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Abstract

Image convolution with a filtering mask is at the base of several image analysis operations. This is motivated by Mathematical
foundations and by the straightforward way the discrete convolution can be computed on a grid-like domain. Extending the
convolution operation to the mesh manifold support is a challenging task due to the irregular structure of the mesh connections.
In this paper, we propose a computational framework that allows convolutional operations on the mesh. This relies on the idea
of ordering the facets of the mesh so that a shift-like operation can be derived. Experiments have been performed with several
filter masks (Sobel, Gabor, etc.) showing state-of-the-art results in 3D relief patterns retrieval on the SHREC’17 dataset. We
also provide evidence that the proposed framework can enable convolution and pooling-like operations as can be needed for

extending Convolutional Neural Networks to 3D meshes.
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1. Introduction

The convolution operation is at the base of many computations in
Mathematics, Physics, and Engineering. In particular, its discrete
version has found large application in image analysis, where it is
used to perform image filtering, in a broad sense. For example,
convolution of an image with differently formed masks allows op-
erations that go from edge detection (Sobel mask), to smoothing
(Gaussian mask), derivatives (Laplacian mask), and so on. This
success is mainly motivated by the grid structure of images, which
allows the definition of masks and the effective implementation of
convolution with multiplications, sums and shifts.

The capability of the convolution operation of extracting mean-
ingful patterns from an image and its effective computation are
also at the base of its extensive use in Convolutional Neural Net-
works (CNNs). These architectures have been known since the
’80s [LBH15], but they have been now re-discovered thanks to the
availability of sufficient computational power and training data. A
common trait of these architectures is the application of the con-
volution operation to the input images through a series of convolu-
tional layers using filters with different size, shift amount (stride)
and padding. After non-linearity layers usually introduced with
Rectified Linear Units (ReLu), down-sampling is also performed
using some form of pooling (e.g., max-pooling). Extensions and
adaptations of CNN models have been also tried in other domains
than images [BBL"17]. Among them, the mesh manifold support
is of particular interest since it is largely used for modeling 3D ob-
jects either obtained synthetically or acquired with 3D scanners.
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Thus, replicating convolution and pooling on the mesh can be the
base for extending CNNs to the mesh domain. However, direct ap-
plication of the convolution operation to 3D meshes is not possible,
due to the lack of the regular grid structure of images.

In this paper, we propose a new framework that enables convo-
lutions on 3D meshes, thus opening the way to a wide spectrum
of filtering operations in this domain. We moved by the idea of
Ordered Ring Facets [WRK12] that, given a facet on the mesh,
allowed us to provide a local ordering of its neighbors. With this
ordering, and a local reference frame, extension of the convolu-
tion becomes possible by emulating the 2D-like shift operation. In
addition to reporting the results obtained by applying several filter-
ing operations on the mesh, we also experimented the use of our
proposed framework in the task of 3D relief patterns retrieval. Re-
sults show that the proposed solution outperforms state-of-the-art
on the SHREC’17 dataset. Furthermore, we provide evidence that
the proposed approach can be successfully used to perform convo-
lution and pooling operations on 3D meshes. This opens the way to
the extension of CNN architectures to this domain.

The rest of the paper is organized as follows: In Section 2, we
summarize related work on convolutional-like operations on the
mesh; Our proposed approach for performing convolution on the
mesh is described in Section 3; Experimental results and compar-
ative evaluation for the task of relief patterns retrieval are given
in Section 4, where we also show results of convolution and pool-
ing operations on the mesh; Conclusions and perspective for future
work conclude the paper in Section 5.
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2. Related Work

Most of the work on extending the convolution operation to non-
Euclidean domains (e.g., graphs, manifolds, meshes, etc.) has been
developed recently, riding the wave of success of CNN models.

One option that has been practiced in the literature is that of ex-
tending convolution to graphs. For example, Bruna et al. [BZSL14]
considered generalizations of CNNs to signals defined on more
general domains, without the action of a translation group. They
showed that for low-dimensional graphs it is possible to learn
convolutional layers with a number of parameters independent
of the input size, resulting in efficient deep architectures. Kipf
and Welling [KW17] followed the idea of spectral convolution on
graphs, which is defined as the multiplication of a signal (a scalar
for every node) with a filter parameterized in the Fourier domain
(a function of the eigenvalues of the Laplacian). This might be
prohibitively expensive so a localized first-order approximation of
spectral graph convolution was used. Defferrard et al. [DBV16]
presented a formulation of CNNs in the context of spectral graph
theory, which designs fast localized convolutional filters on graphs.

The above methods mainly target very irregular and general
graphs as can be generated in social networks, brain connectomes
or words’ embedding. However, triangular surface meshes are usu-
ally more regular, and resorting them to graphs can loose the power
of CNN representations. Some researchers transformed clouds or
meshes to regular 3D voxel grids, collections of images (e.g.,
views) or surfaces before feeding them to a deep net architecture.
In [WSK*15], Wu et al. proposed to represent a geometric 3D
shape as a probability distribution of binary variables on a 3D voxel
grid, using a Convolutional Deep Belief Network. In the work of
Sinha et al. [SBR16], the 3D shape is converted into a “geome-
try image” so that standard CNNs can directly be used to learn 3D
shapes. Xie et al. [XFZW15] proposed a high-level shape feature
learning scheme (DeepShape) to extract features that are insensi-
tive to deformations via a discriminative deep auto-encoder. Fang
et al. [FXD*15] developed novel techniques to extract a concise,
but geometrically informative, shape descriptor and new methods
of defining Eigen-shape and Fisher-shape descriptors to guide the
training of a deep Neural Network. This data representation trans-
formation, however, renders the resulting data unnecessarily volu-
minous, while also introducing quantization artifacts that can ob-
scure natural invariances of the data. To overcome such limitations,
Qi et al. [QSMG17] designed a novel type of Neural Network,
named PointNet, that directly utilizes point clouds, while respecting
the permutation invariance of points in the input.

Using a different view, mesh surfaces serve as a natural
parametrization to 3D shapes, but learning surfaces using CNNs
is a challenging task. Current paradigms to tackle this challenge
are to either adapt the convolutional filters to operate on surfaces
or learn spectral descriptors defined by the Laplace-Beltrami oper-
ator. Boscaini et al. [BMM™15] proposed a generalization of CNNs
to non-Euclidean domains for the analysis of deformable shapes.
Their construction was based on localized frequency analysis that is
used to extract the local behavior of some dense intrinsic descriptor,
roughly acting as an analogy to patches in images. In [MBBV15],
Masci et al. extended the CNN paradigm to non-Euclidean mani-
folds by using a local geodesic system of polar coordinates to ex-

tract “patches”. On these patches, a geodesic convolution on the
mesh can be computed. Seong et al. [SPP17] proposed a geomet-
ric CNN (gCNN) that deals with data representation over a mesh
surface and renders pattern recognition in a multi-shell mesh struc-
ture. To efficiently compute 3D convolutions with an arbitrary ker-
nel size, Wang et al. [WLG™17] built a hash table to quickly con-
struct the local neighborhood volume of eight sibling octants and
computed the 3D convolutions of these octants in parallel.

3. Convolution on Mesh Manifolds

In mathematics, the convolution is an operation between two func-
tions. The possibility to perform convolutions on images lies on the
structure of the image itself. The image, indeed, is a grid of pixels
that allows us to easily define a shift operator for the convolution
operation. On the other hand, it is not natively possible to compute
such operation on a mesh manifold. In fact, a mesh is defined by a
cloud of points and connections between such points, regardless of
their position: consecutive points on the stored mesh structure can
be far from each other in 3D space.

Using the Ordered Ring Facet (ORF) solution proposed
in [WRK12], and already successfully used to generate Local Bi-
nary Patterns directly on a mesh manifold [WTBD15b, WTBD15a],
we can derive a local order at each facet. The OREF, starting with
adjacent four facet to a central facet f., linearly derives an ordered
ring. Such linear process can be repeated for larger radii r to get
multiple rings and extend the coverage of the ordered area. Since
the first facet of each ring is aligned to the same axes, we can use
such ordered structure as a polar grid to perform convolution facet-
by-facet on the mesh.

The possibility to inherit the order from the ORF allows us to
define a shift operator on the mesh surface. While on the image the
neighbors of a pixel are given by the Cartesian coordinates derived
by the grid structure of the image itself, with the ORF we use po-
lar coordinates, i.e., radius r and quantized angle 0. Therefore, the
convolution between a given mesh M and a filter F is defined as
follow:

M*F)=YY mp-fro. (1)
r o

where m, g, and f,g are, respectively, a scalar function computed
on the mesh and the filter values, both at radius r and angle 0. In
images, the convolution is performed at each pixel: neighbor pix-
els are multiplied by the filter values; in our proposed approach,
instead, the convolution is performed on the facets, therefore fil-
ter values have to be determined at each facet of the ring. In im-
age processing, it is possible to differentiate between discrete and
continuous filters: 1) discrete filters are defined and represented by
N x N matrices, as edge detectors, Sobel, etc.; 2) continuous filters,
instead, are generated by continuous functions and quantized to fit
a N x N window. Assuming to have a regular triangular mesh, the
number of facets per ring is - 12, where r is the ring number. We
can distinguish between discrete and continuous filters: for con-
tinuous filters, we can obtain the exact filter value at each facet by
applying the function with polar coordinates; for discrete filters, we
can devise two approaches: 1) Adapt the number of values at each
ring, 2) Obtain r- 12 values from the discrete filter, i.e., adapting
the N x N values of the 2D filter to the ORF structure.
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Figure 1: Convolution of the edge detector mask in (a) with a mesh: (b)
the number of values of the ORF has been adapted to the filter; (c) the filter
is adapted to the ORF structure. Both in (b) and (c), the filter response is
shown on the left, while the thresholded values are given on the right.

(a) Sobel

(b) Sharpener

Figure 2: (a) Convolution of the mesh with the Sobel operator, applied on
local depth as a scalar function on the mesh, without and with threshold (on
the left and on the right, respectively); (b) the same scalar function on the
surface, and its enhancement after applying the Sharpen filter.

Both methods can be implemented by interpolation and/or sub-
sampling. A visual comparison of the two solutions is shown in Fig-
ure 1. As expected, adapting the values on the ORF to the discrete
filter gives better results with respect to the second approach, since
altering the 2D filter structure also modifies its original behavior.
From now on, the first method will be used for discrete 2D filters.

To demonstrate that our proposed approach makes possible to
reproduce any discrete filter on a mesh manifold, we replicate the
Sobel and the sharpen filters. They show, respectively, a better edge
detection and an enhancement of any scalar function computed on
the mesh manifold (see, respectively, Figure 2a and 2b). As contin-
uous filter, we chose Gabor. In this case, we have been able to get
the r- 12 values at each ring r, simply using the Gabor formula in
polar coordinates. Figure 3 shows the 2D Gabor filter generated on
a standard image, and our proposed counterpart on the mesh.

4. Experimental Results

Recently, a new database has been released for the SHREC 17
contest track on “Retrieval of surfaces with similar relief pat-
terns” [BTA*17]. The database includes different patches of var-
ious textiles, each acquired at different poses and deformed shape
situations. For each scan, three processing operations, designed to
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(a) Standard 2D Gabor filter (b) Gabor filter obtained on the mesh
using radius quantization 3.

Figure 3: Visual representation of the Gabor filter responses on a 2D im-
age and on a 3D mesh in (a) and (b), respectively. The filter has been com-
puted using the same wavelength and orientations at 0°, 45°, 90° and 135°.

(© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.

Table 1: Comparison between the mesh-LBP descriptor computed on the
mesh for the proposed filters, and the best performing method at SHREC’17.

Method NN 1*-Tier | 2"-Tier | DCG

Gabor 99.72% | 31.70% | 44.27% | 76.01%
Sharpen 99.86% | 45.72% | 61.17% | 83.97%
EdgeDetector 99.86% | 45.72% | 61.17% | 83.97%
Sobel 100.00% | 46.65% | 61.16% | 83.97%
KLBO [BTA*17] | 98.60% | 33.30% | 44.90% | 75.90%

alter the mesh connectivity, have been applied to obtain, respec-
tively, meshes with 5K, 10K and 15K vertices. The database has a
total of 720 samples. To evaluate our new convolution approach, we
computed the meshLBP [WTBD15b] descriptor on the response of
the following filters on the mesh: Gabor, Sharpen, standard Edge
Detector, and Sobel. In Table 1, our convolution algorithm is evalu-
ated against the winner of SHREC’ 17 competition [BTA*17]. The
assessment has been done according to the competition evalua-
tion, with Nearest Neighbor (NN), first-Tier, second-Tier and Dis-
counted Cumulative Gain (DCG) measures. As shown in the table,
all our approaches outperform the SHREC’17 best result, with the
exception of the Gabor filter for 1* and 2" tier. We justify such
exception with the non-optimization of Gabor parameters.

Replicating CNN operations on the mesh: Potentially, our
technique can be also used to extend the idea of CNNs to a real
3D environment. One basic operation in CNNss is performed by the
convolutional layer where the size of the filter is a crucial param-
eter. Inheriting the ordering and the linear complexity of the ORF
it is possible to perform convolution at different radial resolution
efficiently. As an example, Figure 4 shows the application of dif-
ferential filters, while varying the filter resolution (i.e., radius).

Down-sampling, or “pooling” is another important layer in
CNNs. Often placed after convolutional layers, it reduces the fea-
ture dimensionality, at the same time increasing efficiency and per-
formance. We propose two approaches for computing pooling like
operations on the mesh: (a) ring pooling, and (b) first-order ring
neighbors. The first approach uses the polar structure of the ORF to
down-sample information in the ring (i.e., at each ring r any pool-
ing operand is applied ring-wise, with different azimuthal quanti-
zations). Although the ring pooling approach is easy and fast to
compute, it restricts the pooling to the facets of a same ring. With
the second approach, instead, we can select the entire neighbor-
hood of a facet, thus performing the pooling across the rings (i.e.,
the pooling operation is done exploiting the ORF, which also allows
for different strand values). In Figure 5, we show the pooling area
of radius r = 1 on the region displayed in Figure 5a. Using max-
pooling as down-sampling operand, we can determine the value
P(f.p) at a given facet f,.¢ and a pool area size p as:

P(fr,e) = maXNP(fr.,G) , ()

where Nj(f) gives the neighborhood of the facet f within a radius
p. This approach allows us to easily select values between different
rings. In Figure 5b, 5c and 5d, we show the pooling area of radius
p = 1 sliding at different stride rates.



114 C. Tortorici et al. / Performing Image-like Convolution on Triangular Meshes

Figure 4: Application of the differential filter at different radius on the mesh on the left using the local depth as scalar function. Radius of the mask varies
from 2 to 7 ORF from left to right, while color values show the intensity of the filter response.
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Figure 5: Pooling using ORF: (a) region of radius r = 3 and azimuthal
quantization © = r- 12; referring to Eq. (2), plots (b) to (d) show a pooling
area of radius p = 1, sliding at a strand rate of, respectively, 6, 4, and 2.

5. Conclusions and Perspectives

In this paper, we have proposed an original framework for comput-
ing convolution-like operations on the mesh domain. To the best
of our knowledge this is the first attempt of extending, in an effec-
tive and easy way, the 2D computational framework defined on the
image grid to the vertices and facets of the mesh. One interesting
aspect of our proposal is that it keeps most of the computational
structure of the 2D domain (shift, filter mask, etc.) thus making
quite straightforward the extension to the mesh of common and
consolidated practices. This is clearly illustrated by the possibil-
ity to replicate Sobel, Sharpen, and Gabor-like filters. Experiments
performed on the 3D relieves used in the SHREC’17 contest show
that applying mesh-LBP descriptors on 3D meshes convolved with
different filter masks (i.e., Sharpen, Sobel, etc.) results into perfor-
mance measures that outperform state-of-the-art solutions. Finally,
we provide the evidence that our proposed framework allows con-
volution and pooling operations on the mesh using the same setting
as used in CNNs when applied to the image domain. This opens
the way to the direct extension of CNN architectures to the mesh
support. This will be part of our future work.
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