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What does water look like?
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Figure 1: A selection of test stimuli used during pilot experiments. Hard: 1a-1d; Easy: 1e -1k; Hard for some, easy for others: 1l - 1o.

Abstract

What makes images of water look like water? We conducted
four psychophysical experiments to isolate perceptual qualities that
make water easy to recognize. Water recognition is facilitated by
colour and by three patterns of waves. Low spatial frequencies
(LSF) (<4.4 cpd) contribute more to recognition than high spatial
frequencies (HSF). Here we describe the experimental methodol-
ogy and results. Knowing which aspects of appearance identify wa-
ter can inform perceptually inspired depiction of water, can create
visual illusions and can reduce computation in realistic simulations.
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Generation— [J.4]: Social and Behavioural Sciences—Psychology
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
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1 Introduction

Water is interesting and ubiquitous. It can assume many forms and
colours. Despite this diversity unattended recognition of water is
common, essential for swimming, sailing and avoiding puddles. We
would like to understand these visual skills and build on them when
depicting water. Interactive graphics needs easy interpretation more
than it does strict reality. In this paper we ask how does a substance
as changeable as water should be depicted when it is not the focus of
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attention? Should the depiction be realistic? What colour should it
be? Should it focus on local or global detail? To find out we adopted
the experimental methods of perception to study early perceptual
processes of identifying water.

2 Related Work

Most image recognition research supports computer vision, focus-
ing on recognizing physical qualities of objects [Liu et al. 2010]
[Perina et al. 2010] [Vogel and Schiele 2007]. In graphics the goal
is human response and the focus on stimulating perception. Thus,
unlike computer vision research we included illustrations of water
in our experiments, which explored three aspects of visual process-
ing. First, humans often respond to illustrations more readily than
to realistic depictions [Mills 1985]. Line-drawings, for example,
are easy to recognize since visual recognition is defined by the sil-
houette and by lines of self-occlusion [Hoffman and Singh 1997].
Although water has no fixed silhouette or shape, line-drawings of it
are common.

Second, when colour is predictive, as when recognizing food but
not when recognizing animals, it affects recognition accuracy [De-
lorme et al. 2000]. Does colour help water recognition? When wa-
ter is shallow and pure it is transparent. Deep water is a saturated
blue-green colour [Pope and Fry 1997]. Muddy water is brown.
The variability of colours should make recognition of water insen-
sitive to colour. In contrast, illustration often limits images of water
to green-blue hues.

Another common feature of water illustration is visual texture.
What aspects of visual texture are important for recognition? Be-
cause vision has separate channels for HSF and LSF frequencies
and natural scenes are weighted toward LSF [Field 1987], we
expect LSF to be more important. In contrast, illustrations are
weighted toward HSF.

In order to refine our intuitions we assembled a set of stereotypical
depictions of water representing a wide variety of styles [Kryven
and Cowan 2013] and in subsequent experiments narrowed down
to comparing only images identified as easy. This led us to reject
several usual representations of water. To our knowledge, this study
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is the first application of psychophysical experiments to defining
visually salient properties of water relevant to computer graphics.

3 Methodology and Apparatus

We employed a method of brief exposure to visual stimuli where
subjects’ reaction times(RT) and percent correct are used as mea-
sures of accuracy. Visual processing of complex scenes requires
120ms [Holcombe 2009] of exposure, although some low-level in-
formation can be processed after only 39ms [Bar et al. 2006]. Hu-
mans can accurately respond to natural scenes in a categorization
task in 400ms [Thorpe et al. 1996].

Method. Experiments took place in a dark room using a calibrated
Apple laptop computer. 500x500-pixel images were displayed 50-
cm from the subjects eyes subtending 10 degrees of visual angle.
Responses were collected from the keyboard using custom built
software. We conducted a series of two-alternative forced choice
image recognition tasks. Figure 2 shows timing of each trial. First
a fixation cross standardizes the direction of gaze between two uni-
form grey squares. After 500ms one square is replaced by an image
of water, the other by an image unrelated to water. After 120ms the
images are replaced by masks, which remain until the subject re-
sponds by pressing a key on the keyboard indicating the position of
the water image. The response initiates the next trial. Subjects were
asked to respond as quickly as possible without making mistakes.
The average response time was 450ms, typical of early vision.

Figure 2: Experiment trial sequence.

Data analysis. Outliers more than two standard deviations away
from the mean were recursively removed [Selst and Jolicoeur 1994]
eliminating 5 % of the data. We regressed RT against trial number.
Every subject’s data showed a highly significant non-zero slope,
usually negative. We retained the residuals to detrend the data. Side
preference was similarly removed, data-set by data-set. Degrees
of freedom consumed by data cleaning are negligible compared to
amounts of data gathered. Distractors were contextually unrelated
to water. Each target distractor pair occurred twice, once left right
and once right left. Subjects always did 20 practise trials at the
beginning the experiment.

4 Experiments

4.1 Pilot Experiment 1. Realism or Illustration?

Motivation. Water has many appearances. As with any image
recognition experiment, assembling a large, inclusive and high
quality data-set is hard. For example, while water in Turner’s paint-
ings is recognizable, when cropped out of context of the painting it
becomes ambiguous. Thus, when choosing illustrations we selected
unambiguous depictions, as, for example, line drawings of waves,
realistic drawings by Vija Celmins and swimming pool paintings by

David Hockney. We assembled a set of 30 images of water includ-
ing different depiction styles: photographs, drawings, computer-
generated images, vector art and paintings, representing surfaces,
splashes and breaking waves. Figure 1 shows a subset for which
statistically significant differences in RT were observed (the com-
plete dataset is available at http://www.cgl.uwaterloo.
ca/˜mkryven/). Images were found on the Internet and cropped
to remove context. Distractors were matched in photographic and
illustrative styles.

Subjects. The subjects were 6 males and 6 females, graduate stu-
dents and faculty, all had normal or corrected to normal vision. The
same subjects repeated the experiments two to five times to generate
a large corpus of data.

Image Category RT diff. from mean (ms) p
surface photograph -9.766 0.0001
splash +5.878 0.0056

1a splash +9.2 0.04
1b illustration +13.5 0.0035
1c splash +10 0.004
1d illustration +17.6 0.0003
1e surface photograph -5.91 0.09
1f surface photograph -12.5 0.0004

Table 1: RT for images categories and individual images from Fig-
ure 1 show that photographs are on average recognized faster.

Result. We explored the data using one-way ANOVA (factors:
subject, target category [photograph, splash, illustration], distrac-
tor category [illustration, natural scene, city scene]) and using one-
way ANOVA (factors: subject, target, distractor). The results in top
half of Table 1 show that surface photographs were generally eas-
ier, while splashes, including photographs of splashes, were harder.
Illustrations as a group appeared as statistically insignificant. An-
alyzing RT to individual images, as shown in the bottom half of
Table 1, shows that two images 1e and 1f stand out. They are
both photographs and have distinctly expressed circular and caustic
waves. Both have a colour close to blue. Surprisingly, while caustic
patterns are rare, they are recognized easily, possibly because caus-
tic patterns occur only in water and thus eliminate ambiguity. This
result contradicts our expectation that illustrations of water would
offer easier recognition than photographs. Subsequently we assume
that easy images are photographs of water surfaces and that colour
cues and visible patterns of waves are used to recognize water.

4.2 Pilot Experiment 2: Colour

Motivation. To test the hypothesis that colour eases recognition of
water we compared 8 photographs in a variety of colours including
blue, blue-green and also beige, the colour of water on a cloudy
day. In the previous experiment all images identified as easy were
largely blue. To test the intuition that humans expect water to be
blue, we included four blue images in the set. We also included
the green-blue image of caustics (Figure 1f) previously identified
as easy. Because easy images might have identifiable patterns of
waves, we included five images with visible ripples at different
scales. To test whether colour takes precedence over other visual
features half of the chosen distractors were blue, including two im-
ages of sky.

Subjects. The subjects were 5 males and 5 females, graduate stu-
dents and faculty, all had normal or corrected to normal vision.
Some did more than one session. There were 128 trials per ses-
sion.

Result: Using exploratory data analysis we discovered significant
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Image Colour RT diff. from mean (ms) p
beige +12.9 0.0001
blue -4.116 0.0643
blue-green -8.779 p <0.0001

1i blue-green -8.498 0.031
1k blue-green -11.56 0.0029
1o beige +24.8 p <0.0001
Distractor Colour RT diff. from mean (ms) p

black-and-white -5.277 0.0403
blue +4.826 0.0651

Table 2: Blue-green is easy, beige is hard.

results with one-way ANOVA (3 factors: subject, target colour
[blue-green, blue, beige], distractor category [blue scene, sky,
coloured scene, black-and-white scene]). Table 2 shows the signif-
icant factors, with saturated blue-green images significantly faster.
This included the green-blue image of caustics and images of rip-
ples shown on Figures (1i-1k). Blue distractors somewhat slowed
down recognition without affecting error rate, but images of sky
used as distractors increased error rates without slowing recogni-
tion, possibly due to sky being seen as a reflection in water. Some
subjects, but not all, recognized beige water easily, which suggests
variability in the human concept of water. The results of the two
pilot experiments support the hypothesis that easily recognized im-
ages of water are blue photographs of water surfaces and have vi-
sually prominent patterns, either circles, caustics or waves.

4.3 Experiment 3: Spatial Frequencies

Motivation. Knowing that colour and surface geometry are impor-
tant, we ask whether water recognition depends on local or global
geometric features? Much contemporary computer graphics repro-
duces accurate small-scale surface features, assuming that fine de-
tail is required for easy recognition. If so HSF contributes more
than LSF. We desaturated 9 images of easy surfaces and 9 distractor
images and filtered them approximately at the peak of spatial sen-
sitivity [De Valois and De Valois 1988]: LSF <4.4 cpd and HSF
>4.4 cpd so that each image was represented in three versions: full
spatial frequency (FSF), LSF and HSF. All images had the same
mean luminance. Test images were combined with distractors in
matching versions.

Subjects.The subjects were 7 males and 2 females, graduate stu-
dents and staff who were paid, all had normal or corrected to normal
vision. The experimental procedure was approved by University of
Waterloo Research Ethics Committee. There were 486 (9x9x2x3)
trials per session.

Result. We used exploratory data analysis. One-way ANOVA (fac-
tors: subject, target frequency, distractor frequency) shows that FSF
images were recognized faster than filtered images (Table 3, top)
and LSF images were easier than HSF, suggesting that water is rec-
ognized by its global structure. However, one-way ANOVA (fac-
tors: subject, target, distractor) (Table 3, bottom) shows that some
types of water surfaces (image 4 and 8) rely on LSF and FSF com-
ponents equally and become harder to recognize when some of the
frequencies are missing. For such images fine detail and global
structure are equally important.

4.4 Experiment 4: Is there a colour of water?

Motivation. Is there an optimal colour for recognition of water?
We saw that images most easily identified as water in the previous
experiments are blue-green, but other easy images also fall within

(a) 1, FSF (b) 5, FSF (c) 6, FSF (d) 7, FSF

(e) 8, FSF (f) 9, FSF (g) 1, LSF (h) 2, LSF

(i) 4, LSF (j) 7, LSF (k) 8, LSF (l) 2, HSF

(m) 3, HSF (n) 4, HSF (o) 5, HSF (p) 8, HSF

Figure 3: FSF and LSF are easy, while HSF are hard to recognize.

Image Band RT diff. from mean (ms) p
FSF -9.627 0.0001
HSF +12.04 0.0001

1 FSF -15.41 0.0004
5 FSF -22.39 0.0001
6 FSF -10.93 0.0099
7 FSF -13.7 0.0021
8 FSF -15.74 0.0003
9 FSF -11.9 0.0063
1 LSF -17.77 0.0001
4 LSF +10.52 0.0178
8 LSF +11.7 0.0089
2 HSF +22.24 0.0001
3 HSF +15.7 0.0008
4 HSF +28.39 0.0001
8 HSF +20.83 0.0001

Table 3: Reaction times by frequency band and by image.

a range of reddish blue and and blue hues. For example, image
on Figure 1e is blue-red, 1f is blue-green, and 1h is blue. While
luminance and saturation vary greatly across the easy images, hues
vary little.

To find the optimal range of hue we selected 3 images of each sur-
face type and 9 matching distractors and recoloured them to hues
with xy near: blue(0.21, 0.23), blue-green (0.23, 0.31) and blue-red
(0.25, 0.26) each group forming a clearly distinguishable cluster in
xyz and in XYZ. We also included 3 grey images as controls, which
we expected to be harder than the coloured images.

Subjects. The subjects were 7 males and 3 females, graduate stu-
dents and staff who were paid, all had normal or corrected to normal
vision. The experimental procedure was approved by University of
Waterloo Research Ethics Committee. There were 288 (12x12x2)
trials per session.
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(a) (b) (c) (d)

(e) (f)

Figure 4: Easy images: 4a - 4c; Hard images: 4d - 4f.

Image Colour RT diff. from mean (ms) p
grey +9.325 p <0.0001
blue-green -7.39 p <0.0001

4d grey +8.926 0.0076
4e grey +14.99 p <0.0001
4a blue-green -11.29 0.0003
4b blue-green -7.738 0.0160
4f blue-red +7.668 0.0201
4c blue-red -6.516 0.0450

Table 4: RT for statistically significant images shown on Figure 4.

Result. As before we used exploratory data analysis. One-way
ANOVA (factors: subject, target colour, distractor colour) shows
(Table 4, top) that most subjects were fastest responding to blue-
green images of water. The green-blue colour matches absorption
spectrum of water. Blue-red and blue fell in between, presumably
they have admissible, but less water-like hues. Removing colour
cues completely makes water harder to recognize. This may be be-
cause in natural environments water usually reflects light. Results
of one-way ANOVA(factors: subject, target, distractor) are shown
at the bottom of Table 4. In addition, one blue-green distractor
caused significant increase in error rate, which may be owing to
being seen as a reflection of trees in water.

5 Discussion and Future Work

We tested the generalization of Mills [1985] for water finding no
artistic depictions as easy to recognize as photographs. Possibly
the illustrations we used were ill-chosen and the photographic de-
pictions of water may be more familiar. We are now seeking artistic
depictions of water that satisfy the colour and geometry constraints
we discovered by isolating good features in photographs. If the
new images are easily recognized two interesting opportunities for
further research beckon. By automatic search for images of water
in online databases we hope to find non-water images resembling
water owing to misbinding of visual features under brief exposure
[Treisman and Gelade 1980]. To enable the automated search we
must detect linear and circular edge structures. We should also find
better non-photorealistic depictions of water.

This study limited itself to static images, but water surfaces usu-
ally move. Motion is surely an effective recognition cue and must
be taken into account in order to inform interactive graphics. Our
research is continuing looking for motion patterns that define water.

Lastly, the LSF nature of water surfaces suggests ”good enough”
computations for water in the background. The next step will be
creating such algorithms and testing them.

6 Conclusion

In our experiments subjects recognized water using colour and sur-
face geometry. The colour providing easiest recognition is a blue-
green colour. In addition, three surface structures are important:
either circular wavelets expanding around a common point, or an
irregular pattern of caustics, or a texture of ripples. The informa-
tion defining these surface structures is concentrated in LSF <4.4
cpd. The results provide guidance for effective depiction of water
in artistic rendering.
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