
CEIG - Spanish Computer Graphics Conference (2015)
Jorge Lopez-Moreno and Mateu Sbert (Editors)

PREFR: a flexible particle rendering framework

S. E. Galindo†1, P. Toharia1, J. Lopez-Moreno1, O. D. Robles1, L. Pastor1

1Universidad Rey Juan Carlos, Spain

Figure 1: Screen captures of the accompanying PREFR interactive demos (See supplementary videos). From left to right:
Fire simulation (100k particles), neuronal activity simulation and GIS data visualization of Madrid city, reflecting a particular
citizen and enterprises spatial interaction (See Section 4).

Abstract
We present PREFR (Particle REndering FRamework): a first approach to a general-purpose particle rendering
framework on the standard OpenGL architecture, designed with the goal of being easily configured by the user
without compromising efficiency. In this paper, we analyze and discuss the performance of each stage involved in
particle rendering in order to improve its efficiency for future versions with additional GPGPU computation steps
or multicore parallelization techniques.
Finally, we show the potential of our particle engine by tackling two very different problems: The rendering
of neuronal electrical impulses in physiological models of the human brain, and the visualization of emergent
patterns for information analysis, specifically emphasizing structured information in a complex data set.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Particle systems—CG
applicationsPerformance

1. Introduction

Particle rendering techniques have been extensively used in
the fields of animation, simulation and information visual-
ization. The most common approach is to develop ad-hoc so-
lutions to tackle specific problems. This allows the program-
mer to obtain the best performance for each case. However,
ad-hoc solutions lack the flexibility needed in more general
scenarios, often requiring a great amount of development
time. In this paper we present PREFR, a particle-rendering
framework designed to be as general as possible while keep-
ing high performance as a goal. This framework provides the

† sergio.galindo@urjc.es

programmer with an intuitive high level interface for build-
ing particle systems with a minimal effort, while allowing
advanced programmers to go on a lower level of develop-
ment and fine tune their applications in order to achieve the
best performance possible. In section 3 we describe the ar-
chitecture of the framework. In section 3.2 we analyze the
performance of PREFR. Finally, in order to show the flex-
ibility of our approach, we present three applications built
with our framework which have a very distinctive nature
both on the data and the type of particles.

c© The Eurographics Association 2015.

DOI: 10.2312/ceig.20151195

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ceig.20151195

S. E. Galindo et al. / PREFR: a flexible particle rendering framework

2. Related Work

One year after the first use of structured particle systems
in the movie: Star Trek II: The Wrath of Khan, Reeves in
his seminal paper [Ree83] introduced the concept of par-
ticle system: a method for modeling fuzzy objects such as
fire, clouds, and water, which models an object as a cloud of
primitive time-evolving particles that define its volume. He
showed the potential of this method for stochastic modeling
of irregular structures such as trees or grass in subsequent
work with Blau [RB85].

Many game engines have developed their own custom so-
lutions in order to edit and render large quantities of interac-
tive particles [Roc14]. However, the architecture of a particle
system manager has rarely been discussed in the literature
[vdB00], with most academic papers focused on improving
the rendering efficiency. For instance, Cantlay [Can07] pro-
posed a method to render particles off-screen into a down-
sampled render target to avoid the overdraw and fill rate is-
sues related to the rendering of large particles with alpha
transparency. His method produced compelling results for
low frequency effects such as smoke but it is not suitable for
detailed rendering. In a similar line of work, Persson [Per12]
proposed to trim particles with fitted polygons (instead of
quads) to avoid unnecessary alpha tests. Over the last years,
recent advances in the GPU pipeline have been successfully
incorporated into particle systems, such as compute shaders
[Tho14] (with a tile-based subdivision of the frame buffer),
or interfaces with CUDA to handle the computation of par-
ticle dynamics [Sev13].

Starting with spots and stochastic textures, as proposed
by van Wijk [vW91], the visualization of complex data has
been a traditional application of particle systems, particu-
larly 3D vector and flow field rendering in engineering ap-
plications [ZSH96]. In this field, the GPU has gained in-
creased attention from the research community: from the
GPU sorting algorithm used by Kruger et al. to depict 3D
flow fields on regular grids [KKKW05] (which was on par
with CPU in terms of speed), to the latest CUDA implemen-
tations, which outperform their CPU parallel counterparts in
OpenMP [Sev13].

In the field of data mining, visual patterns can emerge
from the clustering of multiple point samples and the as-
sociated shape. To this end, α-shapes were introduced by
Edelsbrunner et al. [EKS83] in order to model the convex
hull of a set of particles in a plane. Furthermore, Packer et
al. [PBN∗13] proposed a heuristic model to create hierar-
chical clusters based on α-shapes. In this work, we show
how kernel functions (e.g. gaussian) mapped onto particles
produce similar cluster visualizations. In this context, clus-
ter recognition implies multiple perceptual cues: size, shape,
variations, etc. requiring a configurable particle representa-
tion. For instance, Stenholt [Ste14] proved in a recent study
that constant visual angle glyphs (constant screen-size parti-

cles) are better suited for the perception of cluster structures
in 3D scatterplots.

In this paper we present a highly configurable particle sys-
tem for data enhancement and visualization, analyzing its
performance for further improvement in terms of rendering
efficiency and editing capability.

3. PREFR framework

3.1. Framework architecture

In this section we discuss the architecture of the framework,
including system requirements, design decisions and imple-
mentation details. Due to the previously mentioned lack of
discussion in this aspect we propose the following approach.

PREFR has been designed taking into account flexibility
and efficiency as the fundamental pillars of the architecture.
Ease of use is also another important aspect when developing
applications of a particle engine. A highly complex interface
may provide additional control for elaborated interactions
compared to simple ones, however, it is unclear which pa-
rameters or combinations of parameters should be exposed
to each user profile (artist, data scientist, etc.) and thus they
are out of the scope of this paper.

Thus regarding usability, the PREFR’s design will be fo-
cused in simplicity on the integration, high degree of config-
uration and generality of cases. Even without adapted GUI,
the actual framework allows to create visual effects and rep-
resentations with a small amount of effort on the developer
or end-user side. In Section 4 we show two very different
scenarios based on a python scripting pipeline.

Functionality distribution is a crucial issue to tackle when
designing a flexible and efficient system, as one usually op-
poses to the other, often in a difficult balance when looking
for a particular behavior. PREFR has been designed with this
in mind, providing an efficient framework, running on native
OpenGL, for a wide range of applications.

In general, despite ad hoc solutions present a certain grade
of modularity, they usually do not need an exposed set of op-
erating modules to be exchanged or modified according to
final application needs, ultimately leading to a certain cou-
pling between these components. In contrast, this is one of
the key aspects of PREFR, as the developed working base
can be complete and simply exchanged with a brand new
one crafted by the framework user. By this way, provided
components can be easily reimplemented with low effort to
meet the functionality of a specific application, adding or
modifying new attributes or behaviors as needed.

PREFR is a particle engine framework focused on the ac-
tual particles processing, which are the main entity of the
system i.e. it is all about the particles. The engine is created
with a given budget of particles to be used in the simula-
tion. Then, the desired set of them is distributed along the
included components e.g. considering several emitters, each

c© The Eurographics Association 2015.

10

S. E. Galindo et al. / PREFR: a flexible particle rendering framework

Figure 2: System architecture and behavior overview.

one performing a different behavior, any particles distribu-
tion can be made over them, even on a running simulation.
This approach provides a considerable flexibility on the con-
figuration of the system, as the same set of particles can be
assigned into completely different ranges through the system
stages’ components, as it can be seen on Fig. 2.

It is important to note that the actual system stores dead
particles as well, avoiding memory reservations and libera-
tions which might lead to a substantial overhead.

3.1.1. Components

This section describes in more detail how we designed the
system and how we come to decide functionality distribution
and operating modules.

Regarding the classic pipeline of three-dimensional
graphics applications, the render process is usually split into
two main steps: Update and Render. The former consists
on updating objects state for the elapsed time from the last
frame or simulation step whereas the latter renders the cur-
rent frame and displays the result on the screen. These stages
can be subdivided when considering particle engines: emis-
sion and update. As we may observe that update operation
concerns emission of new particles and the later refresh of
alive ones’ state; in the case of rendering we need to send
the new or modified data to the graphics card and launch the
render process, and depending on the nature of the chosen
rendering method, it may be necessary to perform a sort op-
eration.

c© The Eurographics Association 2015.

11

S. E. Galindo et al. / PREFR: a flexible particle rendering framework

Concerning the two subtasks mentioned compounding the
update stage, as far as from the same data set different results
might be desired, both emitter and updater modules are in-
cluded as part of the framework, the first one being in charge
of emission; i.e. the initialization of particles when they be-
come “alive", being the second one in charge of updating
their state through simulation and modifying in consequence
their position, color, size, etc. These modules can be reim-
plemented for both initializing and updating in diverse ways
according to application needs; e.g. if our program does not
need to apply acceleration, we can override the functional-
ity to save derived operations and improve application per-
formance. These two modules can be accessed separately,
referred herein on as “Update" components.

Taking into account the conservative render operation we
described above, there is a renderer component which might
be reimplemented for various render APIs such as DirectX
or toolkits such as OpenSceneGraph. The renderer compo-
nent is in charge of uploading related data to graphics card
and afterwards, rendering the particles.

Particle engines usually allow to render diverse shapes or
surfaces according to system needs, but the most commonly
used is to render rectangles or triangles, in which several
kinds of effects can be projected such as textures, colors,
procedural image generation and so on. On the further text
we will focus on rectangle-based (quads) rendering for it is
both the most common and flexible, in the particular case of
billboards, also known as impostors or in 2D, sprites. Bill-
boards have the property of being always perpendicularly
facing the camera, so they are rendered as squares or rectan-
gles without taking into account the rotation in terms of ver-
tices and fragments rendering. Our render approach is based
on the instantiation feature proviced by OpenGL, which al-
lows to save memory use and cost on the GPU. We also avoid
to send dead particles as can be seen on Fig. 2 on the final
stage.

When addressing particles rendering based on quads, as
far as the desired result is more complex than colored rect-
angles moving along the screen it is necessary to set a trans-
parency factor. This allows to create an infinite number of
effects but with the counterpart it brings with it, which is
the alpha blending, requiring to render objects in different
and, in consequence, more inefficient way than when deal-
ing with opaque 3D objects. The simplest solution, and the
one discussed on this paper, is known as Painter’s algo-
rithm, consisting on rendering from farther to closer objects
(from camera’s point of view), so the closest objects are
painted on top of farthest ones, as a real life painter would
do when painting a canvas. In computer graphics this leads
to a sorting operation concerning all transparent objects in-
volved in scene. In the case of particle systems, which are
expected to display thousands or even millions in nowadays
real-time graphics applications, this becomes a significant
time-consuming process, as sorting operation in a single core

scales overO(n log n) computational cost. Over the last few
years, GPGPU solutions have been released for the perfor-
mance improvement of this particular issue.

The sorting operation input has been reduced to the oper-
ating minimum, which is particles IDs and distances, as the
a sorted array of IDs is the only output. By this way, we re-
duce the consume of memory bandwidth and time spent on
data transferring.

Considering sorting as a common problem, a sorter com-
ponent is included on the system, for potential reimplemen-
tations or improvements. For this paper, the PREFR working
base include a single core CPU and a CUDA Thrust! sorter
components which after development have been easily ex-
changed with a single line of code. Performance issues will
be discussed in detail later on.

Figure 3: Fire effect demo used for performance testing. In
this study, beyond a small number of particles (>65k) GPU
sorting outperforms the CPU implementation.

Sorting operation also leads to two other tasks we exter-
nalized as reimplementable methods with future improve-
ments in mind. First one is calculating particles distance
to the camera, for the later sorting. This one, due to the
strong coupling with the sorting operation is placed within
the sorter component. The second one is the matching of the
sorted distance array with their corresponding particle object
containing its current position, size and color, placed within
the renderer component due to its absolute dependence from
render type and module.

In order to define the way particles should look and be-
have like, we designed a particular component to allow this
task. Particles aspect and behavior might be defined by a
considerable number of parameters such as position, rota-
tion, size, color, velocity, among others. However, we de-
fined a minimum of parameters to determine their variations
over time as lifetime, color, size and velocity, which allow to
vary particles position, color and size along their entire life
cycle. These attributes determining the behavior are stored in
a particular module in charge of providing the corresponding
values of each property for a given particle and life value, al-
lowing to easily define the values obtained by particles along
the simulation.

c© The Eurographics Association 2015.

12

S. E. Galindo et al. / PREFR: a flexible particle rendering framework

 0

 20

 40

 60

 80

 100

500
1000

2000
4000

8000
16000

32000

64000

128000

256000

512000

1024000

2048000

T
im

e
 (

s
e

c
o

n
d

s
)

Number of particles

Update

Camera distance

Sort

Setup

Render

(a) Execution with sort operation on CPU. Percentage of
execution time

 0

 20

 40

 60

 80

 100

500
1000

2000
4000

8000
16000

32000

64000

128000

256000

512000

1024000

2048000

T
im

e
 (

s
e

c
o

n
d

s
)

Number of particles

Update

Camera distance

Sort

Setup

Render

(b) Execution with sort operation on GPU. Percentage of
execution time

 1

 10

 100

 1000

 10000

 100000

 1024 4096 16384 65536 262144 1.04858e+06

F
P

S

Number of particles

Using CPU sort

Using GPU sort

(c) Performance in FPS: CPU vs. GPU

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1024 4096 16384 65536 262144 1.04858e+06

Number of particles

Speedup

(d) Speedup: CPU vs. GPU. At 65k GPU sorting outper-
forms the CPU version.

Figure 4: Performance comparison, with increasing number of particles, between CPU and GPU versions.

The current approach allow to define a series of life key
points and their attribute values, which are linearly interpo-
lated in the intermediate points. By this way, we may define
a piecewise function with a low computational cost for each
attribute.

Emission nodes, as by their name may result confusing
due to de resemblance to emitter are different but related
components. Emission nodes are a connection of the par-
ticle engine with the space in the virtual world. Emission
nodes are actually invisible but positioned objects over the
scene, being responsible for determining particles initial po-
sition and velocity direction among other possible attributes.
These two are the minimum we defined on the working base
of PREFR, allowing us to emit targeted particles on a given
position, sampled over lines, planes, spheres or even meshes.

Emission nodes may behave also as 3D objects in terms
of movement, scale and so on, being all their attributes eas-
ily modifiable during runtime as shown in both use cases,
in which we show how they move or change the color they
induce to particles. Following this approach it is easy and
efficient to create, for instance, fire torches all over a scene

by simply adding nodes to the list, sharing the configuration
with the rest of the desired emission nodes.

Once a global overview of the system has been given
it can be observed in detail on Fig. 2. As described, the
pipeline is summarized on the emission, update, camera dis-
tance calculation, sorting, setup and finally render, returning
to emission stage on the next simulation frame. Prototypes
and emission nodes are accessible for emitters and updaters.
Particles life cycle also can be seen, which shows how a dead
particle might be emitted to be later updated and rendered
through the pipeline. Other particles might die on the frame,
so they will not be sent to the graphics card.

3.2. Performance analysis

We have carried out different tests to evaluate the perfor-
mance of the PREFR framework. All the experiments where
run on an Intel i7-4820K CPU @ 3.70GHz with 16 GB of
dual channel RAM Memory and an nVIDIA 770 GTX with
2GB of memory. We used CUDA Trust! running over CUDA
7.0. Tests have been run using the fire effect demo to present
results taken from a good looking example, as shown in Fig
3.

c© The Eurographics Association 2015.

13

S. E. Galindo et al. / PREFR: a flexible particle rendering framework

 0

 20

 40

 60

 80

 100

1 4 16 64 256
1024

4096
16384

65536

T
im

e
 p

e
rc

e
n

ta
g

e

Number of emitters

Update

Camera distance

Sort

Setup

Render

(a) Increasing number of emitters.

 0

 20

 40

 60

 80

 100

000500

001000

002000

004000

008000

016000

032000

064000

128000

256000

512000

1024000

2048000

T
im

e
 (

s
e

c
o

n
d

s
)

Number of particles

Update

Camera distance

Sort

Setup

Render

(b) Stressing the fill rate.

Figure 5: Distribution of execution time (%) for the sort operation on GPU, varying fill rate and number of emitters.

A first group of tests was executed in order to observe the
impact of increasing the number of particles. Fig 4(a) shows
for each operation the percentage of the total execution time
when it is run only on the CPU. It can be seen that increasing
the number of particles means that all operations spend more
execution time, but specially for the sort one. In fact, the sort
operation is the one that spends the biggest amount of time,
giving us reasons to do a new test with an implementation
in CUDA to be run on the GPU. Fig 4(b) shows the results
obtained from this second experiment, and it can be seen
that running the sort operation on the GPU greatly reduces
the amount of time spent on it.

The benefits of this reduction of time in the sort operation
can be seen in Figs. 4(c) and 4(d). In the former it can be seen
that increasing the number of particles beyond 500,000 the
implementation on GPU achieves a better FPS rate. In the
latter we can see that having more than 1 million particles
the implementation on the GPU yields an execution time 1.6
times faster than the implementation on the CPU.

More experiments have been run changing the number of
emitters in the simulation. Fig. 5(a) shows the results col-
lected running the simulation on the GPU. It can be noticed
the robustness of the PREFR framework, since the amount
of time spent in the sort operation decreases as the number
of emitters increases.

A last set of experiments were run to evaluate the behavior
of the PREFR framework stressing the fillrate. Once again, it
can be seen in Fig. 5(b) that as the number of particles grows,
the time spent in the sort operation operation is greatly re-
duced but with a small increase on time on the render op-
eration due to fill rate and the CUDA and OpenGL context
exchanges.

3.2.1. Comparison

A set of preliminary tests have been run over simple both
OpenSceneGraph 3.2.1 and OGRE v1.9 examples consist-
ing on an empty scene with a single emitter and 100.000

sorted particles, obtaining from stable simulation a raw per-
formance of 7 and 12 FPS respectively, whereas PREFR per-
forms 30 FPS using a set of CPU-based components.

Looking through both OGRE’s and OpenSceneGraph’s
source codes, up to the authors’ knowledge, both engine’s
introduce a significant overhead when addressing both sort
and render operations. On one hand, this may be caused by
the sorting generalization, including additional data which
might slow down the operation. On the other hand, the ren-
der operation is also generic, integrated in both engines with
other parts of the scene, leading to render particles one by
one instead of using the batch scope addressed in PREFR.

4. Use cases

In order to show the flexibility and possibilities of the
PREFR framework in this section we tackle two very dif-
ferent use cases, each requiring different approaches and a
diverse and distinctive set of parameters. On one hand we
present an example of displaying neuronal activity and thus
we are using particles to present dynamic data and on the
other hand we use particles to display Geographical Infor-
mation System (GIS) data, in this case static information,
and we show how to use our framework to gain insight on
complex data by visual aggregation.

4.1. Neuron activity

In this use case we show a possible representation of neu-
ronal activity information. The data used in this example
comes from the Blue Brain Project and is composed of a
synthetic microcircuit from the cortex area of the brain. This
microcircuit has a column which is composed of 10 mini-
columns and each minicolumn is composed of 100 neurons.
From the whole microcircuit we chose a subset of neurons
and posed a set of particles moving along the dendrites and
following its trajectory to the soma in order to, although is

c© The Eurographics Association 2015.

14

S. E. Galindo et al. / PREFR: a flexible particle rendering framework

not a realistic simulation, mimic the electric impulses that
may arise in the brain, as it can be seen on Fig. 6.

Figure 6: Neuronal activity represented with particles

There can be different approaches for presenting this ac-
tivity information but we have chosen the one that has the
best trade-off between the number of alive particles and the
amount of additional computations besides the actual parti-
cle ones.

In the data used neurons are described in form of a set of
connected nodes that form a tree for each of the their neurites
(dendrites and axon). Therefore we computed the possible
paths that go from dendrite leaf nodes to the soma and in
order to make particles follow the trajectory of the neurites
we placed an emitter at the beginning and move it in each
step following the node chain of the neurite.

Each emitter has a number of particles, which can be user-
configured, and has also a velocity which defines the dis-
tance it will be displaced from one step to another. In each
step the emitter spreads particles with a lifespan greater than
the time step which makes particles leave a trace of the im-
pulse. Each particle is set to render a quad impostor which
has its alpha channel decaying with respect to the center,
thus achieving a blurring effect on the zones farther from the
center of the impostor. For making the effect clearer we can
easily configure the alpha decay function. Using the ability
of PREFR to easily configure color and size with respect of
the lifespan we can also fine tune the amount of trace, the
size of the head of the impulse, etc., thus allowing the user
to seek easily and interactively the final effect achieved.

4.2. GIS data

In this use case we show updated information from Madrid
city about shops, establishments and properties as well as
the activities carried out in each of them. This information
is available at the Madrid City Council website [dcaMcc14],
that keeps a list classified by categories of activities.

The approach we have chosen for presenting this informa-
tion is based on setting up one particle per shop, establish-
ment or property. The particle’s color is chosen based on the

category of activity, but taking into account their position in
the color spectrum so as to be able to achieve some useful
aggregation. The color has maximum intensity at the center
of each particle, and its alpha follows an exponential func-
tion to color the surface covered by the particle. Finally, we
have set different sizes for particles corresponding to differ-
ent categories.

PREFR framework is flexible and configurable, so we
have to say that the user can tune all the mentioned parame-
ters to its convenience.

We have used the PREFR framework on information
about the geographical distribution of schools including also
pre-school and primary school (blue information in Fig. 7)
as well as the distribution of places whose activities are not
appropriate for under eighteens (red information in Fig. 7),
like sex and gun shops, betting houses, etc.

Figure 7(a) shows the position of both types of activities
without depicting their area of influence. It has been done
using a point based representation of the particles. It can
be seen that schools are spread throughout the city, while
the other activities are less predominant but with an impor-
tant concentration in the north part of the city center, as well
as another noticeable presence south-east, under the area la-
beled as NUMANCIA in the map.

An increase in the particles’ size allows to set up some
influence area around each point, as we show in Fig. 7(b). It
can be seen the appearance of some mauve areas as a result
of the aggregation of red and blue colors. For example, in
the north of the area labeled as UNIVERSIDAD in the map,
there is one of these mauve regions, meaning that schools
are close to places where the other activities take place. A
discussion about the appropriateness of this situation can be
easily settled.

Following this approach, we have also analyzed the geo-
graphical distribution of retail stores (blue data in Fig. 4.2)
and malls (red information in Fig. 4.2), along with their re-
gions of influence. As mentioned, to do that all particle pa-
rameters can be tuned up by the user to its convenience.

There are two noticeable red regions close to the city
center. One slightly north of the center, and another one on
the east part of a neighbourhood labeled SALAMANCA in
the map (see Fig. 4.2). These are two populated (as well as
quite popular) zones of the city, so it is normal to find this
strong red areas surrounded by mauve and blue ones. But
it can be easily seen that there are some red areas like the
one south of the label SAN FERMIN, the one south east of
ATOCHA, the one at SANTA EUGENIA and so on, isolated
from blue ones. So it can be said that the influence of this
shopping malls prevents from opening retail stores.

c© The Eurographics Association 2015.

15

S. E. Galindo et al. / PREFR: a flexible particle rendering framework

(a) Point based representation of particles (b) Particles with area of influence

Figure 7: School vs bad influences

Figure 8: Retail stores vs. malls

5. Conclusions and future work

This paper presents PREFER, a particle rendering frame-
work designed with two goals in mind: easiness of
configuration and efficiency. Regarding the first issue, this
paper presents two very different use cases, giving also an
idea of the framework’s flexibility for different application
areas. Regarding this last issue, from our performance
analysis we have identified parts of the pipeline which will
be potentially moved to the GPU in future versions of this
engine, increasing the overall performance of the system if

high-end GPU units are available.

We also think that there are at least, two areas which re-
quire further research:

• The range of particle editing parameters exposed to the
user. It should maximize expressiveness while keeping
an intuitive and manageable set. Different dataset will
require optimized controls which could even be inferred
from the kind of visualization desired by the user.

• The mathematical functions or textures describing trans-
parency at each particle have a direct impact on cluster
perception and they should be studied and validated by
means of psychophysical experimentation.

Finally we plan to publish our particle engine as an open
source tool for visualization researchers.

Acknowledgements

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 604102
(HBP), the European Research Council (ERC-2011-StG-
280135 Animetrics), and the the Spanish Ministry of Econ-
omy and Competitiveness (Cajal Blue Brain Project, Spanish
partner of the Blue Brain Project initiative from EPFL and
grant TIN2014-57481). The work of Jorge Lopez-Moreno
was funded by the Spanish Ministry of Science and Educa-
tion through a Juan de la Cierva-Formacion Fellowship. The
data used in the neuroscience examples has been provided
from the Blue Brain Project.

c© The Eurographics Association 2015.

16

S. E. Galindo et al. / PREFR: a flexible particle rendering framework

References
[Can07] CANTLAY I.: Chapter 23: High-speed, off-screen parti-

cles. In Gpu Gems 3, Nguyen H., (Ed.). Addison-Wesley Profes-
sional, 2007. 2

[dcaMcc14] DATA CATALOG AT MADRID CITY COUN-
CIL O.: Censo de locales y sus actividades.
http://datos.madrid.es/portal/site/egob, 2014. 7

[EKS83] EDELSBRUNNER H., KIRKPATRICK D., SEIDEL R.:
On the shape of a set of points in the plane. Information The-
ory, IEEE Transactions on 29, 4 (Jul 1983), 551–559. 2

[KKKW05] KRUGER J., KIPFER P., KONCLRATIEVA P., WEST-
ERMANN R.: A particle system for interactive visualization of 3d
flows. Visualization and Computer Graphics, IEEE Transactions
on 11, 6 (Nov 2005), 744–756. 2

[PBN∗13] PACKER E., BAK P., NIKKILA M., POLISHCHUK V.,
SHIP H. J.: Visual analytics for spatial clustering: Using a heuris-
tic approach for guided exploration. IEEE Transactions on Visu-
alization and Computer Graphics 19, 12 (2013), 2179–2188. 2

[Per12] PERSSON E.: Graphics gems for games: Findings from
avalanche studios(link). Siggraph 2012 course Advances in Real-
Time Rendering in Games, 2012. 2

[RB85] REEVES W. T., BLAU R.: Approximate and probabilis-
tic algorithms for shading and rendering structured particle sys-
tems. In Proceedings of the 12th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH 1985
(1985), pp. 313–322. 2

[Ree83] REEVES W. T.: Particle systems - a technique for mod-
eling a class of fuzzy objects. ACM Trans. Graph. 2, 2 (1983),
91–108. 2

[Roc14] ROCKENBECK B.: The infamous:second son particle en-
gine, 2014. 2

[Sev13] SEVO I.: A million particles in cuda and opengl, 2013. 2

[Ste14] STENHOLT R.: On the benefits of using constant visual
angle glyphs in interactive exploration of 3d scatterplots. ACM
Trans. Appl. Percept. 11, 4 (Dec. 2014), 19:1–19:23. 2

[Tho14] THOMAS G.: Compute-based gpu particle sys-
tems. http://www.gdcvault.com/play/1020002/Advanced-Visual-
Effects-with-DirectX, 2014. 2

[vdB00] VAN DER BURG J.: Building an advanced particle sys-
tem, 2000. 2

[vW91] VAN WIJK J. J.: Spot noise texture synthesis for data
visualization. In Proceedings of the 18th Annual Conference
on Computer Graphics and Interactive Techniques (1991), SIG-
GRAPH ’91, ACM, pp. 309–318. 2

[ZSH96] ZOCKLER M., STALLING D., HEGE H.-C.: Interactive
visualization of 3d-vector fields using illuminated stream lines.
In Visualization ’96. Proceedings. (Oct 1996), pp. 107–113. 2

c© The Eurographics Association 2015.

17

