [Bosch and Herman 2004; Kaplan and Bosch 2005], diffusion-
limited aggregation [Bourke 2006a], or the approach by Long and
Mould [2009]. These approaches can be used to algorithmically
generate aesthetically appealing images. However, they are not
based on hierarchical structures as our approach does.

In the field of information visualization, the visual representation of
hierarchical data is an important topic. Different visual metaphors
for this type of data have been developed over the years. This in-
cludes node-link diagrams [Reingold and Tilford 1981], indented
plots [Burch et al. 2010] following the principle of indentation,
and layered icicles [Kruskal and Landwehr 1983] exploiting the
strategy of stacking. Further metaphors are treemaps [Shneider-
man 1992], which use nesting layout strategies, and fractal ap-

proaches [Mandelbrot 1982; Barneley et al. 1988; Rosindell and
Harmon 2012; Beck et al. 2014]. However, all these concepts were
not developed with the focus on aesthetical aspects. From a vi-
sualization perspective, our approach exhibits an important differ-
ence compared to existing node-link tree visualizations: it gener-
ates space-filling representations of hierarchical data, which is dis-
cussed for various visual metaphors for hierarchies by McGuffin
and Robert [2009], while still showing representations of all hierar-
chy elements. This is, e.g., hard to obtain with space-filling treemap
representations [Shneiderman 1992], in which the nesting concept
leaves less space for displaying inner nodes. Similarly, the concept
of circular treemaps [Wetzel 2004; Fischer et al. 2012] uses nested
circles, but, as a consequence, the approach is less space-efficient.

3 Bubble Hierarchies

A bubble hierarchy is a set of connected circles that meets certain
constraints. First, the circles do not overlap or intersect. Second,
every circle must be tangent to its parent circle. Finally, the ratio of
the radii of connected circles must be in a specific range. Figure 1
shows examples of bubble hierarchies created with our approach.

To create a bubble hierarchy, our method uses randomly selected
points in the domain and the following rules (see also Figure 2) to
create new circles:

1. The center of a new circle must not lie inside existing circles.

2. Use the closest existing circle as parent. For this, the distances
to the circle edges and not to their centers are considered.

3. The radius of the new circle, which equals to the distance to
the circle edge of the parent, lies inside the defined range.

If one of these rules is not fulfilled, a new iteration is started from
the beginning. This is repeated until the desired number of bubbles
is created. Details of the rules are discussed in the following.

To create a new circle, its center needs to be determined. We sim-
ply choose a random point in the domain and then check the first
rule. If the point lies inside an existing circle, it is discarded and a
new iteration starts. We can additionally extend this rule to support
obstacles (see below) or special boundary shapes. Points inside an
obstacle or outside the boundary shape are also discarded.

After a suitable center was found, the parent circle is determined.
To create a set of non-intersecting circles, the parent circle must
have the smallest distance between its edge and the determined cen-
ter. If the distance to the center of the parent would be used, over-
lapping circles can occur if a circle with a smaller radius has a closer
center than other circles with larger radii (see Figure 2(b), point D).
After the parent is determined, the new circle is connected to it by
assigning a radius such that both circles are tangential to each other.

However, to create specific hierarchies, the radii of new circles must
also fulfill certain rules. To create, e.g., a top-down hierarchy, the
radius of the new circle must be smaller than the radius of its parent
circle. If this is not the case for the current combination of circle
position and distance to the parent, the current position is discarded
and the next iteration starts from the beginning.

Further extensions are possible. Obstacles can be introduced by
testing the seed for a new circle against specific areas. We use
the simple case of rectangular obstacles (see Figure 1(a)), but more
complex shapes are possible. Since we only test the center of the
circles, the circles can still overlap with the obstacles. This is on
purpose because we want to achieve more organic looking struc-
tures. The same holds for the domain boundary: parts of the circles
may be outside the domain, only the center must lie inside. It is also
easy to use multiple seeds from which multiple hierarchies grow.

78

Step 1: seed determination Step 2: parent determination

A .\/ A \/
By /B v
oy D\ 4
cx
(@ (b)
Step 3: radius determination Repeat
AV sn
rA\
B
ry s
x s &= o
D\
Vo<,

© (d)

Figure 2: Basic steps of our algorithm. (a) First, the seed position
is checked. Seeds inside existing circles are discarded. (b) Next, to
select the parent, the nearest circle is determined using the distance
to the circle edge. (c) Now, it is checked if the radius of the new
circle fulfills the rules. (d) The previous steps are repeated.

For this, the respective number of non-intersecting circles is cre-
ated initially. After creating these seeds, the algorithm is applied as
in the case of a single seed. The different hierarchies seem to merge
(see Figure 6), but the rule set ensures that they do not intersect.

We are aware of the fact that using totally random positions is not an
efficient approach because the chance to find a suitable position for
anew circle decreases with the number of already generated circles.
However, we decided to use this approach to keep the algorithm as
simple as possible.

4 Playing with the Parameters

In this section, we demonstrate and discuss the influence of differ-
ent parameters on the visual outcome of bubble hierarchies.

Random Number Generation: A core element of our method is
the random selection of seed points. Therefore, random number
generation has a strong influence on the outcome. Figure 3 shows
results for different initial seed numbers for the random number
generator. We can see from the images that the shape of the hier-
archy can vary a lot and that it is not possible to predict the out-
come. The controllability of the hierarchy shape can be improved
by moditying the distribution of random numbers. There are many
ways to do this, but we have chosen a rather simple approach: if
an additionally generated random number is below a user-defined
threshold, the domain for seed point selection is restricted to a user-
defined area. The other steps of the algorithm remain unmodified.
Figures 3(d) and 3(e) show respective results. We can see that more
circles are created in the defined area. However, this has not the
effect of stretching the hierarchy in this direction, but deeper levels
of the hierarchy with smaller circles are developed faster there.

Number of Circles: A basic parameter is the number of circles in
the hierarchy. This is not equal to the number of iterations of the
algorithm because many seed points may be discarded. Figure 4

shows that the large scale structure is already developed with a few
hundred circles. Generating several thousands of circles usually
adds only small details in the hierarchy.

Parent-Child Size Ratio: The ratio between the newly created
child circle and its parent circle is another important parameter. It
influences the growth behavior of the hierarchy (Figure 5). Allow-
ing a fast decrease (Figure 5(a)) has typically the effect that the
hierarchy requires less space. Allowing only circles with a higher
ratio (Figure 5(b)) forces the hierarchy to cover a larger area of the
domain. Allowing the growth of circles, i.e., a parent—child ratio
larger than one, quickly fills the full domain due to an exponential
growth process (Figure 5(c)). However, since we want to create a
hierarchy, we do not use such ratios. By using a ratio that depends
on the position in the domain, we can gain more control over the
directional growth of the hierarchy. Again, we use a rather simple
approach for this, although more complex adaptation methods are
possible, e.g., by using mathematical functions. We simply define
an area in the domain in which the ratio is larger. With this tech-
nique, we can filter parts by letting the circle sizes decay faster there
(Figures 5(d) and 5(e)).

Multiple Seeds and Obstacles: Our algorithm directly supports
multiple hierarchies starting at different seed positions (see Sec-
tion 3). Setting multiple seed points allows a better control of
the spatial distribution of circles (Figure 6). However, the de-
tailed structure still depends on the previously discussed parame-
ters. Increasing, e.g., the parent—child ratio (compare Figures 6(b)
and 6(c)) results in a larger coverage of the domain. The images
show that the impression is created that the different hierarchies are
merged when using the same color coding, even though the hierar-
chies are actually separated. Obstacles can be used to exclude parts
of the domain from being covered by the bubble hierarchy (Fig-
ures 6(d) and 6(e)). They can also be used to influence the shape of
the hierarchy and force its growth into specific directions.

Color Coding: We use color to allow better perception of the hi-
erarchy structure and to create more expressive images. Different
properties can be encoded by color like circle size (Figure 7(a)) or
the depth of the hierarchy (Figure 7(b)). Encoding the hierarchy
depth provides a smooth color transition from the inside to the out-
side; we therefore use it as the default encoding. The color map can
also be used to make parts invisible by applying the background
color (Figure 7(c)). In the case of multiple seeds, there are ad-
ditional options for applying a color map. Encoding the different
hierarchies with the same color map generates the impression that
they are merged (Figure 6). It is also possible to visually separate
the different hierarchies with color (Figure 7(d)). Transparency can
then be used to encode the depth in each hierarchy (Figure 7(e)).

5 Conclusion and Future Work

We presented bubble hierarchies as an aesthetically pleasing way to
generate space-filling hierarchy representations with a simple algo-
rithm. To illustrate the aesthetics and explore the design space, we
showed the influence of different parameters on the visual outcome.

Future work could deal with accelerating our approach by paral-
lelizing the hierarchy generation or replacing the random genera-
tion of seed points. It would also be interesting to extend the ap-
proach to 3D domains with spheres instead of circles. In this case,
issues with occlusion and depth perception must be considered. Ad-
ditionally, new rules and parameters could be introduced to create
different structures or provide more influence on the result. We also
plan to visualize real-world hierarchical data such as file systems
with our approach. We see some benefit in our densely packed and
space-filling representation for visualizing as much data as possible
while preserving the visibility of the inherent hierarchical structure.

79

References

BARNELEY, M. F., DEVANEY, R. L., AND MANDELBROT, B. B.
1988. The Science of Fractal Images. Springer, New York.

BECK, F., BURCH, M., MUNz, T., DI SILVESTRO, L., AND
WEISKOPF, D. 2014. Generalized Pythagoras trees for visualiz-
ing hierarchies. In Proceedings of the International Conference
on Information Visualization Theory and Application, 17-28.

BoscH, R., AND HERMAN, A. 2004. Continuous line drawings
via the traveling salesman problem. Operations Research Letters
32, 4,302-303.

BOURKE, P. 2006. Constrained diffusion-limited aggregation in 3
dimensions. Computers & Graphics 30, 4, 646—-649.

BOURKE, P. 2006. An introduction to the Apollonian fractal. Com-
puters & Graphics 30, 1, 134—136.

BURCH, M., RASCHKE, M., AND WEISKOPF, D. 2010. Indented
pixel tree plots. In Proceedings of International Symposium on
Visual Computing, 338-349.

BURCH, M., ANDRIENKO, G., ANDRIENKO, N., HOFERLIN, M.,
RASCHKE, M., AND WEISKOPF, D. 2013. Visual task solution
strategies in tree diagrams. In Proceedings of Pacific Visualiza-
tion, 169-176.

FEDERHEN, S. 2012. The NCBI Taxonomy database. Nucleic
Acids Research 40, Database-Issue, 136—143.

FISCHER, F., FUCHS, J., AND MANSMANN, F. 2012. ClockMap:
Enhancing circular treemaps with temporal glyphs for time-
series data. In Proceedings of the Eurographics Conference on
Visualization (EuroVis 2012 Short Papers), 97-101.

KAPLAN, C. S., AND BoscH, R. 2005. TSP art. In Renaissance
Banff: Bridges 2005: Mathematical Connections in Art, Music
and Science, 301-308.

KRUSKAL, J., AND LANDWEHR, J. 1983. Icicle plots: Better
displays for hierarchical clustering. The American Statistician
37,2,162-168.

LAVALLE, S. M., AND KUFFNER, JR., J. J. 2001. Rapidly-
exploring random trees: Progress and prospects. In Algorith-
mic and Computational Robotics: New Directions, B. R. Donald,
K. M. Lynch, and D. Rus, Eds. A K Peters, 293-308.

LONG, J., AND MoOULD, D. 2009. Dendritic stylization. Visual
Computer 25, 3, 241-253.

MANDELBROT, B. 1982. The Fractal Geometry of Nature. W.H.
Freeman and Company. New York.

MCGUFFIN, M., AND ROBERT, J. 2009. Quantifying the space-
efficiency of 2D graphical representations of trees. Information
Visualization 9, 2, 115-140.

REINGOLD, E. M., AND TILFORD, J. S. 1981. Tidier drawings of
trees. IEEE Trans. on Software Engineering 7, 2, 223-228.

ROSINDELL, J., AND HARMON, L. 2012. OneZoom: A fractal
explorer for the tree of life. PLOS Biology 10, 10, e1001406.

SHNEIDERMAN, B. 1992. Tree visualization with tree-maps: 2-D
space-filling approach. ACM Trans. on Graphics 11, 1, 92-99.

WETZEL, K., 2004. Pebbles—using circular treemaps to visualize
disk usage. http://lip.sourceforge.net/ctreemap.html (accessed:
06-06-2014).

(®)
Figure 3: Influence of random number generation. The random number generator for seed point selection was initialized differently in
(a)—(c). 99% of numbers are selected only for: (d) the right half of the domain, (e) the upper left quarter of the domain.

(O]
Figure 5: Different ratios of parent and child size. (a) Child size is between 0.0 and 1.0 of parent size. (b) Child size is between 0.3 and 1.0 of
parent size. (c) Child size is between 0.0 and 1.2 of parent size. The ratio can depend on the position to steer the growing direction (compare
to (b)): (d) a higher ratio is allowed in the right half of the domain; (e) a higher ratio is allowed in the upper left quarter of the domain.

(@) ®) © @
Figure 6: Multiple initial seeds and obstacles. (a) Two initial seeding positions for 3000 bubbles. (b) Three initial seeding positions for 6000
bubbles. (c) Three initial seeding positions for 6000 bubbles with a parent—child size ratio between 0.5 and 1.0. In the other images, the ratio
was between 0.25 and 1.0. Two initial seeding positions combined with (d) two and (e) three square-shaped obstacles.

(b (@ (e)

Figure 7: Different color maps. (a) Color encoding of circle size. (b) Color encoding of hierarchy depth. (c) Masking of the inner part of the
hierarchy. (d) Hierarchies from multiple seeds are colored separately. (e) Hierarchy depth is additionally encoded with transparency.

80

