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Abstract
The use of data driven models in computer animation offers several benefits. We present an analysis of a regression model as a
method to simulate cloth. In our approach, we generate data from a simple mass-spring system and we fit a regressor. Then, we
assemble more complex mass-spring systems and use the learnt model to simulate them. To validate the approach we perform
several tests. We analyze the elastic properties of a single learnt spring, measuring its stiffness coefficient, and compare it to
the original, physics-based, model. We also build several test scenarios which include the simulation of a piece of cloth under
gravity, comparing the regression model and the physics-based model. Finally we test the behaviour of the regression model for
systems with high stiffness coefficient and compare its stability properties with a semi-implicit Euler integration method.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Virtual Reality

1. Introduction and related work

In computer animation, problems such as cloth simulation, facial
animation or soft tissue behaviour (eg. for surgery training sys-
tems) require fast and stable simulation techniques for deformable
materials. Finite Element Modeling (FEM) has been broadly used
in the context of physically based animation. However Finite El-
ement simulation is, in many cases, too expensive for real-time
deformable simulations. On the contrary, other physically based
models, such as the Mass-Spring Model, (MSM) have been used
traditionally in this context since they are fast and handle easily
large rotations or topology changes. The main drawback of MSM
simulation is that it becomes unstable if the material is stiff.

Data driven methods can be useful in this context, if we are ca-
pable to provide a learning method that reproduces stable defor-
mation behaviours. Data driven and machine learning approaches
are not new in the context of elastic materials simulation. Many
authors use data driven approaches to fit model parameters, using
both real material data or reference models such as FEM [WOR11,
MBT∗12, SVAC12]. Other authors use Radial Basis Functions to
approximate the forces for haptic rendering [Fon09] or train the re-
lationship between low resolution deformation and high resolution
deformation [FYK10, KSO10, KGBS11, SSH12, SSH14] Bickel et
al. [BBO∗09] use corrotational FEM with a parametrized linear
model which changes with strain, thus giving nonlinear behaviour.
They learn the relationship from data. Kim et al. [KKN∗13] focus
on more specific behaviors and train deformation of cloth that fit
prerecorded movements of an actor.

An excellent review of data driven methods for deformable ob-

jects in computer graphics can be found in [OBBW12]. Accord-
ing with the classification proposed in that survey, our work can be
viewed as a mechanical-data driven method as the fitting process in-
volves an optimization procedure, that relates model parameters to
deformations and external forces (eg. gravity) must be introduced.
In this paper, we use a regression method to simulate cloth avoid-
ing the numerical integration step. In our approach, the regressor
learns the behaviour of a single spring and then, we scale this ap-
proach to simulate cloth at interactive rates without instabilities. In
this work we use MSM as a reference model, since it offers a simple
physically-based model that can be analytically validated.

Regession models have been previously used for complex an-
imations. Ladicky et al. [LJS∗15] use regression forests to learn
fluid dynamics from the SPH model. They approximate the rela-
tionship between current state of the fluid in the neighbourhood of
a particle and the acceleration of that particle, which has some sim-
ilarities with our approach, in the sense that they use a phase space
representation, as we shall do.

In this paper we explore the possibility to use machine learning
techniques to build a model able to imitate elastic physically sim-
ulated objects formed by particle systems. Our model uses phase
space representation (namely position and velocity in Cartesian co-
ordinates). The rest of the paper has been organized as follows: the
next section reviews the simulation framework designed to generate
the training sets to be learnt, then the Section 3 shows the regression
model used and the training methodology followed for the scenar-
ios considered. The model is validated by means of an analysis of
the stiffness of the simulated material, presented in Section 4. The
model is tested in a more complex scenario, by simulating a piece
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of cloth, as it is described in Section 5. From the results of the
previous sections, in Section 6 we present a discussion of the limi-
tations of our approach, that must be overcome to make it useful in
complex simulations.

2. Simulation framework

Let us first consider a standard particle system simulation, based on
second Newton’s Law. We start a simulation step from the current
state of the particles. First, external forces and gravity are com-
puted. Next, the internal, elastic, forces of the material are com-
puted using a physics based model. Finally, once all the forces have
been computed, a numerical integration step is used to know the
state of the particles (position and velocity) after a time interval ∆t.
We shall call this model the reference model. Our proposal is to
substitute the computation of the internal forces by an approximate
function, that is fitted from a set of sample data. Thus, our simula-
tion framework will consider a function φ that takes as inputs the
state of the particles, described by their position x, and velocity v,
and provides a new state in the form of a change in position ∆x and
velocity ∆v. We shall call this model the learnt model.

In this paper we will use a mass-spring as our reference model.
In a mass-spring system, every particle is connected to other par-
ticles by means of springs; the springs generate forces on the par-
ticles they connect as a result of their deformation. In the learning
scenario, we use a single particle attached to a spring (reference
model), and then we use the generated data to fit the regression
model. Moreover, we use a one-dimensional formulation for the
reference model. In one dimension, the equation for a particle of
mass m = 1 attached to a spring, with stiffness coefficient k and
damping coefficient c is

ë(t) =−ke(t)− cv(t),

where e(t) is the elongation of the spring which can be computed
as e = x− x0, with x0 the location of the particle where the spring
is in equilibrium.

To be able to build new deformable structures using a learned
spring, we need to do some transformations to locate it in the learn-
ing scenario where we must assure that the orientation is the one
required by the learning process (1D). To properly orientate any
particle we simply rotate and scale the distance vector between two
particles to the one dimensional space of the training set (see Fig-
ure 1). Thus, we can obtain the correct prediction for the oscillat-
ing particle pi. Being a linear model, we are able to apply the same
prediction with the opposite sign to the other particle p j. Then we
orient the displacements along the direction of the original distance
vector in the simulation scenario.

Given ∆t > 0, used for time discretization of the solution, we
want to learn the relationship between the states of a particle at
times t and t +∆t. In order to build the dataset to fit the regression
model we shall use the semi-implicit Euler integration scheme. It
is important to note that the results will depend on the integration
scheme used to generate the data set. In our case, if we denote v= ė,

v(t +∆t) = v(t)−∆t(ke(t)+ cv(t)), (1)

e(t +∆t) = e(t)+∆tv(t +∆t), (2)

Figure 1: Rotation and scale of the distance vector from the simu-
lation scenario to the space of the learning scenario.

and, by substituting (1) in (2), we get

e(t +∆t) = (1− k∆t2)e(t)+∆t(1− c)v(t).

We want to learn the relationship between (x,v) and (∆e,∆v),
where ∆e = e(t +∆t)− e(t) and ∆v = v(t +∆t)− v(t). Then the
previous expressions can be written in matrix form as(

∆e
∆v

)
= ∆t

(
−k∆t 1− c
−k c

)(
e(t)
v(t)

)
. (3)

Once we have fitted this relationship, we can evaluate it by sim-
ulation as follows. First, we apply external (gravity) forces to the
particles, computing a semi-implicit Euler step. Then, we use the
resulting positions and velocities of the particles as the input vector
of the trained model. Since the model is applied for every spring
attached to every particle, we shall also add to the sample the func-
tions to learn, in our case, the elongation and velocity increments.
Once we have obtained the elongation change, ∆e, we can apply it
directly to the particle location, since

∆x = x(t +∆t)− x(t) = x(t +∆t)− x0− (x(t)− x0) = ∆e.

3. The Regression Model

Regression models attempt to learn a mapping y = f (x), where x
represents some input vector, and y represents an output vector.
According to expression (3) the dynamics we want to fit follows
a linear relationship between the current state of the system and its
evolution. For this reason, we are going to use linear regression, in
which the mapping f is a linear function.

The linear regression model has the form f (X) = β0 +∑
i=n
i=1 Xiβi

where βi are the unknown parameters, Xi the variables that describe
the state of the particle and n the number of characteristics of the
state space, the problem is to estimate the parameters using the least
squares method (LSM). This criterion is valid if the data (x,y) are
independent random draws as in this case happens [HTF01]. Thus,
the regression process calculates the coefficients {β0,β1, . . . ,βn}
that minimize the sum of squares:

S(β) =
i=N

∑
i=1

(
yi−β0−

j=n

∑
j=1

xi jβ j

)2

, (4)

where N is the number of data and xi j is the component j of data i
and yi is the output for data i.
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kMSM (reference model) kREG (learnt model)
100 100.51 (σ < 10−4))
250 253.18 (σ < 10−6))
500 512.89 (σ < 10−5))
750 779.37 (σ < 10−4))
1000 1052.91 (σ < 10−4))

Table 1: Differences between the spring constant of the reference
model (kMSM) and that of the learnt model (kREG).

3.1. The training set

The learning scenario contains a single spring, with a stifness k,
which has been initially stretched or pushed certain distance d from
the equilibrium distance l. This simple scenario lets us to eval-
uate the behaviour of the spring model while providing a com-
plete training set for supervised machine leaning models. Specif-
ically, we have generated 5 independent training sets for differ-
ent values of the stiffness coefficient in the physical model (k =
[100,250,500,750,1000]). This sets are used to learn 5 different
regression-based springs and therefore let us the possibility to vali-
date and/or calibrate the k obtained by the regression model, as the
next section shows.

In our case, the regressor try to find a mapping y = f (x), where
x allocates the particle state at time t and y corresponds to the po-
sition and velocities deltas computed for this step. Specifically, the
x vector only contains the particle elongation and velocity in 1D as
the learning scenario is defined in one dimension, so we need only
2 floats (p.x, v.x). The vector y allocates the velocity and position
changes for the step considered so it also needs 2 floats (∆x,∆y).
According to this learning schema, the generalization of the process
to build new spring-based structures based on the learned model
needs to perform some transformations to the particles involved to
be useful (see Figure 1). Once the regression model has been fit, it
can be used to predict the next cinematic state of any particle con-
nected to a spring from its current state. It is easy to realize that
the learnt model avoids numerical integration as it working as a
next-state predictor.

4. Validation

In order to validate and test the learning method proposed we have
use different simulation scenarios. As a first step, we evaluate the
learnt spring model, and then we compare its behaviour with the
physical one. In the experiment, we have applied different forces to
the learnt model to infer from the empirical elongation the value of
the spring constant k. This value is then compared with the value
of the physical model. Table 1 displays the results for different k’s.
For each value of k of the learnt model, the displayed value is a
mean acquired applying different forces (from 5 units of force to
50, in intervals of 5). The value of σ corresponds to the standard
deviation of the sample. As the Table 1 shows, the relative error of
the learnt model is less than 0.06% in the worst case.

In a second experiment we have assemble several learnt-springs
to build an ’elastic rope’ without extra learning, that is using the
model of the previous experiment. It is known that the equivalent

spring of several connected springs follows this expression: 1
K =

∑
i=n
i=1

1
ki

. In our experiments we have fixed an extreme of the ’rope’
and then have applied a constant force to the other. The elongation
obtained has been divided by the number of constitutive springs in
order to get the resulting spring coefficient k. This is compared with
the k of the phyisical model. In Table 2 the results for ropes with 2,
5 and 10 nodes are displayed.

kMSM
nodes 100 250 500 750 1000

2 100.51 253.18 512.89 779.37 1052.91
5 101.61 254.51 510.65 768.45 1027.90

10 103.97 260.16 521.07 782.73 1045.17

Table 2: Values of the learnt k for different reference values of
kMSM. Every row corresponds to a different number of involved
nodes for the rope.

The results show a good consistence of the data when scaling up
the number of nodes. This robustness ans stability of the learned
model are desirable properties that allow to consider more complex
situations. In Figure 2 the absolute errors of the parameter k are
displayed for different lengths of ropes (different number of nodes).

Figure 2: Absolute error of k for ropes with different number of
nodes.

The curve with less slope corresponds to the rope with five
nodes, that is followed for the curve with ten nodes. The contin-
uous line corresponds to the rope with two nodes. Surprisingly, the
ropes with more units present less absolute errors in the implicit k
than the shortest rope.

5. Results on cloth simulation

Table 3 shows the stiffness values obtained from a experiment us-
ing a cloth with 5× 5 particles. Every particle is attached to every
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neighbor by a spring, taking as neighbor the 8 adjacent particles. In
this case, an external force is applied at the lower edge of the cloth
and the elongation is measured in the center of the lowest row, get-
ting the values for k. The values associated to the stiffness kREG
learned by the regressor reveal higher differences compared with
the rope scenario (4 times softer). To afford this, we use another
linear regression to know the kMSM values we must use during the
learning phase to finally obtain similar spring behaviours. Consid-
ering data of Table 3, a linear regression has been fit with equation:

kMSM = 0.273 kREG +4.75.

The capacity of the learning model to generalize, that is, to be
able to easily assemble new deformable structures without addi-
tional learning is a very interesting feature provided by the learn-
ing model presented. However, the resulting models with several
springs attached to a particle result in an averaging of their effect
which leads to the stiffness differences obtained in this scenario.
This issue will be discussed in Section 6 in more detail. In the rope
scenario this problem is less noticeable, since a particle has less
springs attached to it than in the cloth simulation.

Physic spring k kMSM kREG
100 91.546 25.262
250 215.352 56.505
500 420.084 105.330
750 624.473 153.102

1000 828.755 200.499

Table 3: Spring constants for the reference model and the learnt
model in the experiment of a 5 X 5 nodes cloth. Note that the kREG
is about four times less than the kMSM.

Figure 3 shows the last frame of both, physical and regression
models for different stiffness values and gravity computed for all
particles. In this way we can easily recognize the differences at a
final or convergence state. On the other hand, the last figure (e)
shows the stiffness differences mentioned in a 25x25 deformable
mesh.

6. Limitations of the model

The experimental results show a deviation of the regression-based
model respect to the physical model; in general, we have observed
that the regression-based model is less stiff than the original mass-
spring model when several springs are attached to a particle. The
cause is the average step carried out to get the new position of the
particle as the result of the contributions of several springs. Given
n springs connected to a particle, at time t, the algorithm will call
upon n times the regressor with e(t) and v(t) as inputs to get ∆v
and ∆x as outputs. The term ∆x has been learned from the Euler’s
integration expression:

∆x = ∆tv(t)+∆t2(−ke(t)).

Figure 3: Physical model (left) vs Regression model (right) for a)
k = 100, b) k = 250, c) k = 500, d) k = 750 e) Stiffness differences
found for a 25x25 mesh size.

Therefore, if the particle i is connected with n springs the sum of
the contributions of the springs will be:

∆xi =
n

∑
j

∆x j =
n

∑
j
(∆tvi(t)+∆t2(−k je j(t))) =

= n∆tvi(t)+
n

∑
j

∆t2(−k je j).

If this expression is applied directly, the contribution of the ve-
locity vi will be applied n times, causing an overshooting situa-
tion, and leading to physical inaccuracy and numerical instability.
In order to overcome this problem, in our implementation we have
averaged the final correction, as

∆xi =
1
n

n

∑
j
(∆tvi(t)+∆t2(−k je j)) =

= ∆tvi(t)+
1
n

n

∑
j

∆t2(−k je j) =

= ∆tvi(t)+
n

∑
j

∆t2(−k je j)

n
.
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This solution solves the instability issue, but introduces an aver-
aging of the effect of the springs affecting particle i. Since the sum
in x j is not computed explicitly, but obtained as a numerical value
from the regressor, it is not possible, in our current design, to apply
an averaging only to the term involving vi to avoid damping.

As a possible solution to this situation, in future developments
we intent to learn different regression models for the dynamics of
the particles, depending on the number of springs attached to them.
This approach will solve the averaging problem, and will prevent
the need of adding the contribution of the springs, thus saving com-
putations.

7. Conclusion

We have presented a data driven method to simulate elastic mate-
rials. The regression method designed replaces the numerical inte-
gration step by a prediction of the next particle state. To do this, the
regressor has previously learnt the relationship between the elon-
gation of a spring and the particle changes in phase space. As ex-
pected, the results indicate that the regression provides a very good
approximation of the learnt model, and provides good generaliza-
tion for one dimensional systems (ropes). When extended to cloth
simulation, the assembly process provides softer materials, with a
young modulus lower than the original reference material, due to
the averaging discussed in Section 6. However, the relationship be-
tween the original stiffness and the learnt stiffness has been found
to be linear, which provides an easy fitting procedure.

Thus, the results suggest that the data driven simulation model
presented is an adequate strategy to simulate MSM based de-
formable objects. The results obtained so far in simple scenarios
are promising, and we expect to extend them to other situations
such as three dimensional materials or the use of nonlinear refer-
ence models. In this later case, regression trees could be necessary
to deal with the different states of the system.
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