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Abstract

Objects Matching is a ubiquitous problem in computer science with particular relevance for many applications; property
transfer between 3D models and statistical study for learning are just some remarkable examples. The research community
spent a lot of effort to address this problem, and a large and increased set of innovative methods has been proposed for its
solution. In order to provide a fair comparison among these methods, different benchmarks have been proposed. However,
all these benchmarks are domain specific, e.g., real scans coming from the same acquisition pipeline, or synthetic watertight
meshes with the same triangulation. To the best of our knowledge, no cross-dataset comparisons have been proposed to date.
This track provides the first matching evaluation in terms of large connectivity changes between models that come from totally
different modeling methods. We provide a dataset of 44 shapes with dense correspondence as obtained by a highly accurate
shape registration method (FARM). Our evaluation proves that connectivity changes lead to Objects Matching difficulties and
we hope this will promote further research in matching shapes with wildly different connectivity.

CCS Concepts

o Computing methodologies — Shape analysis; e Theory of computation — Computational geometry;

Figure 1: Sample meshes involved in this track. The shapes dif-
fer in terms of mesh resolution as well as for triangles and vertex
distribution. Several additional variations are also considered.

1. Introduction

Recent technological advances provide new modeling techniques,
enlarging the set of applications and involving a wider mass of con-
sumers [PLB12]. Modeling software enables artists to easily de-
form shapes, perform surface remeshing and make models ready
for real-time animation [Hor18]. Moreover, off-the-shelf sensing
devices put 3D body scanning technology at disposal of everyone
[ZSG*18]. These facts have led to a wide production of 3D models
with different resolution, sampling density, distribution of details,
noise artifacts, and so forth [BRLB14,L.MB14, BBK08, CGF09].

With this track we evaluate different matching pipelines and de-
scriptors over a collection of shapes originating from a diverse set
of datasets. This entails dealing with different surface discretiza-
tions, as well as other types of nuisance such as the presence of
disconnected components, noisy or weakly cluttered surfaces (e.g.,
due to clothes and accessories), and a wide range of topology and
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geometry dissimilarities. The evaluated methods are compared in
terms of correspondence coherence, runtime, and other implemen-
tation details. Only one group participates to our track, and we pro-
pose two alternatives to the proposed matching pipeline. Further-
more, we test the stability and properties of different point descrip-
tors in challenging setups, in an attempt to identify the most suit-
able for real-world applications. From our results, we observe that
shape correspondence remains an open and challenging problem
whenever connectivity changes are present in the data, and con-
clude that a concerted effort is required in this direction. This re-
port is accompanied by dense ground-truth correspondences and
evaluation code to foster further research’.

2. Digital humans representation

Human body is among the most common subjects of 3D digital ac-
quisition, arising in a wide range of applications. Arguably the most
common digital representation for human shapes is as a polygonal
mesh, where one has to face the choice of mesh connectivity, giving
rise to extreme variations in the representation.

We model human body as a surface M C R3, possibly with a
boundary dM in case of missing parts, self-occlusions or other im-
perfections in the acquisition process. We represent M as a man-
ifold triangle mesh in the discrete setting, composed by set of n
vertices V € R"*? connected by edges £; each edge belongs to at
most two triangles. The collection of these triangles approximates
the underlying surface, and encodes the mesh connectivity.
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We further equip the surface M with the Laplace-Beltrami Op-
erator (LBO), a second-order differential operator generalizing the
classical Laplacian to manifolds. In the discrete setting, it admits a
representation as a n X n matrix A = A~'W, where A is the mass
matrix and W is the stiffness matrix defined accordingly to [PP93].
The LBO is a positive semi-definite operator Ay : F(M,R) —
F(M,R) admitting an eigendecomposition Axq9; = A;¢;, with
real eigenvalues 0 = A; < A, < ... and corresponding eigenfunc-
tions §;,9,, ..., corresponding to the Fourier basis on manifolds.

3. The proposed benchmark

The dataset we provide consists of 430 shape pairs. The shapes
themselves come from different sources, and dense cross-dataset
correspondences are obtained with the registration method FARM
[MMRC18]. We remark that correspondence between human bod-
ies is ill-posed and a unanimous definition is hard to achieve; in-
deed, even when experts are involved, usually only sparse key
points are provided. By using FARM, our dense correspondences
adhere to the semantics of the SMPL human template [LMR*15].

3.1. Source datasets

SMPL [LMR*15] is a vertex-based 3D morphable model, learned
statistically over a wide population of real scan data. The human
shape is controlled by 82 parameters (of which 10 for identity and
72 for pose). The SMPL model provides a simple way to generate
realistic bodies that share the same connectivity.

FAUST [BRLB14] is a benchmark of real scans of different hu-
mans, coming with ground-truth correspondence for a subset. Each
shape is obtained by annotating a human subject by anthropometry
experts, using 17 bones as sparse key points. The SMPL template is
aligned to the scans, providing a dense map. Both the aligned tem-
plate and the real scans are available. This dataset provides interest-
ing challenges, including acquisition noise, holes, and self-contact.

SCAPE [ASK™05] is a milestone in human body registration. This
pipeline fits a template to real data by solving a complex optimiza-
tion problem over triangle faces. The method is able to capture
different body shapes, and is capable to work with different data
representations (e.g., range maps and mocap markers).

TOSCA [BBKO8] high-resolution is a synthetic dataset with non-
rigid deformations of shapes from different classes. All shapes have
around 50K vertices, and models of the same class are in correspon-
dence. TOSCA shapes are a good example of handcrafted objects.

SPRING is a dataset generated by modifying a template using pa-
rameters carrying anthropometric semantics (e.g., height, calf cir-
cumference, etc.). The body shape space is learned by registering a
template in SCAPE fashion to over 3K body models. Then, PCA is
used to find directions with a clear and useful meaning. The dataset
consits of a high variety of shapes in full correspondence.

MoSh Mocap [LMB14] is a dataset produced from motion capture
data acquisition, with soft tissue information yielding comparable
quality with full-fledged 3D body scanners. The dataset provides
clean real data with highly regular tessellation, reflecting nowa-
days’ expectations of real acquisitions.

BadKing.com.au is a website collecting contributions from pro-
fessional artists which are made freely available. To our knowl-
edge, correspondence methods have never been compared with this
sort of data. The meshes present high levels of detail, disconnected
components, holes, and an enormous amount of different styles.

CAESAR [RDP99] is a rich real body scans set. It has been used
widely in data-driven works, and is nowadays the baseline to learn
generative human body models. Unfortunately, it is not freely avail-
able and redistribution is limited. For this reason we rely over
[PWH*17] that provides registrations of this dataset to the research
community. All shapes are in correspondence and in a neutral pose.

Princeton [CGF09] is a segmentation benchmark built on top of
the SHREC 2007 Watertight Models track. Its shapes come from
different sources and include synthetic human bodies with robot-
like proportions as well as noisy real scans. They span both low
(~ 4.7K vertices) and moderately high resolutions (15K and more).

SHREC14 [PSR*16] Shape Retrieval of Non-Rigid 3D Human
Models track has two subsets. A realistic one, with CAESAR
shapes registered using SCAPE and remeshed to ~15K vertices;
and a synthetic one with plastic poses, a smooth surface, many de-
tails and hand articulations (~60K) vertices.

K3D-Hub [XZC18] provides a method to register a high-quality
template to a low-quality Kinect scan. The low-resolution setup
provides some interesting challenges: subjects may be clothed, with
few details but with dense (~ 10K vertices) and regular connectiv-
ity. Matching these low-res shapes to more detailed ones may have
interesting applications in entertainment.

3.2. Connectivity variations

Every data source comes with unique characteristics: different pur-
poses require different modelling principles, in turn affecting con-
nectivity. With this challenge, we want to encourage the community
to take this type of tricky variations into consideration.

Different orientation. To avoid relying upon a-priori knowledge
on the position in ambient space, the shapes in our composite
dataset are not pre-aligned into a coherent orientation.

Connectivity artifacts. There are shapes with broken or missing
connectivity (e.g., outlier points belonging to no triangle). We pro-
pose to take into consideration these scenarios.

Different density. All these shapes have different resolution and
triangle density. This is particularly challenging for methods that
rely upon similar discretization. Artists create models with a clean
and optimized meshing, with few degenerate triangles and different
density depending on the surface region. Real scans on the other
hand may result from a complex surface reconstruction pipeline
giving rise to degenerate triangles and non-manifold artifacts. Fit-
ted templates either assume uniform density (e.g., SCAPE trian-
gles are equally distributed over the surface), or provide more detail
around salient points (e.g., SMPL is denser on the human face).

Additional variations. We also consider variations of identity and
pose, and include different surface artifacts such as topologi-
cal noise, clothes, hair or accessories. We analyze both watertight
meshes and meshes with disconnect components.
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4. Methods

Point-to-point matching is performed i) by computing point de-
scriptors and matching those in descriptor space, or ii) by designing
a matching pipeline. We evaluated 7 descriptors and 3 pipelines.

4.1. Descriptors

Point descriptors characterize the neighborhood of each point on a
discrete surface, and are expected to be (1) discriminative (different
points should have different descriptors); (2) repeatable under noise
and deformation; (3) fast to compute; and (4) compact.

Given two descriptor fields DESC x4 and DESCys on shapes M
and N respectively, a point correspondence for each x € M can be
obtained by a nearest-neighbor search in descriptor space:

= argnj\lfin”DESCM (x) = DESCnr(y)]|F - (1)
ye

‘We use the equation above in our tests. To eliminate differences due
to scale, all meshes are rescaled to similar surface area.

GPS. The Global Point Signature (GPS) [Rus07] is a point descrip-
tor defined as the g-dimensional vector:

_1 _1
GPS(X) = [}"2 : ¢2()C), ce "7\'(]+21 ¢q+1 (x)} ’ (2)
in our experiments, we set ¢ = 100.

HKS. The Heat Kernel Signature (HKS) [SOG09] is built upon the
heat kernel between a point and itself, expressed in a (truncated)
spectral decomposition as k; (x,x) = 21,(:1 e ¢, (x)%. This can be
interpreted as the amount of heat that remains at point x after a delta
distribution is diffused for time 7. Given a fixed set of time scales
{t1,...,14} € RY, the HKS at a point x is defined as:

HKS(x) = [ke, (x,%),..., ke, (x,x)]. 3)
We consider g = 100 as suggested in [SOG09] and K = 200.

WKS. The Wave Kernel Signature (WKS) [ASCI11] extends the
ideas above by modeling a quantum particle on the surface with a
given initial energy E. The descriptor for point x € M is defined as
the average probability over time to find the particle at position x,
and is computed as wksg (x) = YX_| f2(4)%0,(x)%, where fz(};)*
is log-normal energy probability distribution. Given a set of energy
levels {Ej,...,E4}, the WKS is defined as:

WKS(x) = [wksg, (x),...,wksg, (x)]. 4)

We use K = 200 basis functions and g = 100 energy levels.

AWFT [MRCB16] is based on the definition of Anisotropic Win-
dowed Fourier transform on non-Euclidean domains, and uses the
Anisotropic LBO [ARACI15]. A family of such operators is de-
fined depending on two parameters, anisotropy ¢ and orientation
6. A Gaussian window g;me is expressed for given 0,0 in the
Anisotropic LBO basis, with variance T > 0, translated to each ver-
tex and modulated with respect to the K smallest Laplacian eigen-
values. Given a scalar function f : M — R, the coefficients of its
windowed Fourier transform (Sf ); 1o are given by the inner prod-
uct between f and the atoms g;the. Dependence on parameter [ is
removed in [MRCB16] via application of the total weighted power,
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aggregating in a single value (Sywpf)y all coefficients with differ-
ent modulation. For a given point x € M, its AWFT is:

AWFT (x) = [(Stwpf)yay 0,0 (STWP ) o 0,] - 5

We use K = 200 eigenfunctions and the parameters T, o, 0 are fixed
as suggested in [MRCB16], obtaining a 100-dimensional descrip-
tor. For increased efficiency, we remesh via edge collapse [GH97]
all shapes with > 60K vertices and then extend the matches to full
resolution via nearest-neighbors in R3.

DEP. The discrete-time evolution process (DEP) [MOR*18] en-
codes the action of an integral operator on the surface. This action
is defined on top of a pairwise potential d : M x M — Ry that
depends on the geometry of the surface and encodes the degree of
influence that surface points exert on each other:

Afiy = [ A0y, ©)

for scalar functions f(;) : M — R. The action of d is realized by
the following recursive relations:

a1y =AS ) - @)

A score is defined for a fixed number 7' of time steps as s(x) =
fo(x) + XL A’ fo(x), summing up the contributions of the evolu-
tion process (7) across all discrete times t = 1,...,7. A DEP de-
scriptor is obtained by letting 7 — oo and using a multiscale ap-
proach on the choice of the pairwise potential d, giving DEP(x) =
[Sa,(x),..., 84, (x)]. In our experiments we use the biharmonic dis-
tance [LRF10] for the definition of d, approximated with K = 200
eigenfunctions and the parameters of [MOR*18], resulting in a
100-dimensional descriptor. For meshes with > 7K vertices, we
only consider 7K farthest point samples and map the matches back
to full resolution through nearest-neighbors in Euclidean space.

SHOT. The SHOT descriptor [TSDS10] encodes histograms of
normals, which are more representative of the local structure of
the surface than plain 3D coordinates. This descriptor is built on
top of a stable Local Reference Frame (LRF) defined as the princi-
pal eigenvector of a modified covariance matrix around each point.
An isotropic spherical grid with 32 partitions is aligned to the com-
puted LREF, and the 3D distribution of the normals is represented as
a local histogram per partition. The ordered concatenation of these
histograms defines the descriptor at each point. We use the standard
parameters of [TSDS10], yielding 320-dimensional descriptors.

GFrames SHOT is a variant of SHOT constructed on top of a
novel, more stable LRF as proposed in [MST*19]. The GFrames
LRF is based on the computation of the gradient of a scalar func-
tion defined on the surface. By varying the scalar function, it is
possible to produce several LRFs depending on the desired stabil-
ity properties. Following [MST™ 19], we adopt the square of the first
non-constant Laplacian eigenfunction as a scalar function. We refer
to the resulting 320-dimensional descriptor as GSHOT.

4.2. Matching pipelines

Functional Maps [OBCS*12,0CB*17] are based on the idea that
seeking for functional (as opposed to point-to-point) correspon-
dences makes the problem independent on the shape discretization
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and easier to optimize. Any point-to-point map IT: A" — M in-
duces a functional correspondence T : F(M,R) — F(N,R) via
the composition T (f) = f oIl In the Laplacian eigenbases @, ¥,
T is represented as a matrix C € REN XEM that maps coefficients
w.r.t. the basis @ to coefficients w.r.t. ¥. Following [NO17], we
estimate a functional map C by solving the non-convex problem:

argmin||CF — GC|[7 +wi [ CF — G|[7 + w2 CA g — AN ClIF
C
3

where A, Aps are diagonal matrices of the Laplacian eigenval-
ues. Matrices F € R¥*% G € RFV X4 contain the Fourier expan-
sion coefficients of ¢ probe functions on M and N. We use 20-
dimensional WKS descriptors concatenated with 20-dimensional
wave kernel maps [OBCS™*12] around body landmarks detected as
in [MMRC18]. We set k4 = 60 and kxr = 60. Given a functional
map matrix C, the underlying point-wise map IT € {0, 1} *"M
is recovered by solving the projection problem [OCB*17]:

n}%nHCCI)Tf'I‘THH% st 1=1. )

Iteratively Refined Functional Maps (bFMAP) follows the map
refinement and estimation method of [LRR*17, MMRC18]. Given
an input functional map €9 = ¢, mismatches are filtered out by
solving a sequence of convex problems:

"V = argmin [CVFY Gy +plCVoWIE,  (10)

with t = 0,...,T. The u-term enforces a diagonal structure on C,
where the shape of the diagonal is encoded in the “mask™ ma-
trix W. As probe functions we use pairs of corresponding deltas
(SQA (x)ﬁ%) (x) ()L, where 7% is the point-wise conversion of

9 via (9). The ¢» 1 norm promotes column-wise sparsity, allow-
ing to downweigh mismatches during the refinement process.

As done in [MMRC18], we set u = 0.01, T = 20 iterations, and
g = 1000 uniformly distributed delta functions over M.

BCICP is the only method submitted to our track from the authors
of [RPWO18]. It is a recent algorithm for functional map estima-
tion, employing an orientation-preserving regularizer and a new re-
finement procedure named Bijective and Continuous ICP (BCICP).

Orientation-preserving regularizer. Given two shapes M and
N, and a set of ¢ pairs of probe functions { (f,-,g,-) }?:1, adata term
is setup as in (8). Then, the following regularizer is introduced:

k
Eoriens = ). |Co Q7 = Qg o€l an
i=1

where  is an operator that extracts the orientation of a local frame
at each point, as encoded by the surface normal and the gradients of
the given descriptors. Eq. (11) attempts to preserve the orientation
of every corresponding local frame induced by the descriptors.

BCICP refinement. Similarly to ICP, the refinement alterna-
tively solves for a point-wise map and a functional map. However,
this happens both in the spectral domain and the spatial domain by
making use of several heuristics as follows:

Continuity of the point-wise map is improved by smoothing out

the displacement vector field induced by the map and filtering out
the outlier regions. Assume T : X; — Yp(;) from source to target
shape. To smoothen the correspondence at a vertex, we smooth out
the associated displacement vector t; = yy ;) — X; using the neigh-
boring ones. Edges are classified as ‘outliers’ if the mapped end-
points have large distance, since they are likely to be the boundary
of outlier regions; such edges are removed from the mesh adjacency
matrix, and points that do not belong to the largest connected com-
ponent of the modified connectivity will be regarded as outliers.

Bijectivity is improved by considering extra energies defined
on the compound point-wise maps from both sides. Specifically,
the original ICP uses the energy E(Can, T A) = H‘PCMN’ —
T MP| ? where C ‘M is the functional map from M to N, and
A M is the associated point-wise map from A to M. To pro-
mote bijectivity, the modified energy E(Caqpf, T, TA M) =

”‘DICMM - Tl',/\,[/\ﬁ'c/\/j\,[<I>‘!12r is used, where the auxiliary vari-
able C yq 1 is a functional map from shape M to itself. This energy
helps to regularize the compound map T A7 A4 tO be identity.
A similar term for Tar A(TA7 A 1S also added to the total energy.

Finally, map coverage is improved by spreading out the corre-
spondences of vertices with a large pre-image. A vertex on the tar-
get shape is “covered” if it is the image of at least one vertex on the
source shape. More discussion can be found in [RPWO18].

For the application of BCICP, meshes are downsampled to ~ 5K
vertices using [YBZW14]. BCICP is then executed with the de-
fault parameters and 10 iterations per pair. The estimated maps are
propagated back to the original shapes by simple nearest-neighbor
search; therefore, the final maps may have low coverage.

5. Evaluation

We adopt the standard error mea- \
sure defined in [KLF11]. Each =
method is represented as a curve

.J’
|

denoting the percentage of corre- z 82 \
spondences (y-axis) with (normal- <04 \
ized) geodesic error below a vary- <03
. . <0.2
ing threshold (x-axis). We only plot 201
the interval [0,0.5], while the aver- <0.0

<0.0

age geodesic error (AGE) consid-
ers the interval [0, 1]. The normal-
ized distances from a point p are shown in the inset figure.

Ground truth. The ground-truth is given by the state-of-the-art
registration method FARM [MMRC18]. We use it to register all the
shapes to SMPL, obtaining as a side-product a meaningful dense
map in both directions. A map between two given shapes M and
N is then obtained by composing the map from M to SMPL with
the one from SMPL to V (see two examples in Figure 2).

Approximate geodesic error. Since our dataset includes several
meshes with hundreds of thousands of vertices, we approximate
geodesic error. Given two shapes M, N and a correspondence:

e We only consider the subsets of 6890 vertices of the SMPL
model registered via FARM, denoted by M, and ;..
e We denote by N, the estimated matches for the points in M.

(© 2019 The Author(s)
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Figure 2: Two examples of dense point-to-point correspondence
provided by the FARM registration pipeline. The model in T-pose is
the SMPL template. Correspondence is encoded by colors.

e We compute distances between the 6890 vertices of N, and the
6890 vertices of A, using Dijkstra’s algorithm.

e For points located on disconnected components (e.g. due to par-
tiality or accessories) we use Euclidean distances.

e Distances are normalized to within [0, 1].

6. Results

The dataset of 430 pairs is partitioned into separate (and possibly
overlapping) subsets described in the following.

Others vs SMPL. We test the capability to map different human
bodies to a common template. Here we measure the stability to
noise over the source shape (43 pairs).

SMPL vs Others. This measures how noise over the target shape
affects the method’s performance (43 pairs).

with SMPL. The data here is a combination of pairs from the
two previous sets. This simulates a more realistic setting in which
source and target do not have any a-priori role (86 pairs).

Others vs Others. The SMPL template never appears, hence one
cannot rely on any expectation of mesh regularity (344 pairs).

Different Connectivity. This is the core of our challenge. Differ-
ently from the Others vs Others experiment, here we do not allow
pairs from the same dataset. Therefore, all shape pairs have differ-
ent connectivity (415 pairs).

Different Connectivity plus Symmetry. Same as above, but for
each point we consider correct both the ground-truth correspon-
dence and its symmetric counterpart (415 pairs).

Same Connectivity. With this reduced set, we evaluate how much
methods improve by exploiting this assumption (15 pairs).

Same Connectivity plus Symmetry. same pairs evaluated for the
Same Connectivity case, but considering also the symmetric points
of the ground-truth correspondence as correct (15 pairs).

All pairs. The complete dataset, unifying all previous experiments.
In Figure 5, we povide a visual summary of this set (430 pairs).

6.1. Comparisons

Descriptors. In Figure 3 we compare the descriptors of Section 4.1
in all the settings detailed above. The worst results overall are ob-
tained by GPS, while WKS is consistently the best except for the
Same Connectivity case. HKS is second best, followed by AWFT.

© 2019 The Author(s)
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Descriptor Avg AGE Max AGE Max AGE Pair
AWFT 0.33 0.50 27_40
DEP100 0.38 0.73 10_16
GPS100 0.35 0.63 22_40
HKS100 0.25 0.49 37_40
SHOT 0.35 0.47 18_40
WKS100 0.21 0.54 1_40
GSHOT 0.34 0.49 39_18
Corr Methods

FMAP 0.27 0.75 39_10
bFMAP 0.27 0.75 34_10
BCICP 0.08 0.57 12_40

Table 1: Descriptor (top) and matching pipelines (bottom) results.
The last column reports the shape pair achieving the max AGE.

We found that the latter seems quite sensitive to the specific setting,
with variations in quality even among SMPL vs Other and Other vs
SMPL. All methods perform significantly better in the case of
same connectivity. DEP seems the most sensitive overall, with a
dramatic drop in accuracy according to the symmetric evaluation.

Table 1 (top) reports a summary quantitative evaluation, largely
confirming the remarks above. The largest error is observed for
pairs that involve mesh n. 40 (depicted in Figure 4), as also con-
firmed in Table 2 (showing the 5 pairs with largest AGE). In Fig-
ure 5 we further plot the complete set of curves (one per shape
pair) for each method. We find this visualization informative, as the
curves for the SHOT, GSHOT, HKS, and WKS descriptors exhibit
less spread and are more concentrated around their mean, while for
AWFT, GPS, and DEP the curves are less repeatable.

Matching pipelines. In Figure 3 we also report comparisons for the
matching pipelines, where BCICP comes out as the best performing
method. We attribute this gap in performance to its special regular-
izers, and further note that the accuracy of BCICP does not directly
depend on mesh resolution, since it mainly relies on geodesic dis-
tances that are not affected too much by changes in mesh connectiv-
ity. bFMAP outperforms standard FMAP on the pairs that involve
the SMPL shape, while it does not give any improvement in the
other cases. This is mainly due to its parameters being optimized
for the registration performed by FARM, which operates toward
the SMPL template. A quantitative comparison between the three
pipelines is better summarized in Table 1 (bottom). In addition, in
Table 3 we show comparisons on the 5 pairs with the worst AGE.
Differently from the case of descriptors, however, here we do not
observe any consistently difficult shape. Finally, in Figure 5 we plot
curves for all the shape pairs for each matching pipeline. BCICP
exhibits significantly less variance, confirming the good quality of
the correspondences. We further note how the bFMAP curves are
more concentrated toward the top of the graph if compared to the
standard FMAP pipeline, confirming its better behavior. In Figure 5
(bottom right) we also plot the distribution of shape pairs (430 in
total, x axis) at increasing average geodesic error (AGE, y axis).
The mean AGE over all methods is shown in blue while the min-
imum and maximum AGE are depicted respectively as green and
red shaded areas. The vertical blue lines identify shape pairs with
same connectivity: these are mainly located on the lower end of the
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\ AWFT DEP GPS HKS SHOT WKS GSHOT |
|= = = FMaPs bFMAPS BCICP
Others vs SMPL SMPL vs Others with SMPL

100 100 100

90 90

80

70

60

50

40

30

20

0 0.1 0.2 03 04 0.5 0 0.1 0.2 03 04 05 0 0.1 0.2 03 04 0.5
Others vs Others Different Connectivity Same Connectivity

0 0.1 0.2 0.3 04 0.5 0 0.1 0.2 0. 04 05 0 0.1

3 0.3 04 0.5
Same ngngctivity §ym Different Connectivity Sym

0.2
All pairs

0 0.1 0.2 0.3 04 0.5 0 0.1 0.2 03 04 0.5

Figure 3: Descriptor and matching pipelines comparisons. Overall, we observe that shapes with the same mesh connectivity tend to induce
better correspondences.

Pairs |Mean AGE AWFT DEP100 GPS100 HKS100 SHOT WKS100 GSHOT

35.40 | 045 0.50 0.39 0.56 0.37 0.42 0.52 0.40
27_40 | 0.44 0.50 0.43 0.57 0.35 0.41 0.44 0.40
24_40 | 0.44 0.44 0.37 0.56 0.39 0.43 0.52 0.40
2240 | 0.44 0.47 0.34 0.63 0.39 043 0.44 0.39
31.40 | 043 0.43 0.41 0.57 0.35 0.45 0.39 0.42
Table 2: Comparison of descriptors for the 5 shape pairs with Figure 4: A comparison between the high-resolution, non-uniform
largest average geodesic error. and partial mesh 40 and the SMPL template mesh.
Pairs | Mean AGE FMAP bFMAP BCICP graph, meaning that estimating point-to-point correspondences for
383 0.62 0.74 0.74 0.39 such cases is easier than for cases with different connectivity.
389 0.60 0.71 0.72 0.37
34_13 | 0.59 0.69 0.69 0.40
32.26 | 057 0.74 0.74 0.21 6.2. Runtime
21_1 0.56 0.73 0.72 0.24

All descriptors were computed on an Intel 3.6GHz i7 CPU with
32GB RAM. In Figure 6, we measure time from shape loading to
descriptor storage for each shape and descriptor. FMAP has an av-
erage runtime of 28s, with a large standard deviation of 22s (worst

Table 3: Matching pipelines on the 5 pairs with largest AGE.

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.
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Figure 5: Full comparisons on the entire dataset. Every black curve corresponds to a shape pair (430 per subplot); the colored curves
represent the mean for each method. In the bottom right, we show the AGE (y axis) over all pairs (x axis); the blue curve is the mean AGE
across all methods, while the red and green areas denote min and max AGE. The pairs with shared connectivity are identified by vertical

dashed lines.

case 151s). The average runtime for bFMAP is 427s. BCICP re-
quires 150s of pre-processing, and 100 — 300s for map estimation.

7. Conclusion

With this SHREC track we provided a comparison among point-to-
point matching algorithms for human shapes represented as trian-
gular meshes with different connectivity. We demonstrate that the

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

recent BCICP pipeline and standard descriptors such as HKS and
WKS are more stable to connectivity variations which still pose
a strong challenge to the shape analysis community. We conclude
that, differently from common practice, past and future matching
methods should be conceived and evaluated with respect to their
robustness to connectivity changes. Finally, while we only consid-
ered human shapes in this track (as a consequence of using an ac-
curate, although model-specific registration pipeline [MMRC18]),
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Figure 6: Runtime comparisons for descriptor computation.

we conjecture that our remarks on the relevance of connectivity in
matching tasks may still hold for more generic shape classes.
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