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Abstract
In this paper, we propose a hybrid framework for face recognition from depth images, which is both effective and efficient.
It consists of two main stages: First, the 3DLBP operator is applied to the raw depth data of the face, and used to build
the corresponding descriptor images (DIs). However, such operator quantizes relative depth differences over/under ±7 to the
same bin, so as to generate a fixed dimensional descriptor. To account for this behavior, we also propose a modification of
the traditional operator that encodes depth differences using a sigmoid function. Then, a not-so-deep (shallow) convolutional
neural network (SCNN) has been designed that learns from the DIs. This architecture showed two main advantages over the
direct application of deep-CNN (DCNN) to depth images of the face: On the one hand, the DIs are capable of enriching the raw
depth data, emphasizing relevant traits of the face, while reducing their acquisition noise. This resulted decisive in improving
the learning capability of the network; On the other, the DIs capture low-level features of the face, thus playing the role for the
SCNN as the first layers do in a DCNN architecture. In this way, the SCNN we have designed has much less layers and can be
trained more easily and faster. Extensive experiments on low- and high-resolution depth face datasets confirmed us the above
advantages, showing results that are comparable or superior to the state-of-the-art, using by far less training data, time, and
memory occupancy of the network.

CCS Concepts
• Computing methodologies → Biometrics; Neural networks; Matching;

1. Introduction

In recent years, many works have demonstrated the potential of ap-
plying Deep Convolutional Neural Networks (DCNN) in the facial
recognition task from static images and videos [PVZ15, SKP15,
TYRW14,SWT14,YL18]. Despite the success of facial recognition
based on DCNN, many aspects of the behavior of such networks,
their strengths and limitations are not yet fully understood. In addi-
tion, various problems related to revealing a person’s identity from
his/her facial images remain open, with new perspective challenges
that still need a solution to advance the field into completely real-
istic scenarios. One tendency is to experiment with more stringent
protocols, such as open set and open world face recognition, in con-
trast to the classic and easier ones where a closed set of identities
is given. Another trend is to consider more difficult data in terms
of quality and resolution, quantity and source, extending the imag-
ing modes to less conventional ones, including infrared or depth.
In most of the cases, this accompanies with deeper and deeper net-
work designs that, as such, require ever-increasing amounts of data
to robustly train their internal parameters. The result is the need for
machines with high parallelism and extreme computational power,
but such infrastructures are expensive and may not be accessible in
many cases.

The above considerations suggested us that in facial recognition
based on DCNNs there are some aspects that have been under-
investigated. This is particularly true when not so conventional
imaging modalities, such as infrared or depth, are taken into con-
sideration. In fact, there are several low-cost/low-resolution devices
that can capture RGB-D data (e.g., Kinect camera). The depth res-
olution of such devices is not comparable to that achieved by high-
resolution 3D scanners; however, those may be still more effective
than RGB images in some cases, such as when lighting conditions
are difficult or large facial expressions should be considered.

This work focuses on the problem of face recognition from low-
resolution depth data as acquired by a Kinect like sensor. The main
goal is to demonstrate that when utilizing low-resolution depth
data, comparable or even better face recognition results can be
achieved with shallow network architectures and much fewer train-
ing data. In doing so, one founding idea of the present solution
is that of using a descriptor image (DI) built by encoding hand-
crafted low-level features in place of the depth data, in order to
capture and emphasize details of the face. We propose a modified
version of the 3DLBP [HWT06] descriptor for such task: 3DLBP
is computed from the depth image producing a DI. Then, we de-
signed a shallow convolutional neural network (SCNN) that learns
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Figure 1: Overview of the proposed method. First, some pre-processing operations (i.e., noise removal, holes closing, and pose normaliza-
tion) are applied to the 3D face scans given in input; then, a depth image of the face is derived; the next step is to compute the traditional
3DLBP and Sigmoid descriptors images; CNN training and classification is performed on the descriptor images, and the scores for each
type of image descriptor are fused to derive the subject’s identity.

on the top of these DIs. Since DIs encode low-level image fea-
tures similar to what the first layers do in a deep architecture, the
resulting network has a smaller number of layers and can thus be
trained with a limited amount of data with reduced computational
cost. Figure 1 summarizes the two-stage architecture of the pro-
posed approach. Results on the EURECOM low-resolution depth
face dataset, and on the Bosphorus high-resolution 3D face dataset
show a good compromise in the performance on both low and high-
resolution data. This cannot be achieved by existing state-of-the-art
DCNN solutions that are tailored to either low or high-resolution
data. In summary, there are two main contributions in the proposed
face recognition method from depth data:

• To the best of our knowledge, this work is the first one that com-
bines hand-crafted features and a specifically designed shallow
network in a framework that can be trained quickly and with a
limited number of examples;
• We demonstrate through a comprehensive experimental valida-

tion that the proposed approach can effectively be applied either
to high or low-resolution data as captured by RGB-D cameras.

The rest of the paper is organized as follows: In Section 2, we
summarize the works in the literature that are more close to our
proposed solution; In Section 3, the main aspects of the 3D LBP
descriptor computation and our proposed variant are reported; The
combination of such depth descriptor with a newly designed shal-
low network architecture is proposed in Section 4; An extensive
experimental evaluation on low- and high-resolution depth data is
presented in Section 5; Finally, in Section 6, we report some dis-
cussion on the relevant aspects of our method and the conclusions.

2. Related work

In this section, we summarize the works in the literature that focus
on 3D face recognition and, more specifically, on low-resolution
depth data. Those methods are classified into two groups: methods
that rely on hand-crafted features, and methods that are based on
CNN architectures.

Hand-crafted features based 3D face recognition: In recent
times, the literature on 3D face recognition has been focusing on
methods that describe surfaces, specifically for capturing geomet-
ric properties of the facial geometry [DBS∗13, FBF08, MBO07,

BDP10, KPT∗07, Spr11]. Even with the several advances, most
of the work that has been done utilizes high-resolution data in
controlled environments with costly devices. Some of the works
that utilize Kinect-like devices try to increase the resolution of
the data utilizing the temporal redundancy of frames in a se-
quence [BPBD16, DMT13, HCM12]; The main problem of those
approaches is the increase in the necessary computational power
and, as a consequence, they are unable to operate in real time.

Only a handful of methods performs face recognition di-
rectly from low-resolution data. In the work proposed by Min et
al. [MCMD12] a real-time 3D face identification system that re-
ceives a depth sequence as input is built. Initially, the region of the
face is detected and segmented by utilizing a threshold on the depth
values. The next step is to reduce the faces to common resolutions
and the matching is obtained by registering a probe with several
intermediate references in the gallery with the EM-ICP algorithm.
Mantecon et al. [MdJG14] proposed the Depth Local Quantized
Pattern as a modification of the original LBP operator. This mod-
ification introduces a quantification step that allows the descriptor
to distinguish between different patterns. The descriptor has been
used to train and test an SVM classifier. In another work, Mantecon
et al. [MdJG16] proposed an algorithm for face recognition based
on an image descriptor called bag of dense derivative depth pat-
terns. Dense spatial derivatives are first computed and quantized in
a face-adaptive fashion to encode the 3D local structure. Then, a
multi-bag of words creates a compact vector description from the
quantized derivatives.

CNN-based 3D face recognition: The development of deep ar-
chitectures that deal with 3D data has had a slower expansion than
the image-based counterpart, mainly because of the data represen-
tation problem; while CNNs were designed to work with 2D im-
ages, the wide variety of 3D data (e.g., point-clouds, triangular
meshes, etc.) makes it difficult to work in the same standardized
way without making significant modifications in the whole frame-
work. An example of a possible way to make use of existing deep
architectures for 3D face recognition is the work proposed by Kim
et al. [KHCM17], where the authors utilized a pre-trained version
of the VGG-Face and fine-tuned it for depth data. To deal with the
shortage of depth data for training, the authors expanded the dataset
by generating expressions and occlusions. With the necessity of
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Figure 2: 3DLBP computation on a depth image of the face. A 3×3 neighborhood region of a central pixel with depth value of 90 is shown;
First, the difference between the neighborhood and the central pixel is computed (clockwise, starting from the top-left pixel); Then, each
column of four bits encodes the difference value using the first bit for the sign (0 for negative, 1 for zero or positive values), and the three
subsequent bits for the absolute value. Using a positional encoding for the bits in each row, the 3DLBP values associated to the central pixel
are computed and reported on the right.

large amounts of data, Gilani et al. [GM18] proposed a synthetic
data generation technique that they used to build a dataset of≈ 3M
scans. The authors utilized such data to train a deep architecture
that follows a VGG-like structure and consists of 13 convolutional
layers, 3 fully connected layers and the final softmax layer. One of
the conclusions reached in this work is that, because of the smooth
nature of the face surface, there is the need for larger kernels for
the convolutional filters with respect to the ones commonly used.
Lee et al. [LCTL16a], proposed a face recognition system based on
deep learning that utilizes face images captured with a consumer-
level RGB-D camera. For this task three steps are performed: depth
image recovery, deep learning for feature extraction, and joint clas-
sification. To alleviate the problem of the limited size of available
RGB-D data for deep learning, the deep network is firstly trained
with a standard RGB face dataset and later fine-tuned on depth
face images for transfer learning. The main difference between this
work and previously cited one is that it focuses on low-resolution
data instead of high-resolution.

3. 3DLBP descriptor images

Utilizing depth images from consumer like cameras (i.e., Kinect)
can be an interesting solution to perform 3D face recognition in
unconstrained environments. In this case, the main problem is that
normally this type of devices obtain data with fewer details of the
face compared to those acquired by high-resolution scanners. In
this sense, training from scratch a DCNN on such data is difficult
for two main reasons: the nature of the data is less smooth than
for RGB images; large volumes of depth images of the face with
subject labels are difficult to collect (i.e., the web does not represent
a viable source of data in this case). The most practiced solution in
the literature is that of taking a DCNN architecture pre-trained on
RGB data and fine tune it with a small set of depth images.

In this work, we propose a different approach, where the learn-
ing tools are applied to the top of intermediate images generated
from the original raw data by applying a low-level feature extrac-
tor. With this approach, the 3DLBP [HWT06] feature is a potential
candidate due to its computational efficiency and the fact it has
been proven to be effective in describing 3D depth images of the
face [CNM18]. The 3DLBP is a variation of the traditional LBP as
originally proposed by Ojala et al. [OPH96]. Its computation starts
in a 3× 3 region (containing 8 neighbors) defined around a center

pixel, or more generally a region with radius R in which P points
are sampled (in this latter case, if a point does not fall into a posi-
tion with a defined value, a bi-linear interpolation is utilized). The
depth value of the central pixel is subtracted from its neighbors and
each of those values is truncated in the range [-7,+7]. This trunca-
tion is motivated by the fact the face is a smooth surface and the
majority of those differences fall between that range [HWT06]. In
the subsequent step, the depth differences are encoded as a feature.
With the [-7,+7] range, 15 different values are to be encoded, which
results in a four-bit representation. Each bit is regarded as a sepa-
rate layer: the first layer encodes the sign of the difference, i.e., 0
if the difference is negative, 1 otherwise; the other layers encode
the absolute value of the difference transformed in a binary code of
3 bits. Figure 2 shows the generation of a 3DLBP descriptor for a
pixel with a 3×3 neighborhood region. The 3DLBP descriptors of
the whole depth are then transformed into an image; each one of the
four bits of the 3DLBP is regarded as a separate channel of the final
descriptor image (DI). To encode four bits, we used a four-channel
RBGA image, being the last one the alpha channel.

Actually, a possible limitation of the standard 3DLBP approach
is that, within the [-7,+7] interval, negative or positive difference
values share the same binary code, except for the sign bit. This
implies that some regions of the resulting DI might have the same
values on three out of four channels. One way to account for this is
to incorporate a sigmoid function in the computation of the 3DLBP
operator. In this case, instead of using four bits for representing
values in the [-7,+7] range, while truncating the exceeding values,
a sigmoid function is used to map larger intervals to four bits:

f (x) =
1

1+ exp(−x)
, (1)

where x is the depth difference between a point in the neighborhood
and its center. To encode the sigmoid values, 8 bins are defined
in the interval between 0 and 1. Then, each f (x) is mapped to its
closest bin, in a histogram-like fashion. Note that, even though the
sign channel is maintained to build the four-channel image, f (x)
is computed considering the depth difference along with the sign,
so that same values with opposite sign are put into different bins.
This ensures that different maps with respect to the classic 3DLBP
are generated. This has the advantage of encoding a larger range of
variations, though with a coarser resolution. Figure 3 compares the
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DI obtained using the standard 3DLBP approach in (a), with the DI
derived by applying the sigmoid correction in (b).

(a) (b)

Figure 3: Examples of the descriptor image obtained by comput-
ing: a) the standard (original) 3DLBP operator; (b) the Sigmoid
3DLBP (sample subject from the EURECOM Kinect face dataset).
It is possible to see the color representation after the feature ex-
traction process radically changes depending on the strategy.

4. Shallow network architecture

The main idea behind this work is that the DIs computed in Sec-
tion 3 provide data that are richer compared to the original depth
images, where several details of the face have been enhanced. With
this in mind, we expect it is possible to utilize much shallower
CNNs with way less parameters to learn. The network architecture
we have designed is constructed with three convolutional layers as
illustrated in Figure 4: the first one operates with 64 filters, an 8×8
kernel and a stride of 4; The next convolutional layer has 192 fil-
ters, a kernel of 5 and a stride of 1; the last convolutional layer has
384 filters and a kernel of 3. After the second and last convolutional
layer, there is a max pooling layer with a kernel of 3 and stride of
2. After the last max pooling layer, there are two fully connected
layers and a softmax at the output for subject classification. The
network has a total of 31,648 trainable parameters, excluding the
softmax layer. The code for the network is publicly distributed†.

To better assess the potential of the above architecture, and the
impact of each layer on the results, we have evaluated our approach
with three different network configurations. Initially, we considered
a very shallow network with only one convolutional layer (“Exper-
iment 1” in Figure 4); The second experiment is performed using a
network with one more convolutional layer and a max pooling layer
(“Experiment 2” in Figure 4); In the last experiment, the full net-
work architecture is used with three convolutional layers and two
max-pooling layers (“Experiment 3” in Figure 4). The experiments
and results are discussed in the following section.

5. Experimental results

In this section, the results of the proposed approach are presented.
Initially, we describe the databases used; next, the network training
details and an ablation study on the network architecture and the

† https://github.com/jbcnrlz/biometricprocessing

Figure 4: Architecture of the proposed network. The network takes
the DIs as input (four channel images in RGBA format). Three vari-
ants of the network, indicated in the diagram as “Experiment 1,” 2,
and 3 have been evaluated in the experiments.

DIs are presented; finally, we compare our best configurations with
respect to the state-of-the-art on both high and low-resolution depth
data.

5.1. Datasets

The datasets used in this work are: (i) the Face Recognition Grand
Challenge v2.0 (FRGC) [PFS∗05], (ii) the Bosphorus [SAD∗08],
and the (iii) EURECOM [MKD14]. The FRGC is used to train
our shallow network from scratch, while tests are conducted on the
Bosphorus and EURECOM, where the gallery is used for the fine-
tuning process of the network and train a new softmax layer for the
final classification.

FRGC – The FRGC dataset includes 4007 high-resolution scans of
466 different individuals acquired in two separated sessions. About
60% of the scans have neutral expression, while the rest show slight
spontaneous expressions.

Bosphorus – The Bosphorus dataset comprises 4,666 high-
resolution scans of 150 individuals; there are about 54 scans per
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Figure 5: Rank-1 recognition on the EURECOM dataset as a func-
tion of the number of training epochs for the three network config-
urations with, respectively, 1, 2 or 3 convolutional layers.

subject, which include expression variations, facial action units ac-
tivation, rotations and occlusions. This dataset was used for evalu-
ating the framework effectiveness on high-resolution data.

EURECOM – The EURECOM database collects RGB-D images
acquired with a Kinect sensor of 52 subjects, taken in two sepa-
rate sessions with 7 variations each: neutral, smile, illumination,
paper occlusion, mouth occlusion, eyes occlusion and open mouth.
This dataset is employed for evaluating our approach with low-
resolution data.

5.2. Training details

We used the FRGC dataset to train the network for 200 epochs. We
augmented the training set by applying a 3D rotation in the Y (pitch
angle) and X (yaw angle) axis from -30 to +30 degrees to each train-
ing face. The final number of images for training is 48,867. Before
validation, the network undergoes through a fine-tuning process for
100 epochs and the data utilized for the fine-tuning process is aug-
mented in the same way as the FRGC data. When fine-tuning, the
last fully connected layer, i.e., the classification layer, is substituted
and re-trained so as to account for the new identities.

To perform recognition, in the following we also employed a
score fusion between the 3DLBP and the Sigmoid approaches, in
order to investigate whether a coarser encoding of larger depth in-
tervals could bring complementary information to the original for-
mulation. The fusion is a weighted sum of the classification scores:

FSCORE = 3DLBPW ∗3DLBPS +SIGW ∗SIGS (2)

being FSCORE the final score for a subject, 3DLBPW the weight
for the 3DLBP approach, 3DLBPS the original score for the 3DLBP,
SIGW the weight for the sigmoid approach, and SIGS the score for
the original sigmoid.

5.3. Network depth analysis

The focus of this set of experiments is to evaluate the impact of the
number of convolutional layers on the recognition accuracy. These

refer to “Experiment 1,” 2 and 3 depicted in Figure 4. To this aim,
the EURECOM Kinect face dataset was used. In this experiment,
the gallery is composed of images from Session 1 with all the vari-
ations mentioned except the “paper occlusion” one, while probe
images come from the same classes in Session 2. The network was
trained from scratch for 100 epochs and, as it is possible to observe
in Figure 5, the best result is obtained when three convolutional
layers are used. For all the subsequent experiments, we will employ
this latter configuration; nevertheless, the gap between the results
is rather slight, making our framework versatile and suitable also
for lower-powered devices.

5.4. Results on high-resolution data

In this section, the results obtained on the high-resolution scans
of the Bosphorus database for our best performing configuration
(i.e., with 3 convolutional layers) are reported and compared with
the state-of-the-art. For this experiment, three protocols are exam-
ined (gallery vs. probe set): (i) Neutral vs. Neutral (N vs. N), (ii)
Neutral vs. Non-Neutral (N vs. NN), and (iii) Neutral vs. All (N
vs. A), which includes neutral scans as well. In our approach, the
gallery for the Bosphorus is augmented by rotating each face on
the X and Y axis and generating synthetic expressive faces of the
gallery subjects. Even with the data augmentation step the perfor-
mance radically drop when several types of rotation and expression
are presented on the probe, as emerges from the CMC curves in
Figure 6. Another thing to be noted is that the sigmoid approach
has a slight advantage over the traditional 3DLBP.

Analyzing the results in a more deepened way, we reached the
conclusion that most of the errors are introduced by the rotated
scans; this because (i) rotated scans undergo self-occlusions and
thus information is missing, and (ii), the pre-processing operations
involving the cropping of the central face region is highly prone
to failures. One way to confirm those suspicions is to look at the
results illustrated in Figure 7, when the rotations are removed from
the probe and become part of the gallery. This also suggests us
that the representation is quite robust to expressions, which are still
present in the probe set. However, this can be seen as a limitation of
the current proposal and might be ascribable to the characteristics
of the 3DLBP operator; still, results show that a hybrid solution
is feasible and such limitation can eventually to be accounted for.
Indeed, in the Neutral vs. Neutral scenario, the system performed
very accurately.

Method N vs. N N vs. NN N vs. A
3DLBPW 0.4 0.9 0.9
SIGW 0.6 0.1 0.1

Table 1: Values of the weights in the weighted sum score fusion for
the Bosphorus dataset in the Neutral vs. Neutral (N vs. N), Neutral
vs. Non-Neutral (N vs. NN), Neutral vs. All (N vs. A) experiments.
These values were defined with empirical tests.

One important thing to be noted is that the score fusion only
increases the system performance when both approaches have ac-
ceptable results. Table 1 reports the values of the score weights of
Eq. (2) that were used in each experiment (best performing values).
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(a) Neutral vs. Neutral (b) Neutral vs. Non-Neutral (c) Neutral vs. All

Figure 6: Bosphorus dataset: CMC curves for the three experiments with the proposed approach. The scales on the vertical axis are different.

It is possible to see that, when both approaches perform well, the
weights are more balanced, as in the Neutral vs. Neutral setting.
In the other experiments, the weights are totally unbalanced with
the 3DLBP original approach contributing more than the sigmoid
one. In the Neutral vs. Neutral experiment, the system improves its
performance after the rank-2, getting to 100% rank-1 sooner. In the
experiment illustrated in Figure 7, there is instead a huge improve-
ment caused by the score fusion. In this case, as in the previous
one, the 3DLBP operator contributes more to the fusion than the
sigmoid; this can indicate that, in the presence of expressions, the
sigmoid approach brings complementary information that is critical
for effective recognition.

Figure 7: Bosphorus dataset: CMC curves for the experiment us-
ing neutral and rotated face images for the gallery, and occluded,
neutral, and expression images for the probe. In this experiment the
value of 3DLBPW is 0.9 and SIGW 0.1.

Table 2 compares the results of the first experiment (i.e., Neu-
tral vs. Neutral) with respect to state-of-the-art methods. In par-

ticular, we considered the DCNN based approach by Kim et
al. [KHCM17], and the hand-crafted features based approach by
Li et al. [LHM∗15]. Regarding the latter, we reported the results as
presented in the original paper, while we utilized the feature extrac-
tion method publicly available in [KHCM17], but implemented the
matching algorithm for the extracted feature.

Method Neutral vs. Neutral
Proposed - Sigmoid 99.0%
Proposed - 3DLBP 98.0%
Proposed - Fusion 99.0%
VGG [KHCM17] 99.2%
Li et al. [LHM∗15] 100%

Table 2: Bosphorus: Rank-1 results for the N vs. N protocol.

5.5. Results on low-resolution data

In this section, the results obtained on the low-resolution Kinect
scans of the EURECOM database are reported. The protocol for
this experiment is structured in the following manner:

• (i) Gallery composed of seven variations (neutral, smile, illumi-
nation, paper occlusion, mouth occlusion, eyes occlusion, and
open mouth) from Session 1, Probe composed of seven varia-
tions (neutral, smile, illumination, paper occlusion, mouth oc-
clusion, eyes occlusion and open mouth) from Session 2;
• (ii) Gallery composed of seven variations (neutral, smile, illu-

mination, paper occlusion, mouth occlusion, eyes occlusion, and
open mouth) from Session 1, Probe composed of three variations
(neutral, smile, illumination) from Session 2;
• (iii) Gallery composed of seven variations (neutral, smile, illu-

mination, paper occlusion, mouth occlusion, eyes occlusion, and
open mouth) from Session 1, Probe composed of one variation
(neutral) from Session 2.

Also in this case, during the fine-tuning process, a new softmax
layer is stacked in place of the old one and re-trained. Figure 8
shows the CMC curves for the three experiments. It is possible to
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(a) (b) (c)

Figure 8: EURECOM dataset: CMC curves for the three experiments with the proposed approach: (a) Gallery from Session 1 vs. probe from
Session 2 (7 variants each), (b) Gallery from Session 1 vs. probe with the three variants without occlusions from Session 2, and (c) Gallery
from Session 1 vs. neutral probes from Session 2. The scales on the vertical axis are different.

see that there is a small advantage of the traditional 3DLBP ap-
proach over the Sigmoid, this representing the opposite of what we
have obtained on high-resolution data. However, the score fusion
led to a noticeable accuracy improvement. In this experiment the
values for 3DLBPW and SIGW are 0.6 and 0.4, respectively, these
values being the same for all the experiments. It is worth to note
that the benefit of the fusion strategy is way more evident in harder
protocols, and only in the experiment (iii) it tied with the 3DLBP
approach in rank-1 recognition. Lastly, even though there is a huge
difference in the data quality, the proposed method demonstrated to
be effective on both high and low-resolution data.

Table 3 reports the results for the different experiments also in
comparison to state-of-the-art solutions. For this experiment, the
VGG [KHCM17] features are extracted in the same way as the
high-resolution and, even in this case, it does not undergo any pre-
processing step. The matching is performed as a Nearest-Neighbor
search employing the cosine similarity between descriptors. In Lee
et al. [LCTL16b] a pipeline to include the 3D face shape in a deep
network is proposed. It performs depth face image recovery and
enhancement, extraction of deep representation, and joint classifi-
cation for depth and RGB data. Since our work deals with depth
data only, the results reported for [LCTL16b] are those for depth
data. To make the comparison possible, we designed our experi-
ments with the same protocol as in [LCTL16b].

In the case of low-resolution data, a more balanced score fusion
led to more accurate recognition. This can be a piece of evidence
that, due to the coarser nature of the depth maps, it is beneficial to
utilize more information from both sides.

6. Conclusions

This work proposes a new 3D face recognition approach based
on depth data, which revealed to be particularly effective in the
case images are captured by low-resolution cameras. Our proposed
method is built on the assumption that a “hybrid” approach can
be built, composed of a shallow convolutional neural network that

Method (i) (ii) (iii)
Proposed - Sigmoid 77.8% 89.2% 94.1%
Proposed - 3DLBP 80.9% 90.2% 96.1%
Proposed - Fusion 90.75% 98.0% 96.1%
VGG [KHCM17] 13.9% 14.8% 13.5%
Lee et al. [LCTL16b] - 80.8% 78.8%

Table 3: EURECOM dataset: Rank-1 results. The gallery is from
Session 1, while the probe set is composed of: (i) Session 2, (ii) the
three variants without occlusions from Session 2, (iii) neutral scans
from Session 2.

learns from descriptor images (DIs) generated from hand-crafted
feature descriptors. This solution takes advantage of both the com-
ponents: 3DLBP revealed effective in emphasizing the traits of the
face in the depth images, while being sufficiently robust to the ac-
quisition noise; This permitted us to generate descriptor images of
the face that can be used as training data for a shallow convolutional
neural network; this learns, in an effective and efficient way, to dis-
criminate identities from their descriptor images. We also showed
that a fusion of the scores provided by the 3DLBP and a novel
variant can help the performance of the approach, as illustrated in
Figure 7 and in all the experiments on the EURECOM dataset.

When dealing with low-resolution images, the proposed ap-
proach outperforms the results obtained by state-of-the-art meth-
ods, either using DCNN or hand-crafted features. With high-
resolution data, the hybrid approach can compete with state-of-
the-art methods, but only on the Neutral vs. Neutral setting, while
rotated scans still constitute a quite severe issue for our solution.
Despite this latter limitation, our approach is the first one capa-
ble of obtaining competitive performance on depth data that span a
large variety of resolution. In addition to this, we proved our frame-
work can be trained efficiently even with a limited amount of data,
thus making it a viable solution for applications where hardware
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resources are limited both in terms of computational power and
memory.
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