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Abstract

Tesselation-based or area-based visual representations are com-
mon to many artistic or visualization applications. For example,
Voronoi art uses a space-filling tessellation of the image by Voronoi
cells. We present frayed cell diagrams as an aesthetic visual rep-
resentation of the separating border between those space-filling re-
gions. Our approach is based on a simple randomized algorithm
that densely draws lines toward the reference points of cells. This
algorithm is controlled by a few parameters whose effects are de-
tailed in the paper: the density and size of cells, the degree of fray-
ing, and the color coding. To demonstrate the usefulness of frayed
diagrams for algorithmic art, we applied them to pieces of Voronoi
art. Finally, we conducted a survey to assess the aesthetics of the
frayed cell diagrams. As a result, we found out that the majority of
the participants preferred a high degree of fraying, but that a non-
negligible subgroup preferred diagrams without any fraying.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration

Keywords: Edge rendering, algorithmic art, Voronoi art.

1 Introduction

Many diagrammatic representations make use of space-filling area-
based visual representations, i.e., they rely on a tessellation of
the canvas. Tessellation plays an important role in art, ranging
from highly symmetric mosaic tilings that range back to Sume-
rian and later to Roman times [Field 1993], to Moorish ornaments
[Grünbaum et al. 1986] and quilting for motives [Porter 2006], and
all the way to the graphic art by Escher [Escher 1992]. Tessella-
tion has strong connections to the mathematics of geometry, but, at
the same time, provides aesthetic visual representations frequently
used in art. Therefore, it is a compelling meeting point of math-
ematics and art [Sarhangi 1992, Ch. 5]. A particularly interesting
example of tessellation comes with Voronoi diagrams because it
combines mathematical-geometric aspects with algorithms and art,
prominently conveyed in pieces of Voronoi art [Kaplan 1999].

In this paper, we address the aesthetic visual representation of the
borders between the areas that build the tessellation. When it comes
to several neighboring areas, those implicitly and naturally share a
common border. Typically, this border is represented by a “hard”
and equally thick line separating the neighboring areas from each
other. We argue that we can improve the aesthetics of area repre-
sentations by improving the design of the separating graphical ele-
ments. A compelling visual style is highly relevant for applications
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in algorithmic art because it allows us to design an overall visual
“look”.

Our contribution is a rendering technique that leads to frayed
boundaries of the areas of a tessellation or tiling. We define a border
as being frayed if there is a randomized structure in the thickness
property of the border. We introduce a simple randomized algo-
rithm that can generate frayed borders as a means for producing al-
gorithmic art. Our algorithm is designed to work with a cell-based
decomposition of the image; this decomposition does not neces-
sarily need to cover the full image space, but may contain holes.
However, we assume that the boundaries of the areas enclose cells
that can be associated with a reference point within that cell. The
strength of the algorithm is its simplicity and the fact that even cor-
ners (where two or more borders meet) are treated consistently and
without any visual artifacts. Our algorithm allows easy-to-control
changes of the governing parameters, in particular, its degree of
fraying. To illustrate the usefulness of our algorithm, we explore the
space of control parameters by showing their effects on the visual
appearance. In particular, we demonstrate that fraying diagrams fit
very well to Voronoi art. Finally, we assess the aesthetics of frayed
cell diagrams by a survey.

2 Related Work

As discussed in the introduction, tessellation has been, and keeps
on, playing a relevant role in many areas of art and visual de-
sign. An example that is particularly closely related to our paper
is Voronoi art: this can be regarded as algorithmic art that leads
to aesthetic imagery [Kaplan 1999]. Other examples of Voronoi
art include portraits constructed as Voronoi diagrams [Levin 2000].
However, such previous work typically focuses on the construc-
tion of the tiling and its artistic effect, but not on advanced render-
ing styles for the boundary curves that separate the Voronoi cells.
Although we also use examples of Voronoi art in this paper, the
Voronoi aspect is not a novel contribution of our work. In fact,
we rather use Voronoi art to demonstrate how our new frayed cell
diagrams can be effectively used for that application example.

In this paper, we investigate the problem of making borders in area-
based representations more distinguishable by applying the concept
of frayed diagrams. Instead of using complex rendering techniques,
our approach is based on a simple randomized algorithm based
on line rendering. Our rendering technique shares some aspects
of non-photorealistic pen-and-ink rendering that typically mimics
traditional stroke-based rendering [Hertzmann 2003; Deussen and
Isenberg 2013], including stippling and hatching techniques. How-
ever, even when tonal art maps [Praun et al. 2001] or other hatching
techniques were applied to rendering “thick” lines, frayed rendering
would be technically difficult because we want to achieve consis-
tent fraying across corners of cells and also a random distribution
of the jags that allow for quite wide fraying. There also exist vi-
sualizations that use frayed borders, generated by attaching lines
perpendicular to the border of map elements [Kim et al. 2013; Isen-
berg 2013]: the lines can be used to visually encode multivariate
attributes [Kim et al. 2013] or add stylistic shading to produce aes-
thetic renditions [Isenberg 2013].

Other algorithmic art approaches that yield images visually re-
lated to ours include stained glass windows [Mould 2003], random
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trees [Burch and Weiskopf 2013], and dentric stylization [Long and
Mould 2009]. However, none of these papers addresses the problem
of rendering frayed boundaries.

3 Rendering Algorithm

This section describes a new rendering method to generate frayed
cell diagrams. The key aspect of this algorithm is that it visits all
points (pixels) of the image and potentially draws lines from the
pixel to a reference point within the cell—in a randomized fashion.

Algorithm 1 shows the pseudo code of the algorithm. The algo-
rithm takes the image canvas I and the fraying parameter δ as in-
put. Then, it iterates over all pixels p. For each one of these pixel
positions, the algorithm may render a straight line to the reference
point of the cell that contains that pixel. The randomized nature
of the algorithm is introduced here: depending on the value of a
random variable (drawn from a uniform distribution), the line is
drawn or skipped. The critical part of the algorithm is the subrou-
tine getReferencePoint(p): it returns the reference point of the
cell; if the pixel is outside any cell or on the border of a cell, the
subroutine returns a NULL value. In other words, this subroutine
essentially provides a membership test for the pixel position p be-
cause it has to determine which cell contains this pixel. Based on
that information, the cell’s reference point is returned.

Algorithm 1 Rendering frayed cell diagram

FrayedCellRendering(I , δ):
I; // Image consisting of pixels to be filled
δ; // Fraying factor between 0 and 1

r; // Random value between 0 and 1
pr; // Reference point within a cell

// Iterate over all pixels:
for all p ∈ I do
pr := getReferencePoint(p);
// if within a cell:
if pr 6= NULL then
r := random();
if r ≥ δ then
drawLine(p, pr);

end if
end if

end for

The reference point may be any point within the cell, as long as a
straight line from any other point within the cell to the reference is
completely contained within the cell. For example, this is the case
for any point within a convex cell. However, even some non-convex
cells may have such reference points, i.e., star-shaped polygons.

Figure 1(a) illustrates the rendering process for a simple case that
contains just one convex cell. Here, only a few randomly selected
lines are drawn toward the reference point. In practice, the image
will be densely covered by lines.

For aesthetic images, we recommend placing the reference point
somewhere in the “middle” of the cell. In this way, isotropy of the
rendering patterns can be achieved. For example, this point could
be the center of mass within a convex cell. Another approach is to
start with a set of points and then build an implicit Voronoi diagram
from those points. In fact, the images of this paper are generated in
this way. Figure 2 shows an example of such a diagram. Figure 2(a)
depicts the traditional Voronoi diagram, which can be rendered by
using the membership function getReferencePoint(p) and col-
oring points according to the cell index (or reference point); the
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Figure 1: Frayed diagrams: (a) illustration of the rendering pro-
cess, (b) consistent direction of the fraying pattern at a cell corner.

(a) (b)

Figure 2: (a) Non-frayed and (b) frayed Voronoi diagram.

membership function just has to determine the closest input point
for the pixel p. In comparison, Figure 2(b) shows the frayed cell
diagram for the same point set.

One advantage of the algorithm is its obvious simplicity. In fact, the
pseudo code of Algorithm 1 is a faithful representation of the length
of a typical implementation of our algorithm. Another advantage is
that the patterns are consistent along the frayed boundary, even at
sharp corners. Figure 1(b) shows a typical case. Here, three cells
meet at a common vertex. Within each cell, the “spikes” of the
boundary point toward the same point and, thus, do not show any
inconsistency or rapid change of the direction of the strokes. In
contrast, it would be hard to achieve such consistency by applying
tonal art maps or other textures along edges of the cells because the
underlying quadrilaterals would change direction in a discontinuous
fashion at the vertices.

The third advantage of our algorithm is that it provides a convenient
way of rendering a frayed pattern from a geometric distribution.
Again, this would be hard with any texturing approach for polylines
because the geometric distribution may lead to patterns that could
reach very far into the cell. To understand this effect, the frayed
boundary can be interpreted as the result of a Bernoulli process
from statistics. For this interpretation, let us consider a 1D case in
which the boundary is the pixel at the origin and the reference point
is along the x axis at infinity. Then, for each pixel p visited by
Algorithm 1, we have a chance of δ that this pixel does not trigger
the rendering of a line. To have a fraying pattern of length k, we
need to have k subsequent cases of such non-rendering, followed
by one trial that triggers the rendering process. The probability
for this scenario is: δk(1 − δ). The corresponding distribution is
a geometric distribution. The expected value of a geometrically
distributed random variable is:

E =

∞∑
k=0

δk(1− δ) · k =
δ

1− δ .

The above observation is true for any line between a cell boundary
and the reference point. Therefore, the average thickness of the
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frayed boundary is δ/(1− δ) pixels wide. Put differently, we have
a direct control of the width of the frayed boundary in the form of
the parameter δ.

4 Control of Parameters

In this section, we illustrate how parameter changes influence the
appearance of frayed cell diagrams.

Density The size of cells and their density have a major influence
on the appearance of the frayed cell diagrams. Compared to Fig-
ure 2, where the cells have random size, Figure 3 shows a decrease
of cell size from left to right. A side effect of changing cell density
is the change of apparent brightness. With a constant fraying factor,
all boundaries have equal width. Therefore, the right part of Fig-
ure 3 (with smaller cells) looks darker than the left part (with larger
cells and, thus, fewer frayed boundaries).

Figure 3: Change of cell density: the size of the convex polygons
decreases from left to right (fraying factor δ = 0.85).

Degree of Fraying Besides the size of cells, the second major
influence on the appearance is the degree of fraying described by
the factor δ. As discussed above, δ provides a direct control of the
average line width. The possible values for δ range from 0 to 1.
Figure 4 illustrates the visual effect of changing the fraying factor.
For δ = 0, we obtain the traditional diagram with hard borders
(since getReferencePoint(p) yields NULL in Algorithm 1).

Figure 4: Effect of changing the fraying factor δ = 0.0, 0.2, 0.4,
0.6, 0.8, 0.95 (left-to-right).

Color Mapping Finally, we can apply a color map when we ren-
der the lines in Algorithm 1. By default, we render white lines on
black background, leading to black frayed boundaries around white
cells. However, by adapting the rendering color, we can produce
cells of varying color. In Figures 2 and 4, we randomly assigned a
color from a color map to each cell. However, other color maps and
more advanced color assignment would be possible as well (e.g.,
driven by outside information; or varying even within a cell).

5 Application to Voronoi Art

We apply frayed cell diagrams to Voronoi art. Traditionally,
Voronoi art uses hard boundaries to separate the Voronoi cells.
However, we believe that frayed edges add to the aesthetics of

Voronoi art because they introduce (slightly randomized) visual pat-
terns along the cell boundaries.

Technically, a finite set of points in the Euclidean plane builds the
basis for our Voronoi illustrations. For Figures 2 and 4, this set of
points was generated randomly. For our Voronoi art examples, we
extract the reference points from an image. In particular, we use
the Floyd-Steinberg dithering approach [Floyd and Steinberg 1976]
with subsequent jittering to produce reference points on a regular
grid of the image plane. Through this process, we implicitly con-
trol the density, size, and position of the cells in the frayed diagram.
Therefore, it can be interpreted as one way of controlling the den-
sity parameter.

Figures 5 and 6 show examples of Voronoi art. Figure 6 also il-
lustrates the effect of the fraying factor. Please note that the back-
ground of the underlying image is completely white. Therefore,
there are no reference points outside the bunny, leading to this
skeleton-like embedding of the bunny.

Figure 5: Example of Voronoi art in the form of a frayed cell dia-
gram (fraying factor δ = 0.85).

6 Aesthetics Survey

We conducted an electronic survey to assess the aesthetics of frayed
cell diagrams. In particular, we were interested in finding out
whether there are certain preferred values for the fraying factor.
The survey contained 11 figures of the same Voronoi diagram, with
a different fraying factor δ ∈ {0.0, 0.1, 0.2, ..., 0.9, 0.95}. Figure 4
shows a few of the images that were used for the survey. There
were 45 participants that volunteered from our institute. The par-
ticipants were instructed to name the figure that they found most
aesthetically appealing.

The results of our survey showed that the majority of the partici-
pants preferred frayed representations over non-frayed traditional
ones (see the histogram in Figure 7). Interestingly, the histogram
shows a clear separation of the participants in two groups: the mi-
nority prefers the traditional line rendering, whereas the majority
prefers frayed diagrams with a rather large fraying factor.
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(a) (b) (c) (d)

Figure 6: Effect of changing fraying parameter: (a) Frayed cell diagram with δ = 0.2. (b) 0.5 fraying factor. (c) 0.8 fraying factor. (d) 0.9
fraying factor. Please note that the algorithm is able to produce aesthetically looking, consistent frayed lines even at the meeting points of the
border lines.

Figure 7: Histogram of answers to our aesthetics survey showing
how many people voted for which fraying factor δ.

7 Conclusion and Future Work

We have investigated the concept of frayed cell diagrams. We have
shown how they can be rendered with a simple randomized algo-
rithm that draws lines from pixels to the reference point in the re-
spective cell. The only assumption is that the lines have to be com-
pletely within the cell. Our algorithm is governed by three easy-
to-control parameters: the density and size of the cells, the fraying
factor, and the color map. We have demonstrated the effects of
those parameters for several typical settings. Furthermore, we have
applied frayed cell diagrams to pieces of Voronoi art generated from
gray-scale input images. From our survey, we found out that there
seem to be two groups of people—one of which prefers traditional
line renderings and the other one prefers frayed boundaries; and
that participants with preference for frayed diagrams vote for rather
strong fraying.

So far, we have applied frayed cell rendering to Voronoi diagrams.
Other shapes of tilings could be explored in future applications for
art production. We also see a good potential that frayed cell render-
ing could be applied to diagrams from computer-based visualiza-
tion and statistical graphics; for example, Bristle Maps [Kim et al.
2013] could be adopted to combine frayed diagrams with visualiza-
tion techniques.
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