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Abstract

This paper presents a new 3D global feature descriptor for object recognition using shape representation on organized point
clouds. Object recognition applications usually require significant speed and memory. The proposed descriptor requires 57
times less memory and it is also up to 3 times faster than the local feature descriptor in which it is based. Experimental results
indicate that this new 3D global descriptor obtains better matching scores in comparison with known state-of-the-art 3D feature

descriptors on two standard benchmark dataset.

1. Introduction

There are several state-of-the-art feature descriptors for object
recognition. However, they do not completely resolve the object
recognition problem, especially when faced with hard problems
such as texture-less objects, noise or missing parts of the objects
in the acquisition process. Moreover, they are far from being effi-
cient.

In general, surface recognition of point clouds from RGBD sen-
sor is usually carried out using global or local approaches. An ex-
ample of global approach is the work commented in [ABG*11],in
which a unique and repeatable descriptor with a single signature is
able to describe an entire point cloud. Those works are based on
the previous idea shown in [RBTH10], where a descriptor is used
to represent object surfaces with regards to viewpoint. A year be-
fore, the same author [RBB09] presented a multi-signature local
descriptor built using a reference frame for each point in the point
cloud. More recently, an other local approach using a different ref-
erence frame was proposed in [STD14].

The recognition process not only depends on the use of descrip-
tors but also on the used matching machine, or classifier. Currently,
the most common techniques in the literature for point clouds
recognition are k Nearest Neighbor algorithms(kNN) [ML14], Sup-
port Vector Machine (SVM) [CV95] and discriminative Random
Regression Forests [BreO1]. In this work, we use the first two.
Aside from the matching method or adopted descriptor, the recog-
nition process is dependent on the dataset used in the training
phase. There are wide number of works about object recognition
using 3D point clouds from RGBD sensors [RBTH10, ABG*11,
STD14]. Moreover, the number of datasets for evaluating recog-
nition methods is gradually being increased [SMKF04, LBRF11,
SSN*14,JKJ*13].
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The core idea behind our approach is to extend the descriptor
presented in [STD14], transforming it into a global descriptor. This
approach improves results in terms of temporal and spatial per-
formance. Moreover, the new descriptor increases the recognition
rates using SVM and kNN as a classifier when the classification is
made over well segmented point clouds.

The paper is organized as follows: section 2 discusses related
works about the most common descriptors in the literature; section
3 presents a new approach called GSHOT, based on the descrip-
tor Signature of Histogram of OrienTations (SHOT) to eliminate
the dependence of the viewpoint; section 4 presents a complete
evaluation analysis including a comparison with other descriptors
throughout experiments using two datasets. The results prove the
effectiveness of our approach; and section 5 provides the conclu-
sions of this work.

2. Descriptors for object recognition

The use of normal-based features as an object recognition approach
has become in a classic strategy for describing point clouds but
this one has still issues to resolve. Two different types of descrip-
tors have been analyzed to be compared with the new proposed
descriptor. They are the descriptors which use Darboux reference
frame and those of other which use eigenvectors from covariance
matrix as reference frame. The descriptors based on Darboux ref-
erence frame compute a tuple (o, ¢, 0) for each relationship among
the points of a same neighborhood area. Each tuple represents the
relationship among one and all normal vectors in the neighborhood,
as follows,

_ T _TPi—Dj
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where n; is the normal vector to the tangent plane of the underlying
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surface to the point p;, d; = || p; — pj||2, v is the director vector from
point p; to point p; and w is a vector perpendicular to n; and v.
In contrast, other descriptors use eigenvectors from the covariance
matrix defined as equation 2.

R
= mi;} R-d)pi—p)pi—-p)'. @

where R is the radius used to determine the neighborhood, and d; is
the maximum distance between a point p; and the centroid p. Con-
sequently, some of the most relevant descriptors in the literature
which use those reference frames, are the followings:

e Viewpoint Feature Histogram (VFH) [RBTH10] is a global ex-
tension of the Simple Point Feature Histogram (SPFH) [RBB09].
VFH is a histogram with two components; one represents the
Darboux’s angles considering each cloud point and the centroid,
and the other represents the angles among each point’s normal
and the director vector determined by the centroid and view-
point. Moreover, the distance from each point to the centroid is
included in this second component.

e Clustered Viewpoint Feature Histogram (CVFH) [ABG*11]
splits an object into a set of smooth and continuous regions or
clusters. Then, parts of object such as edges, ridges and other
discontinuities are not considered to be used for the recognition
process because they are usually affected by noise. Therefore,
the object shape is only described from a VFH descriptor com-
puted for each cluster.

e Signature of Histogram of OrienTations (SHOT) [STD14] is a
local feature descriptor which uses the eigenvector of a covari-
ance matrix as reference frame. Generally, it uses a spherical grid
partitioned into d = 32 sectors as follows: 2 divisions for eleva-
tion, 8 for azimuth and 2 for radial. The descriptor assesses the
differences between the normal vector at each point of the sur-
face (within the local reference frame) and the normal vector at
the center of the local reference frame. This difference is com-
puted by dot-product and interpolated into one of the b = 11
classes (bins), so the dimension signature is d * b = 352.

3. An approach to make a Global SHOT (GSHOT)

SHOT descriptor achieves good results in terms of accuracy but
its computation time is too long as was proved in [MGT16]. This
fact is due to its local character inasmuch as SHOT computes for
each keypoint (point of interest) in the point cloud P a signature.
The proposed descriptor GSHOT computes a unique signature for a
whole point cloud, extending SHOT to be a global descriptor (Fig-
ure 1). In order to compare GSHOT and SHOT under equal condi-
tion, the same number of divisions of the spherical grid presented
in [STD14] has been used in this work.

This work proves that GSHOT not only reduces the time require-
ments of the original method but also improves its results in well
segmented point clouds (see Section 4) in comparison with SHOT.
Another advantage of GSHOT is that it avoids the requirement of
fixing a radius size R for computing the descriptor signatures be-
cause this one is auto-computed from the outset. R is computed as
the maximum distance between the centroid ¢ of the point cloud
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Figure 1: Comparative of the reference frames for SHOT and
GSHOT descriptors, using 792 bins with 12 divisions for azimuth,
6 for elevation and 1 for radial and 11 bins per histogram.

and its farthest point. Once, both ¢ and R of the sphere are calcu-
lated, the global reference frame localized in the centroid ¢ with a
radius R is obtained by applying EVD for the matrix M of equation
(2). Therefore, GSHOT is calculated as a unique SHOT for an in-
put point cloud. Although, GSHOT is tested with point clouds well
segmented, we use to remove noise (outliers) the statistical method
described in [Sch05]. The procedure for GSHOT is detailed in the
Algorithm 1. GSHOT has been implemented from SHOT in Point
Cloud Library (PCL) [AMT*12].

4. Experiments

RGBD object dataset [LBRF11] and the dataset of Princeton Shape
Benchmark (PSB) [SMKF04] were chosen among other datasets
mentioned in state-of-art in order to test GSHOT in this work. PSB
is composed of 1814 instances of CAD-objects (50% for train-
ing and 50% for testing) whereas RGBD is composed of 300 real
household objects where each of them has 540 views (image, depth
and point clouds) generated using 3 camera positions and 180 ob-
ject poses. PSB was selected because it allows us to test GSHOT us-
ing CAD-models for avoiding problems such as acquisition noise,
holes due to lack of points in the scanned surface or disparity in
the texture or viewpoint, that are caused in the acquisition and cap-
ture processes with sensors. This fact adds difficulty in evaluating
the capacity of GSHOT and its goodness for recognition processes.
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Algorithm 1 To compute GSHOT descriptor
1: procedure GSHOTESTIMATION(P)

¢+ [0,0,0)7

3 for i< 1,|P| do

4 cc+pi, pieP

5: end for

6: c 4 ﬁ

7

8

9

R {l|l=lc=pill, Al > [le=pjll,Ni# j}
[x,y,2z] + getRF(P,{c},1,R)
: return SHOTEstimation(P, [x,y,z],R)
10: end procedure

11: procedure GETRF(P, P* i, R)
12: c+ p;i€P*
13: for j < 1,|P| do

14: q<pjE P

15: d; + |lc—ql|,

16: M+~ M+(R—d)(c—q)(c—q)T
17: end for

18: M« VDV v=[x"y" z"]

19: //Disambiguateaxes

20 S¢«{i:dj<RA(pj—p)-x" >0}
21 S§«{i: dj<RA(pj—p)-z" >0}
22: Sy «{i:dj<RA(pj—p)-x >0}
23: S; «{i:dj<RAN(pj—p)-z~ >0}

24 x<+xTif|ST] > |Sc | else x
25:  z<zVif ST > |S | elsez™
26: y< ZXX

27: end procedure

28: procedure SHOTESTIMATION(P, [x,y,z], R)
29: for i+ 1,|P| do

30: pf A [vavz} X Pi

31: quantize p! wrt the spatial grid > which means
estimate the sphere volume where lies p!

32: 0+ n;-z

33: quantize 0 wrt the shape histogram bins

34: quadrilinear interpolation to accumulate pf >

according to the authors of [STD14]
35: end for
36: normalize the descriptor to Euclidean norm 1
37: end procedure

Furthermore, to test GSHOT with real objects from RGBD sen-
sors, 29 household object from RGBD dataset was randomly cho-
sen (75% for training and 25% for testing). Note that RGBD dataset
was not adapted to be used, but PSB CAD-objects was transformed
to point clouds from their original formats as polygonal meshes to
be able to apply GSHOT and the rest of descriptors of experiments.
To do this, we have simulated a laser beam with a resolution of 1
mm for sampling each instance of object and thus a point cloud
without acquisition noise can be obtained. Ad

We have used the PSB dataset organized in 7 classes with a Sup-
port Vector Machine (SVM) [CV95] and the RGBD dataset with a
K Nearest Neighbors(kNN) [ML14]. We have tested, the proposed
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descriptor with the two classifiers to prove the non-dependency of
them. For finding the best parameter y and the constant C of SVM
classifier, a grid search technique based on cross-validation with
the training set was performed. This search for the best parameters
tuning was carried out for all descriptors, not just GSHOT. This
way, kNN has been adjusted to k = 16, being that the used datasets
gather a large number of samples.

In general terms, the experimental results are illustrated using
“Area Under the Curves” (AUC) of “Receiver Operating Charac-
teristic” (ROC) and “Precision-Recall” (PR).

In Experiment 1, Figure 2 shows how GSHOT works with re-
spect to each object class. The animal 90.8% and furniture 89.1%
objects class obtain the best results, in contrast to the household
61.9% and non-class 61.3% objects class, that keep the worst re-
sults. This fact may be due to their geometries. The first classes
represent instances in which all of them have a similar geometry,
e.g. all instances of table have more or less the same geometry. In
the second classes, there is a lot of variability in the geometry of the
different instances of a same object class. This issue occurs in the
non-class, e.g they can be wheels or slot machines. Additionally,
in the case of household, this fact happens because the objects are
almost flat (without volume) as scissors.

In experiment 2, we have compared the goodness of GSHOT
(Figure 3) versus other descriptors aforementioned in Section 2 for
both PSB and RGBD datasets. First, to highlight that ROC-PSB of
the figure shows as GSHOT improves the success ratio with respect
to its local implementation SHOT, GSHOT reaches precision rates
of 88% versus 86% of both VFH and SHOT, and 87% of CVFH.
Moreover, the ROC-PSB for GSHOT is always over the curves for
the rest of descriptors aforementioned in Section 2. As expected,
PR-PSB shows as the GSHOT precision decreases in a similar way
to the rest of descriptors but its average value is a little better than
the others when the recall is high. Only when the recall level is
low, CVFH is slightly better 91% versus 90% for GSHOT. Second,
note that ROC-RGBD shows how GSHOT keeps a good behaviour
although CVFH has a better result. This fact could be as a conse-
quence of how CVFH computes its descriptor for each stable re-
gion, as was explained in section 2. Other reason is that CVFH is
more robust to noise present in real scenes as gathered in RGBD
dataset. Summarizing, in this last case, CVFH is favored against
GSHOT because the point clouds are not closed and they usually
present occlusions caused by the camera’s viewpoint.
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Figure 2: (Left) ROC and (Right) PR to determine the behaviour of
GSHOT to classify the 7 classes of the PSB dataset.
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Figure 3: ROC and PR curves: (Top) PSB dataset. (Bottom) RGBD
dataset.

Additionally, using PSB dataset, a brief analysis of presented de-
scriptor in terms of both time and space complexity was also per-
formed as shown in Table 1. As observed, GSHOT not only reaches
better success ratio than SHOT but also it improves SHOT x57 in
space and %3 in runtime. Besides, it accomplishes similar perfor-
mance results of VFH at the same time that it achieves better results
in terms of classification as shown Figure 3(Top). GSHOT also has
less computational cost than CVFH and its precision is better than
CVFH for CAD-Objects and only slightly worse for objects from
real scenes. Note that the time retrieves in each experiment is de-
pendent on the amount of points within the point cloud. The aver-
age of point per cloud for all the object instances in the PSB dataset
is ~200 thousand.

Table 1: The average of timing and spatial performance using
an Oracle Grid Engine with 26 nodes composed of 2 Intel XEON
X5600 hexacore and 48GB of RAM

Descriptor || Mean time(s) || Space requirements(KB)
CVFH 3.7+0.1 527+3.17
GSHOT 2.440.2 4.36£0.51
SHOT 7.84+0.5 246.82 +44.41

VFH 2.1+£0.04 2.55+0.52

5. Conclusions

This work has presented a new global descriptor (GSHOT) based
on the modification SHOT. GSHOT enhances the performance of
current descriptor methods at the same time that it gets excellent
results in phase of the classification using two well-known datasets
such as PSB and RGBD. GSHOT not only improves the runtimes
and memory required regarding to SHOT and other global descrip-
tors, but also it increases the success rate in comparison with those
descriptors.
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