
CEIG - Spanish Computer Graphics Conference (2015) - Short paper
Jorge Lopez-Moreno and Mateu Sbert (Editors)

Easy going vector graphics as textures on the GPU

Gustavo Patow†

ViRVIG-UdG

Abstract
One common problem of raster images when used as textures is its resolution dependence, which could produce
artifacts such as blurring. On the contrary, vector graphics are resolution independent, and their direct use for
real-time texture mapping would be desirable to avoid sampling artifacts. Usually, they composite images from
layers of paths and strokes defined with different kinds of lines. Here I present a simple yet powerful technique for
representing vector graphics as textures that organizes the graphic into a coarse grid of cells, structuring each
cell into simple cell-sized BSP trees, evaluated at runtime within a pixel shader. Advantages include coherent
low-bandwidth memory access and, although my implementation is limited to polygonal shapes, the ability to map
general vector graphics onto arbitrary surfaces. A fast construction algorithm is presented, and the space and
time efficiency of the representation are demonstrated on many practical examples.

1. Introduction

Vector graphics always have had a great appealing because
of their seamless scaling capabilities. Unfortunately, meth-
ods that use them as textures are, in general, hard to im-
plement, require a heavy preprocessing like segmenting the
contour and embedding each segment in a triangle [LB05],
or allocate unnecessary data and use somewhat intricate en-
codings [RNCL05, QMK06]. Recently, in [LH06] they in-
troduced an efficient and elegant hashing approach.

However, previous approaches like the one by Lefebvre
and co-authors require an implementation that is not imme-
diate in terms of simplicity. So, the implementer is faced
with a hard-to take decision: either rely on constant-access
raster textures, with all their sampling issues; or use vector-
based encodings, with their infinite quality but complex
management and implementation issues.

This paper proposes an efficient but simple technique to
evaluate vector graphics as textures for real time rendering.
This technique is based on the subdivision of a vector image
into a grid of cells, each encoding of a BSP tree of simple
primitives to check. This brings the advantages of a hash-
based system, plus the logarithmic evaluation cost of a tree,
which is probably as far as we can get in terms of efficiency
if a set of features must be exhaustively evaluated.

† dagush@imae.udg.edu

2. Previous work

Textures have been part of the real-time graphics pipeline
since its very beginnings. However, the usage of Vector
Graphics has not been widely adopted because these al-
gorithms are, in general, hard to implement, and require a
heavy preprocessing. For instance, the work by Loop and
Blinn [LB05] required segmenting the contour and embed-
ding each segment in a triangle. Other example is the work
by Ray et al. [RNCL05] for off-line evaluation vector tex-
tures in a Photoshop-like application, or the work by Qin et
al. [QMK06] to encode vector glyphs for real-time evalu-
ation. Later, the same authors [QKM07] proposed the use
of circular arcs as an approximation primitive for vector
texture representations, slightly improving efficiency. Sroila
et al. [SEH07] presented a rendering technique for smooth
isosurfaces in clip art using implicit surfaces. Their imple-
mentation uses an extension of Appel’s hidden line algo-
rithm [App67] to solve the visibility problem, without re-
sorting to further acceleration structures.

Lefebvre and Hoppe [LH06] introduced an efficient and
elegant hashing approach which stored in each cell the min-
imal information possible, called perfect spatial hash. Our
implementation can be also considered a perfect spatial hash
that stores efficiently the vector texture information, and it
can be proven that it is really not possible to store infor-
mation more efficiently. Tumblin and Choudhury [TC04],
Tarini and Cigoni [TC05] and Sen [Sen04] also used the
concept of a spatial hash, but in their implementations each

c© The Eurographics Association 2015.

DOI: 10.2312/ceig.20151204

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ceig.20151204


G. Patow / Vector graphics as textures on the GPU

sample kept extra information to set embedded geometric
boundaries. However, that information only offers a set of
fixed structures, in the geometrical sense, thus limiting the
quality of the final embedded detail.

Ramanarayanan et al. [RBW04] proposed the use of
Bezier splines to represent sub-texel features, but required
a linear evaluation of the list stored in each texel. More re-
cently, Nehab and Hoppe [NH08] presented an encoding
similar to ours, also creating a hash texture, but the main
difference is that it stored, for each cell of the hash the com-
mands to construct such a polygon, resulting in an imple-
mentation that required the implementation of a small inter-
preter inside the fragment shaders. Our BSP-based imple-
mentation is much simpler in terms of coding, and, for non-
convex polygons, a BSP tree can be shown to be more effi-
cient, specially if it encodes only the information concerning
that specific cell.

Diffusion curve images were introduced by Orzan et
al. [OBW∗08] using the concept of diffusion curves, which
consist of curves with colors defined on either side. By dif-
fusing these colors over the image, the final result includes
sharp boundaries along the curves with smoothly shaded
regions between them. Later, Jeschke et al. [JCW09] ex-
tended the application of diffusion curves to render high
quality surface details on 3D objects. More recently, Sun
et al. [SXD∗12] improved this work by introducing diffu-
sion textures by formulating the diffusion curves in terms of
Green’s functions. In these textures, diffusion curves have
a strict containment relationship, creating a hierarchy that
can be evaluated efficiently in CUDA. On the contrary, our
implementation allows layers to be freely stacked on top of
each other, without containment restrictions.

3. Overview

The technique to store and evaluate the vector texture in the
GPU consists of a preprocessing stage and a runtime one.
The preprocessing stage, in turn, encodes the vector texture
in a grid of cells, and then converts each polygon of the input
vector graphic into a BSP tree encoded in each cell covered
by this polygon. Then, all trees for each cell are linked in a
single data structure for that cell. The whole technique re-
quires only two (regular) textures to encode each vector im-
age: the Hash Texture that stores the grid, and the Nodes Tex-
ture that contains the nodes for all the trees for all the texels,
indexed by the entries in the Hash Texture. Runtime evalua-
tion simply requires, for each texture coordinate to sample,
selecting the appropriate cell and traversing the tree until an
intersection is found, which can be done quite efficiently in
modern shader-based GPUs.

4. Preprocessing

A plain vector graphic can be extremely complex to evalu-
ate in the GPU, as it can be formed by thousands of oriented

Figure 1: An example of a vector graphic that can be used
as textures with the algorithm presented here.

polygonal figures organized into layers, each with hundreds
of edges. See Figure 1. To improve access efficiency, we par-
tition the vector graphic with a grid that is used as a spatial
hash. This hash will be encoded in a texture we call the Hash
Texture. The hash texture is thus formed by a grid of cells we
call hash entries. Each one of these hash entries can either be
a solid color, or store a pointer to a second texture that stores
the actual vector information, called the Nodes Texture.

out

color
out

Figure 2: The edges in a cell are structured using a BSP tree.
The white rectangle represents a reference to the polygon
exterior.

To generate the nodes texture, firstly each polygonal fig-
ure that overlaps with the cell is converted into a BSP tree.
See Figure 2. Each tree node contains a segment from the
original polygon, which we use to split the cell in two parts.
The node also contains two pointers to the two children
(called "left" and right" in our implementation, although
these names are arbitrary). However, if any of those is actu-
ally a reference to the "interior" solid color of the polygonal
figure, the figure color is stored instead. Similarly, if any of
the two entries has to refer to the "exterior" of the polygon, a

c© The Eurographics Association 2015.

92



G. Patow / Vector graphics as textures on the GPU

null code is temporarily stored (see below). In a second step,
if a tree node contains a null code, it is replaced by a pointer
to the root node of the tree representing the next layer, un-
less it is the last one in which case we store the background
color. See Figure 3. If, at a given layer, a polygonal figure
completely covers the cell, the tree is pruned and child nodes
are replaced by the corresponding figure color.

As a final step, the data structure for each cell, its tree, is
balanced to minimize, in runtime, the average number of ac-
cesses needed to traverse the data structure, thus gaining ef-
ficiency and getting close to the theoretical cost of O(ln(n))
expected for binary trees.

color

color Back-
ground

Figure 3: References to the exterior are linked to the next
layer. Here the white rectangle represents a reference to the
exterior of all polygons, i.e., the background color.

5. Run-Time Visualization

Evaluation is completely done in the fragment shaders.
There, the sampling texture coordinate is received as input,
which are then used to query the hash texture. If the value
found there is a color code, it is returned and evaluation fin-
ished immediately. If it does not, a simple iterative traversal
starts at the root node of the first tree reference, and descends
until the code for a solid color is encountered. To decide how
to proceed at each node, the position of the texture coordi-
nate is compared with respect to the stored line segment, and
corresponding one of the two children is chosen.

5.1. Minification and Magnification

The proposed algorithm can handle magnification quite
gracefully, simply by supersampling the texel area. This can
be simply done by taking several samples on a texture area
defined by the projected are of the current pixel, as done
in current hardware implementations. However, if samples
can be grouped in the same texel, the tree evaluation al-
gorithm could re-use evaluations to avoid wasted computa-
tions. However, this last optimization was not implemented
in our prototype and remains as subject of future work.

Minification is currently implemented in a very simple but
effective way: at a predefined distance from the observer,
which can be defined absolutely or depending on the pixel
projected area, we switch to a regular raster texture with
mip-mapping enabled, so results are efficiently anti-aliased
by the hardware itself. Thus, no special implementation is
needed in this case.

6. Results

As we can see in Figure 4, our method works well for dis-
tances ranging from close to far views. Frame rates are sus-
tained at more than 150 fps on an NVidia GeForce 7600,
which is a rather old graphics card now, even with a large
number of vector textured objects. Our algorithm is pixel-
bound, which means it puts the most workload on the frag-
ment shaders. Thus, the larger the size on screen of the area
to be textured, the more evaluations that will be needed. In
this respect, the computational cost grows linearly with the
number of pixels, but this must be multiplied by the O(ln(n))
dependency on the number of primitives to evaluate.

One trivial change to improve speed would be to sort the
root elements in the Nodes Texture following a Morton line,
as done in Garcia’s thesis [Gar12]. Currently, the informa-
tion for the cells are simply sored in raster order, but regu-
lar texture access patterns show that encoding following the
mentioned Morton line order would benefit coalesced mem-
ory access, thus improving the speed of our implementation.

We should discuss the influence of the grid size on the
overall performance of the presented algorithm. Hash reso-
lution only influences the amount of detail contained within
each texel, with larger resolutions corresponding to less de-
tail. However, this reduction is bounded from below: for
cells where polygon boundaries overlap, for instance, there
will always be the intersection itself to store, so at least two
nodes are required, and more for more complex cases (e.g., a
simple linear feature). On the other hand, increasing grid res-
olution implies performing fewer evaluations at each sam-
ple, which results in an increased performance.

7. Conclusions and Future Work

We have introduced a technique (data structures plus a run-
time evaluation algorithm) for the efficient use of vector
graphics as textures on the GPU. Our formulation brings
the advantages of a hash-based system, plus the logarithmic
evaluation cost of a tree. This computational cost probably is
as far as we can get in terms of efficiency if a set of features
must be exhaustively evaluated. We reduce to the minimum
the features to evaluate for each sample by replacing whole
subtrees when a solid color could be used for the entire area.

This technique relies intensively on modern GPU capabil-
ities, as it depends on the compromise between the fill rate
(number of rendered triangles) vs. the power of pixel shaders

c© The Eurographics Association 2015.

93



G. Patow / Vector graphics as textures on the GPU

Figure 4: some resulting images of our algorithm, showing perfect edges at any scale.

to evaluate it. In the experiments I have found that the tech-
nique behaves very well in terms of speed when compared
with rendering a model with the equivalent polygons as the
vector texture, providing excellent quality when compared
with other vector-based techniques.

Future lines of research include the possibility of adding
gradient evaluations and diffusion curves, much in the line of
Sun et al. [SXD∗12]. However, this implies solving complex
computations which might be difficult to implement without
resorting to a sophisticated CUDA implementation.

Acknowledgements

I’d like to thank Ismael Garcia, Francisco Gonzalez and all
the GGG team for their support during the development of
this project. I also would like to thank the anonymous re-
viewers for their valuable comments. This work was par-
tially funded by the TIN2014-52211-C2-2-R project from
Ministerio de Economía y Competitividad, Spain.

References
[App67] APPEL A.: The notion of quantitative invisibility and the

machine rendering of solids. In In Proc. 22nd Natl. Conf. (1967),
pp. 387–393. 1

[Gar12] GARCIA I.: Parallel spatial data structures for interac-
tive rendering, Universitat de Girona, Spain. 2012. 3

[JCW09] JESCHKE S., CLINE D., WONKA P.: Rendering surface
details with diffusion curves. ACM Trans. Graph. 28, 5 (Dec.
2009), 117:1–117:8. 2

[LB05] LOOP C., BLINN J.: Resolution independent curve ren-
dering using programmable graphics hardware. ACM Trans.
Graph. 24, 3 (2005), 1000–1009. 1

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers (New York, NY,
USA, 2006), ACM Press, pp. 579–588. 1

[NH08] NEHAB D., HOPPE H.: Random-access rendering of
general vector graphics. ACM Trans. Graph. 27, 5 (Dec. 2008),
135:1–135:10. 2

[OBW∗08] ORZAN A., BOUSSEAU A., WINNEMÖLLER H.,
BARLA P., THOLLOT J., SALESIN D.: Diffusion curves: A
vector representation for smooth-shaded images. ACM Trans.
Graph. 27, 3 (Aug. 2008), 92:1–92:8. 2

[QKM07] QIN Z., KAPLAN C. S., MCCOOL M. D.: Circular
arcs as primitives for vector textures. In Tech Rep CS-2007-41
(2007). 1

[QMK06] QIN Z., MCCOOL M. D., KAPLAN C. S.: Real-time
texture-mapped vector glyphs. In SI3D ’06: Proceedings of the
2006 symposium on Interactive 3D graphics and games (New
York, NY, USA, 2006), ACM Press, pp. 125–132. 1

[RBW04] RAMANARAYANAN G., BALA K., WALTER B.:
Feature-based textures. In Eurographics Symposium on Render-
ing (2004). 2

[RNCL05] RAY N., NEIGER T., CAVIN X., LEVY B.: Vector
texture maps. In Tech Report ALICE-TR-05-003 (2005). 1

[SEH07] STROILA M., EISEMANN E., HART J. C.: Clip art ren-
dering of smooth isosurfaces, ieee transactions on visualization
and computer graphics. 1

[Sen04] SEN P.: 2004. silhouette maps for improved tex-
ture magnification. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics Hardware,
ACM, New York, NY, USA, HWWS’04 (2004), pp. 65–73. 1

[SXD∗12] SUN X., XIE G., DONG Y., LIN S., XU W., WANG
W., TONG X., GUO B.: Diffusion curve textures for resolution
independent texture mapping. ACM Trans. Graph. 31, 4 (July
2012), 74:1–74:9. 2, 4

[TC04] TUMBLIN J., CHOUDHURY P.: Bixels: Picture samples
with sharp embedded bounda. In Eurographics Symposium on
Rendering (2004). 1

[TC05] TARINI M., CIGNONI P.: Pinchmaps: Textures with
customizable discontinuities. Computer Graphics Forum 24, 3
(2005), 557–568. (Eurographics 2005 Conf. Proc.). 1

c© The Eurographics Association 2015.

94


