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Abstract
The way in which gradients are computed in volume datasets influences both the quality of the shading and the performance ob-
tained in rendering algorithms. In particular, the visualization of coarse datasets in multi-resolution representations is affected
when gradients are evaluated on-the-fly in the shader code by accessing neighbouring positions. This is not only a costly com-
putation that compromises the performance of the visualization process, but also one that provides gradients of low quality that
do not resemble the originals as much as desired because of the new topology of downsampled datasets. An obvious solution
is to pre-compute the gradients and store them. Unfortunately, this originates two problems: First, the downsampling process,
that is also prone to generate artifacts. Second, the limited bit size of storage itself causes the gradients to loss precision. In
order to solve these issues, we propose a downsampling filter for pre-computed gradients that provides improved gradients
that better match the originals such that the aforementioned artifacts disappear. Secondly, to address the storage problem, we
present a method for the efficient storage of gradient directions that is able to minimize the minimum angle achieved among
all representable vectors in a space of 3 bytes. We also provide several examples that show the advantages of the proposed
approaches.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presentation]: Multimedia Infor-
mation Systems—Artificial, augmented, and virtual realities I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing
Algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

The visualization of volume datasets by means of volume rendering
algorithms is a demanding task that requires a high degree of com-
putational power and resources. Nowadays it is common to manage
medium to high resolution datasets with modern hardware. How-
ever, in some environments such as desktop PCs used by physi-
cians in clinics (with the exception of radiologists), the equipment
is much less powerful than needed to run diagnostic and interactive
visualization tools. Furthermore, thanks to its ubiquity and its in-
creasing capabilities, handheld devices such as mobile phones and
tablets have become a targeted hardware platform for the deploy-
ment of these kinds of tools. Unfortunately, the horsepower of this
hardware lies far behind the requisites of direct volume rendering
of large datasets.

The interactive volume rendering of large volume datasets in
commodity hardware is a challenging task. Typically, this prob-
lem is addressed by using multi-resolution techniques that consist
in downsampling the original dataset to produce coarser represen-
tations of lesser resolution. The use of coarser datasets alleviates
the pressure on the computational tasks, thus easing the task of
interactive visualization. However, there is a tradeoff between in-
teractivity and visualization quality, as there is an important loss

of information during the downsampling process of the scalar field
that directly affects the quality of the final images.

In this paper, we address the problem of quality loss in the vi-
sualization of coarse levels in multi-resolution datasets. One of the
main aspects that directly affects the quality of volume visualiza-
tion is shading. In multi-resolution visualizations, shading coarse
levels using gradients that have been directly computed from the
downsampled scalar field yields undesired results, as the topology
of coarser representations do not reflect the original dataset any-
more.

As a solution for that, in order to improve the visualization of
coarse datasets, this paper presents a downsampling filter for pre-
computed gradients that better preserves the direction of gradients
as computed from the original dataset. The idea is pre-computing a
volume of gradients G0 from the original dataset V0, and then itera-
tively downsampling the volume of pre-computed gradients, start-
ing from G0, until completing the generation of the multi-resolution
pyramid.

The second problem we are addressing is the loss of fidelity of
pre-computed gradients due to the precision of the storage format.
We need to store the downsampled pre-computed gradients in a
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3D array that will ultimately be passed into the GPUs using a 3D
texture. Although floating point values are a wiser, more precise
choice to store gradients preserving their directions as much as
possible, for space and performance efficiency purposes it is in-
teresting to limit the number of bits used for the storage to that end.
However, imposing that restriction can also limit the fidelity of the
representable gradients.

To alleviate this limitation, we propose an encoding and decod-
ing scheme for pre-computed gradients that is able to maximize the
representable space of gradient directions by performing a trans-
formation on the points of the discrete 3D space resulting from all
possible combinations of three coordinates of limited precision.

Summarizing, our contributions are:

• A downsampling filter specific for pre-computed gradient
datasets that preserves surface orientations from the original
scalar field and avoids staircase looking artifacts that come from
the downsampling process.

• An encoding/decoding scheme for gradients that maximizes the
representable space of gradient directions using an storage of 3
bytes per gradient.

The rest of the paper is organized as follows: Section 2 gives an
overview of the most important related work. Section 3 presents a
filter for the effective storage of gradient data, and Section 4 ex-
plains a proposal for the encoding and decoding method for the ef-
ficient storage of gradients that maximizes the fidelity of the stored
gradients. In Section 5, the results of the solutions we present are
shown and discussed, and the final Section 6 draws some conclu-
sions and points out a few lines of future work.

2. Previous Work

Volume rendering is a costly process that is not always possible
to perform interactively. More precisely, visualizing datasets of
high resolutions requires approaching this problem by means of
multi-resolution and compression techniques [BRGIG∗14,BHP14]
to maintain interactive frame rates at the expense of image quality.

Many papers speak about multi-resolution structures of scalar
field representations [BNS01, CNLE09]. Some of them combine
data structures with compression methods to optimize the band-
width usage [GS04, GIM12]. A few publications concentrate on
the preservation of quality in coarse representations by means of
storing extra local information at voxels [YMC06, SHKM14] or
with a more global approach based on transfer function modifi-
cations [DGBN∗16]. Regarding the generation of coarse datasets
in multi-resolution structures, some authors propose methods that
take into account the transfer function to perform importance sam-
pling during downsampling [WWLM11], directly deal with pre-
classified color data [KB08], and perform topology preserving
downsampling [KE01].

An important aspect in volume rendering is the computation
of gradients. In [BLM96], the authors present an analysis of the
ideal gradient estimator. There are several methods to evaluate
gradients from a scalar field. One of the most used reconstruc-
tion filters designed for that purpose is the central differences ap-
proach [HKRs∗06], which requires 6 extra texture lookups to per-
form the difference in the scalar field along each direction in the

XY Z space. There is an even faster version of this filter, at the ex-
pense of introducing a small spatial bias, that only uses 3 extra tex-
ture lookups by calculating the difference with the central density.
There are also methods that achieve gradients of better quality such
as the Sobel’s operator [DH73] by sacrificing the performance. The
classical Sobel’s operator, for instance, requires 26 extra texture
lookups due to its 3× 3× 3 kernel. To alleviate this performance
penalty, Sigg and Hadwiger [PR05], use a more efficient version of
the Sobel’s operator that only needs 8 extra texture lookups at the
corners of the voxel containing the sample to shade, and still obtain
similar quality results. Furthermore, a few pre-filtering reconstruc-
tion schemes to increase the accuracy of the estimated gradients are
presented in [CD09].

Working with pre-computed gradients [HKRs∗06] allows to use
slower but precise computations for estimating gradients before
rendering (as during pre-process speed is usually not crucial) and
speeds up the visualization algorithms taking place in the GPU
by moving this rather expensive computation to previous stages.
Most existing algorithms for encoding normal vectors and/or gra-
dients cannot be used in the context of volume rendering if gradi-
ents are stored in a 3D texture. Trilinear interpolations performed
to query gradients from the 3D texture are always convex when
gradients are simply encoded by quantizing their cartesian com-
ponents (Gx, Gy, Gz), but this desirable property is not fulfilled
by many other well-known proposals like [DDSD03] (spherical
coordinates), [OB06] (recursive subdivision of a Platonic solid),
[Dee95] (indexing spherical triangles) or [CNC13] (encoding a
point in the surface of a cube).

In this paper we propose a solution based on pre-computed gra-
dients. Our approach consists of a downsampling filter to generate
multi-resolution representations of gradient data, and an encoding
scheme for gradient directions based on a monotonic transforma-
tion that guarantees the above-mentioned property of convex inter-
polation, thus ensuring that the final algorithm is GPU-friendly.

3. Downsampling of Gradient Data

In modern volume rendering algorithms such as ray casting, shad-
ing is performed after estimating the surface orientation at each
sample position by means of the scalar field gradient, which is typ-
ically computed on-the-fly in shader code by evaluating the sur-
rounding densities. In multi-resolution visualizations, the shading
of coarse representations by means of this technique, implies com-
puting gradients from a scalar field that differs from the original
dataset. This fact that can lead to an inconsistent shading among
different levels of resolution. Figure 1 shows the difference be-
tween shading a dataset visualized at its original resolution with re-
spect to a low resolution representation, using gradients computed
on-the-fly in both cases.

The quality of the shading in multi-resolution datasets is greatly
affected by the way in which gradients are computed in coarse lev-
els. The downsampling process drastically reduces the resolution
of the datasets, thus provoking an inevitable information loss and
a modification of the topology of the original scalar field. In Fig-
ure 2, the effect of downsampling is depicted in a 2D space. It is
easily noticeable how the topology of the represented surface gets
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(a) (b)

Figure 1: Ray casting images of the Head model visualized with a
transfer function designed to show bone surfaces. The left image (a)
corresponds to the original dataset (5123) whereas the image at the
right (b) corresponds to a coarser dataset (1283). In (b), staircase
artifacts are visible due to the shading performed using gradients
computed on-the-fly from the downsampled scalar field.

drastically changed as the resolution decreases. The staircase shape
exhibited by the surface in Figure 2-b also affects the direction of
the computed gradients, not matching the gradients computed from
the original dataset anymore. In Figure 1-b, the staircase artifact
is mainly visible because the shading is using inaccurate gradients
computed on-the-fly from the coarse dataset.

In order to solve this problem, the solution we propose in this pa-
per is using gradients pre-computed from the original scalar field.
In order to keep gradient directions consistent, we pre-compute a
dataset of gradients G0 from the original scalar field V0, and we it-
eratively downsample G0 to generate coarser representations Gk of
the gradients vector field that match the resolution of the coarse
models Vk. Thus, the visualization pipeline for multi-resolution
datasets used in this paper uses an RGB 3D texture of pre-computed
gradients for the visualization of each coarse dataset.

However, a naive downsampling of pre-computed gradients
without having previously applied an appropriate filter achieves un-
expected results (see Figure 3). This is due to the fact that the topol-
ogy of the downsampled dataset has been modified with respect
to the original. For that reason, in some cases, regions containing
boundaries between materials in the coarse resolution dataset could
correspond to regions of an homogeneous material in the high res-
olution one. Whenever that happens, the locations of the sampled
gradients in the low resolution dataset correspond to gradients that
are not properly defined in the high resolution dataset, and thus,
using gradients that have been downsampled without any further
consideration would lead to erroneous visualizations such as in Fig-
ure 3.

As a solution for this issue, our proposal consists in a downsam-
pling filter that takes into account the magnitude of the gradients
within the support of the filter kernel. The proposed filter performs
a convolution over a certain dataset of pre-computed gradients Gk
with the following kernel:

G f
k (x) =

1
β

∑
i∈Br

Gk(x+ i) ·m(x+ i) ·g(i) (1)

where m(x+ i) is the magnitude of the gradient at the neighboring
position x+ i, g(i) is a Gaussian function that gives more impor-
tance to those samples nearer to center of the kernel support Br of
radius r, and β = ∑i∈Br

m(x+ i) · g(i) is the sum of all weights to
ensure a normalized contribution of the gradients. For the sake of
clarity we have expressed the equation in 1D, although the same
definition applies for the 3D case.

Notice the similarity of Equation 1 with a bilateral filter [TM98].
Bilateral filters act essentially as a standard domain filter, averag-
ing values that are similar to the value at the kernel center. The
main difference between the bilateral filter and ours is that we are
not giving importance to the value at the kernel center, assuming
that the gradient at that point might be poorly defined, but giving
importance to gradients in the kernel support that inform about a
well defined material boundary. After our filter is applied, the fil-
tered output G f

k can be safely subsampled to obtain the next coarser
dataset Gk+1 in the multi-resolution hierarchy.

In order to pre-compute the whole multi-resolution pyramid of
gradient datasets, the first step consists in pre-computing the gradi-
ents from the original dataset, thus obtaining a new volume dataset
of gradient data G0 with the resolution of the original scalar dataset
V0. By applying the proposed filter and then subsampling, the next
level of the multi-resolution hierarchy G1 is obtained from G0. Fol-
lowing the same procedure, G2 is obtained from G1 and so on until
the whole pyramid is generated.

Section 5 shows some examples of volume images generated us-
ing pre-computed gradients that have been extracted from the orig-
inal dataset and downsampled with the proposed filter. The pre-
sented images demonstrate how using quality gradients obtains bet-
ter results and makes the aforementioned staircase artifacts disap-
pear.

4. Storage of Gradient Data

Before being used in the GPU by the visualization algorithm, gra-
dients are pre-computed and downsampled in the CPU, stored in a
floating point representation to conserve as much precision as pos-
sible. However, in order to use these gradients from shaders in the
GPU, we make use of an 8 bit component RGB 3D texture (for the
XY Z components of vectors). Although using this byte precision
3D texture is an standard practice, this is an important step where
the precision of the stored gradients is decreased. We don’t make
use of floating point textures in the GPU because of its demand-
ing storage space and its performance penalty to perform texture
lookups. Quantizing gradients directly into 3D textures is not opti-
mal, because the reduced bit size of the 3D texture limits the space
of gradient directions that a voxel can represent (see Figure 4).

Observe that gradient directions are important (e.g. to perform
shading operations), but gradient magnitudes are not usually con-
sidered in many rendering algorithms. In what follows, therefore,
we will be only interested in encoding and retrieving gradient di-
rections in the Gauss sphere.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

53



J. Díaz-García et al. / Downsampling and Storage of Pre-Computed Gradients

(a) (b) (c)

Figure 2: Images (a), (b) and (c) depict the effect of iteratively downsampling data (images are shown in 2D for simplicity, although the
same concept applies for the 3D case). In (a), a feature/surface is well represented by the boundary between different scalar values. After
an iteration of downsampling, image (b) shows how the same feature is not so suitably represented by the current scalar field anymore,
which actually yields a more staircase-looking topology. In the last image (c), after another downsampling step, the feature even starts
disappearing.

Figure 3: This ray casting image is shaded using downsampled
pre-computed gradients. The topology of the downsampled scalar
field Vk has changed with respect to the original dataset V0. There-
fore, using a naively filtered downsampled dataset Gk of the orig-
inal pre-computed gradients G0 that does not take into account
any changes in the topology produces these annoying hole-like ar-
tifacts.

In this section, we propose an encoding scheme that is able to
maximize the representable space of gradient directions when stor-
ing them into an RGB 3D texture of byte precision components.
For that purpose, as a pre-process, pre-computed gradients are en-
coded with a transformation T and quantized before being stored
into the GPU RGB 3D texture. Then, the visualization algorithm is
able to perform texture lookups to recover the encoded gradients,
and perform a fast decoding transformation T−1 in the shader code
to obtain the final gradients that will be used for shading, which bet-

(a) (b)

Figure 4: Gradients stored into a given texture (drawings are in
2D for clarity) are quantized to fit the bit size of the components. In
the case of using 8 bit components, this quantization (a) limits the
representable space of gradient directions. Furthermore, the distri-
bution of gradient directions does not fill the representable space
uniformly. The method described here applies a transformation on
the pre-computed gradients recovered from the texture so that the
final distribution of directions becomes more uniformly distributed
(b). The result is that quantized values A, B and C encode the uni-
form directions gA, gB i gC instead of the uneven directions g′A, g′B
i g′C that directly correspond to A, B, and C.

ter match the original ones. Figure 5 shows a graphical overview of
the proposed encoding/decoding approach.

4.1. Monotonic Gradient Encoding

In order to represent a vector in 3D space, the most common ap-
proach is to use 3 values to specify its X , Y and Z coordinates.
The three-dimensional vector space described by these values has
the shape of a cube if represented as a point cloud, as seen in Fig-
ure 6-a. Once these vectors are given a common origin and nor-
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Figure 5: Typically, visualization methods that use pre-computed
gradients apply a direct quantization of the normalized floating
point vectors (a) in order to store them into a byte-precision RGB
3D texture. This is an important step where gradients lose preci-
sion. We propose a transformation T that is able to maximize the
representable space of gradients obtained from a byte-precision
RGB 3D texture. We encode the original gradients and quantize
them in a smart way to optimize the usage of the encoded space.
Decoding is performed in the GPU using the inverse transforma-
tion T−1.

(a) (b)

Figure 6: Point cloud represented by three values XY Z. (5 bits per
value are used in this case to avoid cluttering and see the empty
patterns on the surface). In (a) the points are evenly distributed
in the 3D space. On the other hand, (b) shows the corresponding
sphere-dots after projecting the point cloud onto the surface of a
unit sphere.

gA gB

A B
v

A B
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Pv(gA)

Pv(gB)

v

Pv(g)

A B
non-monotonic

Pv(gA)

Pv(gB)

v

Pv(g)

Figure 7: Condition of monotonicity. Pv(g) is the projection of g in
a given direction v (Pv(g) = g ·v). To ensure that the transformation
of a dot (Figure 6) is monotonic, this assertion must be true for all
possible tangent directions on the surface of the Gauss sphere.

Figure 8: In (a), the point cloud represented by three values XY Z
projected onto cube-dots on the surface of a unit cube (5 bits per
value are used in this case to avoid cluttering and see the empty
patterns on the surface). In (b) one of these 48 triangular regions
that we have identified on the surface of the cube is highlighted.

malized, the set of points that represent gradient directions can be
shown in the Gauss sphere, Figure 6-b. In what follows, gradient
points projected onto the Gauss sphere will be named sphere-dots.
We can notice that there are several patterns of empty regions (that
is, regions without sphere-dots) onto the surface of the sphere (see
Figure 6-b). Those empty regions correspond to gradient directions
that cannot be directly represented with the tree coordinates X , Y
and Z due to their bit size precision.

To alleviate this issue and to optimize the representable space of
gradient directions, we propose to perform a transformation of the
sphere-dots to achieve a more uniform distribution over the surface
of the Gauss sphere. The solution we propose reduces the biggest
hole on the surface of the sphere (that is, the region with the biggest
separation among dots), minimizing the maximum angle achieved
between two neighbouring gradient directions.

As the pre-computed datasets of gradients are stored into a 3D
texture in the GPU, and the shader code of the ray casting algo-
rithm queries this texture to evaluate gradients at any position us-
ing hardware-enabled tri-linear interpolation, it is important that
the transformation applied to each dot is monotonic, so that dots
do not get mixed on the surface of the unit sphere (Figure 6-b). In
other words, the relative position among dots on the surface of the
sphere before applying the transformation should not change af-
ter applying the transformation. If this condition were not satisfied
during this operation, interpolated vectors could be wrong at the
moment the transformation takes place in the GPU. The condition
of monotonicity (see Figure 7) ensures that if we sample the tex-
ture using tri-linear interpolation, the decoded results will provide
gradient directions that remain within the decoded directions of the
surrounding voxel centers.

If we project the point cloud in Figure 6-a onto the surface of
a cube (instead of a sphere), we obtain the distribution shown in
Figure 8. The points projected on the surface of the unit cube will be
named cube-dots from now on to distinguish them from the points
on the sphere. With cube-dots, the patterns of empty regions on
the Gauss sphere are noticeable easily. With this projection, we can
observe that the overall cube-dots follow a pattern of a triangular
region that repeats itself 8 times on each face of the cube. That
adds up to a total number of 48 triangular regions on the entire
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w v

u

Figure 9: The effect of the decoding transformation T−1 shown
in Equation 2 can be seen bere. The transformation is applied on
the cube-dots once they are expressed in barycentric coordinates,
and it generates the movement of these dots towards the directions
shown by the green arrows, filling the empty areas near the bound-
aries of the triangle.

cube. Figure 8-b shows one of the 48 regions. The outer part of
each triangle has an empty margin, not filled with cube-dots. This
means that these gradient directions cannot be properly encoded. In
order to improve the distribution of normals, we need a set of dots
that does not exhibit those holes and whose distribution becomes
more uniform.

Thus, our purpose is to treat each of those triangular regions in-
dependently, performing a monotonic transformation on each cube-
dot within the space of its triangle, thus making the empty bands
near the edges shrink.

For the sake of clarity, let us start by discussing the decoding of
gradient values obtained from the 3D texture of encoded gradients.
To convert the retrieved, uneven gradient directions g′A onto the cor-
responding uniform directions gA (Figure 4), we must perform the
decoding (inverse) transformation T−1 of cube-dots in the space of
a triangle. This is a simple and GPU-friendly operation. For that
reason, each point in the cloud belonging to a certain triangle (one
of the 48 on the cube), has its Euclidean coordinates (XY Z) con-
verted into Barycentric coordinates (UVW ). We propose the fol-
lowing equation system using barycentric coordinates to transform
the dots:

// Attract to vertices
u1 = λu2 +(1−λ)u
v1 = λv2 +(1−λ)v
w1 = λw2 +(1−λ)w

// Normalization
sum = u1+ v1+w1
u1 = u1/sum
v1 = v1/sum
w1 = w1/sum (2)

where (u1,v1,w1) are the transformed barycentric coordinates. The
graphical effect of this transformation T−1 on the cube-dots is
shown in Figure 9. Note that, in those equations, different values
of λ cause different final distributions of dots. We need to find the
value of λ that achieves the best distribution, that is, the optimal

Figure 10: Maximum angle (hole) in the sphere of transformed pro-
jected points achieved by varying λ from 0 to 1. We can see that the
optimal value for λ is 0.61. With this value, Equation 2 achieves its
best distribution of dots, maximizing the representability of gradi-
ent directions.

Method Angle (deg.)
No treatment 0.3177
48 regions decoding 0.1730
Theoretical min. 0.0615

Table 1: Angle denoting the biggest hole in the distribution of dots
on the surface of a sphere. The measures here presented have been
achieved by generating a triangulation of the sphere-dots and tak-
ing the diameter of the biggest circumscribed circle among all tri-
angles.

value that achieves the best minimization of the empty regions at
the boundaries of the triangles. This can be done by measuring the
biggest angle between the directions of all pairs of neighbouring
sphere-dots over the whole sphere.

Optimization of the Monotonic Gradient Transformation

Figure 10 shows that the maximum angle among all possible pairs
of neighbouring vectors varies as λ goes from 0 to 1. We have
found that the best value for λ is 0.61, value for which we achieve
a maximum angle of 0.1730 deg. Table 1 shows the maximum an-
gle between two neighbouring gradients when not treating the pro-
jected dots, using the proposed transformation and the theoretical
minimum. The transformation proposed here achieves a resulting
dot distribution that approaches to the theoretical optimum (see the
paragraphs below), which might not be achievable, given the total
number of points representable by the three XY Z byte-components.

Figure 11 shows the comparison between the sphere-dots in both
cases: without any treatment and with the proposed decoding trans-
formation T−1. It is clear that empty bands patterns are more evi-
dent in the former case.

Demonstration of the maximum angle

Let’s suppose that we have 224 points uniformly distributed over
the surface of a unit sphere (consider an almost-isotropic distribu-
tion of points over the sphere given by an iterative subdivision of
a tetrahedron). As the surface of a certain sphere is given by the
formula 4πR2, and R = 1 in this case, our sphere will have a sur-
face of 4π. If points are uniformly distributed, as it is the case, a
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Figure 11: Comparison of both cases, untransformed and trans-
formed gradients XY Z (5 bits per value are used in this case to
avoid dot cluttering and see the empty patterns on the surface).
Untransformed gradients (a) present empty bands, which supposes
directions that cannot be encoded. Transforming gradients with the
presented method reduces those empty bands, and thus, optimizes
the usage of the 3D space to represent more gradient directions.

triangulation of this point cloud on the surface will only include
triangles that are practically equilateral. In closed triangle meshes,
the number of triangles is twice the number of vertices (T = 2V ).
Each triangle surface will be then 4π/(2V ) = 4π/(2× 224). The
maximum angle (in radians) in this case will be the diameter of the
circumscribed circle of any of these triangles, and that is because
in this distribution of points, we consider all holes between points
to be equal. We have that the surface S of a triangle circumscribed
within a circle of diameter D is S = 3

16

√
3D2. Then:

D = 1.756
√

S = 1.756
√

2π/212 = 4.4/4096 rad = 0.0615 deg

4.2. Decoding

The aforementioned procedure is able to maximize the repre-
sentable space of gradient directions using 3 values XY Z of 8 bits.
That step actually corresponds to the decoding stage of the pipeline
that will take place in the GPU after evaluating the gradient from
the 3D texture (see Figure 12). The gradient to use in shading op-
erations is in fact the one obtained after the transformation T−1

takes place. Summarizing, the steps to follow in the decoding stage
after obtaining the encoded gradient from the 3D texture are the
following:

1. Identify the corresponding triangular region.
2. Obtain the barycentric coordinates of the cube-dot.
3. Perform the transformation T−1 on the cube-dot.
4. Convert the transformed cube-dot back to euclidean coordinates

and normalize to obtain the interpolated gradient direction.

4.3. Encoding

Figure 12 shows an overview of the gradient encoding/decoding
pipeline. The process of encoding gradients T is exactly the in-
verse from the decoding transformation explained in the previous
section. Before performing the encoding process, the gradients we
are working with are stored with floating point precision coordi-
nates to avoid precision loss as much as possible. The steps to fol-
low in order to obtain an encoded vector ~ve given an original vector
~vo are quite similar to the decoding operation:

1. Identify the corresponding triangular region.
2. Obtain the barycentric coordinates of the cube-dot.

Figure 12: Diagram of the tasks in the different stages of the en-
coding/decoding pipeline. The tasks carried out by the CPU hap-
pen in pre-processing time. Encoding gradients requires retrieving
the transformed values from the pre-calculated LUT, and quantiza-
tion involves performing a linear search to find the best matching
quantized value. In GPU, however, all tasks are fast: dequantiza-
tion is done at the time of retrieving the encoded value from the 3D
texture, and the decoding transformation T−1 is a fast calculation
involving a few product calculations.

3. Perform the inverse transformation T on the cube-dot.
4. Convert the transformed cube-dot back to euclidean coordi-

nates.
5. Quantize the transformed gradient.

Transformation of barycentric coordinates During the encoding
stage, the transformation T of barycentric coordinates in the trian-
gular region must be the inverse as explained in the formulas for
decoding in Equation 2 (see the effect of this transformation in Fig-
ure 9). These equations are a system of three dependent quadratic
equations. The easiest way to find the inversion of this system is to
proceed with numerical methods. External mathematical packages
provide us with tools to solve this problem easily. In our case, we
have used R, a language designed for statistical analysis. However,
this kind of computation is an expensive operation that is better to
avoid during the encoding process of many gradients.

Look up table We have numerically solved the inversion of this
system for relatively big set of barycentric coordinates in order
to construct a look up table that maps barycentric coordinates to
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Figure 13: Barycentric transformation T look up table (LUT).
Each point in the figure corresponds to an entry of the LUT. En-
tries contain the transformed barycentric coordinates needed for
the encoding process. Notice how, despite the fact that barycentric
coordinates have 3 components, only the subspace depicted by the
triangular plane contained in the cube is used (barycentric coordi-
nates not belonging in this plane are not normalized and hence they
are not useful for us). We can obtain transformed barycentric co-
ordinates at any arbitrary location in the triangle by interpolating
the contents of the 3 nearest entries.

their transformed correspondences (T ). Figure 13 shows the ge-
ometrical representation of the look up table. Points representing
valid barycentric coordinates lie on the triangular diagonal plane
in the cube. This structure stores transformed barycentric coordi-
nates at several points on that plane. In order to know the inverse
barycentric transformation of a certain coordinate, we find its lo-
cation on that plane and compute the interpolation among the tree
pre-computed values stored in the three nearest vertices. By con-
verting the resulting cube-dot back to euclidean coordinates again,
we obtain a new high-precision gradient vl that once decoded is
practically equal to the original gradient vo.

Quantization In this step the high precision transformed gradient
vl is downcasted into an 8 bit component quantized gradient vq.
This operation finds the point in the original point cloud (Figure 6)
that once transformed by the decoding operation, best matches the
original floating point precision gradient to be encoded. We use the
gradient vl obtained from the look up table explained above to per-
form a linear search over the point cloud, starting at the center of
the point cloud and following the direction of vl . Figure 14 shows
how the transformed gradient direction (the one achieved by means
of the transformation LUT) can be used to greatly limit the search
space over the whole possible quantized values, only considering
the quantized values surrounding the direction of the transformed
gradient. By performing this fast linear search, we select the quan-
tized value which, once decoded, best represents the original gradi-
ent direction.

5. Results

Figure 15 shows the difference between shading several coarse
datasets using gradients computed on-the-fly and using pre-
computed, filtered gradients, with respect to the ray casting image
of their original datasets. It is easy to see how the downsampled
datasets rendered with pre-computed filtered gradients obtain much

v0

vl

q0

q1

q2

q3 q5

q4

q7

q6

Figure 14: Linear search in the quantization process. The trans-
formed gradient vl is obtained from the original vector v0 with the
help of the LUT. vl is then used to perform a linear search over a
limited subspace of the point cloud. The final quantized point qi is
the one that, after applying the decoding transformation T−1, is
more similar to the original vector v0.

Stage Vix Chameleon Head
Pre-computation 10 20 18
Downsampling 75 143 134
Encoding 62 129 117

Table 2: Time (in seconds) used to pre-compute, downsample and
encode gradient data of various datasets. The algorithms have
been executed in a single CPU thread, traversing the whole sample
space of each dataset without being parallelized.

better results than computing gradients on-the-fly, even when the
coarse datasets are the same. This demonstrates the importance of
gradients in shading. The staircase artifacts that are visible in the
downsampled datasets shaded with gradients evaluated on-the-fly
in shader code could be smoothened by increasing the size of the
kernel used in the downsampling filter of the scalar field. However,
as the size of the kernel grows, the scalar field becomes smoother
and smoother, and more features are prone to disappear conse-
quently. Using pre-computed and downsampled gradients makes
it possible to remove these undesirable staircase artifacts without
sacrificing important features.

Table 2 shows the times for the pre-computation, downsampling
and encoding of gradient directions using the three datasets in our
tests. We have used the central differences approach to pre-compute
gradients from the original dataset. The most time consuming, pre-
processing stage, is the use of the downsampling filter for the gen-
eration of the coarse dataset of gradients, followed by the encoding
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Original dataset Downsampled Downsampled
Gradients on-the-fly Gradients on-the-fly Filtered gradients

Vix 5122×250 1282×63 1282×63

Chameleon 5123 1283 1283

Head 5122×485 1282×122 1282×122

(a) (b) (c)

Figure 15: Comparison of ray casting images rendered with dif-
ferent gradients. Column (a) shows ray casting images of several
datasets at its original resolution (the shading was done using gra-
dients computed on-the-fly). Images in column (b) show a coarse
version of the datasets shaded with gradients also computed on-
the-fly in the shader (notice the staircase shape of the surfaces). In
(c) the same coarse datasets are rendered, using pre-computed, fil-
tered gradients that better preserve the orientation of the original
surfaces.

LUT size 323 643 1283

Generation time (seconds) 0.55 1.59 6.17

Table 3: Time needed to generate LUTs of different sizes for the
transformation T . Notice that, although these LUTs represent a
space in 3D, the time increases approximately by a factor of 4 when
the dimension of the LUT increases by a factor of 8. This is due to
the fact that the subspace of useful entries in these LUTs is rep-
resented by a triangular plane representing only the barycentric
coordinates that make sense (see Figure 13).

Encoding method Max. error
No encoding 0.318 deg.
Encoding (LUT 323) 0.165 deg.
Encoding (LUT 643) 0.165 deg.
Encoding (LUT 1283) 0.165 deg.

Table 4: This table shows the maximum error introduced during
the storage of gradients in the 3D texture for a big set of ran-
domly generated gradients. Notice that encoding gradients using
our transformation plus quantization scheme produces results twice
as good as using a plain quantization without any encoding. Given
the monotonic shape of the transformation, even small LUTs (323)
are enough to obtain the best results (the LUTs are encoding a low-
frequency transformation, this is why there is no need for bigger
LUTs to achieve good representations of the transformation).

(using the LUT) plus the quantization of the gradients to pass them
to the GPU. As shown in Table 2 the whole process takes a few
minutes for the bigger dataset we have tested (Chameleon 5123),
which is an acceptable amount of time for a pre-process. These
computations (and the following ones) have been done in a ma-
chine with an Intel(R) Core(TM) i7 CPU 930 at 2.80GHz and 8GB
of RAM memory. Although, the processor has several cores, the
calculations done for this paper have not been optimized to make
use of multi-threading or SIMD instructions.

In order to perform the encoding of gradients, the LUT for the
transformation T must have been previously generated, as solving
such difficult operation for all gradients, given the large amount
of voxels that supposes a dataset, is too expensive. This process
requires solving the complex system of equations that supposes in-
verting the simple decoding transformation (Equation 2). We have
used the software package R in combination with its module root-
Solve to compute the transformation T and storing it into a LUT.
We have generated LUTs of different sizes and tested their effec-
tiveness to encode pre-computed gradients in terms of encoding
time and error. Table 3 shows the time taken to generate LUTs of
three different sizes. Notice that the cost of generating a LUT of
1283 entries (which is more than needed as explained later) is very
small.

We have tested the goodness of the usage of a LUT for the
barycentric transformation T by completing the whole process of
encoding/quantizing/decoding for a huge set of randomly gener-
ated gradients. Table 4 shows the maximum error obtained after
performing the test with several storing methods. As we can see,
there is no need to use big LUTs (which would be wasting space

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

59



J. Díaz-García et al. / Downsampling and Storage of Pre-Computed Gradients

in main memory), as the lowest resolution LUT used in our tests
(323) is able to perform the transformation T without exceeding
the biggest hole angle mentioned in Table 1. Although the proposed
method for gradient encoding does not provide results that are vi-
sually much superior, it achieves a significant improvement in the
numerical results that may be useful in other scenarios.

6. Conclusions

In volume rendering, the way in which gradients are computed af-
fects in great measure the quality of the shading of coarse datasets
in multi-resolution structures. Commonly, gradients are evaluated
on-the-fly by the shader code by accessing neighbouring positions.
However, the new topology of downsampled datasets provides gra-
dients of worse quality that do not resemble the originals as much
as desired, and thus shading shows non desirable artifacts.

To solve this issue we have presented two contributions:

• A downsampling filter for pre-computed gradients.
• An encoding/decoding scheme for pre-computed gradient direc-

tions.

The proposed downsampling filter for pre-computed gradients
provides improved gradients that better match the original dataset
gradients such that the aforementioned artifacts disappear.

Regarding the second contribution, existing algorithms for en-
coding normal vectors and/or gradients cannot be used in the con-
text of volume rendering by storing them into a 3D texture. These
solutions cited in Section 2 have serious interpolation issues at the
time of sampling values. The presented method to encode gradient
directions into a byte precision 3D texture, besides not presenting
this problem, maximizes the space of representable directions and
reduces the maximum error introduced by the storage format.

In the future, we would like to test the goodness of the proposed
encoding scheme beyond the scope of volume rendering, for in-
stance, in combination with triangle meshes.
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