CEIG - Spanish Computer Graphics Conference (2018)
1. Garcia-Fernandez and C. Urena (Editors)

LeoMCAD: A Lego-based Mechanical CAD system

Francisco Gonzalez Garcia, Jesis Amador Pérez Martin, and Gustavo Patow

ViRVIG, Universitat de Girona, Spain

Abstract

Mechanical Design (MCAD) tools are used for creating 3D digital prototypes used in the design, visualization, and simulation
of products. In this paper we present LeoMCAD, a Lego-based mechanical system designed to be used as an education tool both
for kids and Lego hobbyists; but which features a novel solver that naturally and seamlessly computes the interaction between
the pieces that build-up a given model, solving an otherwise complex forward kinematic system of equations in a much simpler
way. The results show how our system is able to cope with situations that would produce dead-lock situations in more advanced

commercial systems.
Keywords: Mechanical CAD, Procedural Modeling, Solver

1. Introduction

The potential to use specialized software for the analysis and de-
sign of mechanisms has been recognized since the early days of
computers [Fre54]. Some modeling systems, for instance, imple-
ment function-oriented and shape-oriented approaches, where ob-
jects, assemblies and positional relationships are represented as no-
des in a graph structure, and an explicit or procedural representa-
tion is used for shape primitives [WLPL*80, GM94]. Despite the
significant benefits presented by such tools, creating complex me-
chanisms, such as those needed to animate mechanical characters,
currently requires expert designers. In this paper we present a sim-
ple, easy to use and flexible mechanical CAD (MCAD), based on
the popular Lego bricks, bringing all the possibilities of such sy-
stems to non-expert, all-age users. However, given the generality
of our solution, the method we present here can be used at any le-
vel, being feasible to be easily incorporated into more professional
tools.

2. Previous Work

Mechanical Animation. Although most 3D CADs do not include
information about how their parts move and interact, a few com-
mercial packages help users create mechanical animations in order
to evaluate functional aspects of an assembly design (e.g., Auto-
desk Inventor [Autl8], SolidWorks [Das18], Solid Edge [Siel8]).
However, most of these tools still require the user to manually spe-
cify information for all (or many) of the assembly parts, including
motion parameters and interaction constraints between the parts. In
contrast, our approach infers such information directly from geo-
metry with far less user assistance.

Motion Analysis. There exists a variety of methods for analyzing
the geometry of mechanisms in order to extract the kinematic con-

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.

DOI: 10.2312/ceig.20181163

lenght

Right view

Figure 1: Parts and connector types. Top row: point-like (studs).
Middle row: Segment-like. Bottom row: gear connectors (regular,
crown, rack, worm, and two different gears and a bevel gear).

straints that define their motions. Mitra et al. [MYY™*10] presen-
ted an automatic approach for the visualization of the operation of
complex mechanical assemblies. Reverse engineering of scanned
devices has been also a source of interesting motion analysis ap-
proaches [DVVRO7]. Bacher et al. [BBJP12] analyze the creation
of a printable articulated model from input geometry by analyzing
a skinned mesh. Cali et al. [CCA*12] presented an intuitive user
interface to control the placement and range of motion of joints.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://doi.org/10.2312/ceig.20181163

104 F. Gonzalez & J. A. Pérez Martin & G. Patow / LeoMCAD

While the resulting characters can be posed, these methods do not
address the challenge of animating or "playing" with them.

Constraint-based design. Krecklau and Kobelt [KK11] develo-
ped a procedural modeling tool for interconnected structures like
bridges, roller coasters and catenaries, computing the angles bet-
ween of the elements in a rigid chain to achieve a given required
shape. Zhu et al. [ZXS*12] introduced a new technique to gene-
rate mechanical toys solely based on the motion of their features.
Ceylan et al. [CLM*13] proposed an automatic algorithm to trans-
form a motion sequence of a humanoid character into a design for a
mechanical figure that approximates the input motion when driven
with a single input crank. Similarly, Coros et al. [CTN*13] presen-
ted a computational design method of the generation of mechanical
characters, based on the transformation of a user-provided anima-
tion of the model into an optimized mechanism that closely follows
the prescribed movements. Megaro et al. [MTN*15] presented an
optimization-based solution that generates stable motions for leg-
ged robots of arbitrary designs. Later on, Megaro et al. [MKS™*17]
presented an optimization-based approach for the design of cable-
driven kinematic chains and trees.

The main difference with the previous works is that our system
is a general-purpose, simple-to-use, constraint-based mechanical
CAD system for Lego parts, where the kinematics of the interacti-
ons are computed thanks to a simplified solver.

3. Connectors

In our system, the basic construction unit is a (Lego) part (or piece),
as shown in Figure 1. Each piece has connectors, which are the ele-
ments within each piece that enables assembling between pieces: a
connector is a part of a piece that can assemble with the connectors
from other pieces. For example, the 2 x 2 brick (3003) connects
through its Stud and Stud Inlets. See Figure 1. The goal of our sy-
stem is to model the connections and interactions between pieces
by modelling the individual connectors, their interactions and their
behaviours, thus naturally solving a complex kinematical system
without ever resorting to a full-system solution.

Types of connectors The connectors can be classified in two main
categories: Point-like connectors can be interpreted like a point in
a 3D space, as illustrated in Figure 1 for the case of a Stud. Studs
and Stud Inlets belong to this family. These are rigid connections
with 0 degrees of freedom. Segment-like connectors own a body
of a certain length / that allow them to assemble to N opposite
connectors at the same time (see Figure 1, bottom). Example of
this type are Axles, Rods and Cylindrical Holes. Special note must
be taken to the fact that Axles actually are two connectors, one from
each extreme up to the middle. Once connected, they usually admit
one degree of freedom as longitudinal translations along their main
axis. Finally, Gears have an outer circumference where other gears
can be connected. In general, gears can rotate around their main
axis, which depends on the specific gear being considered.

Connectors can also be classified as simple or multiple: the for-
mer can only be connected with one and only one connector, while
the latter can be connected to several connectors at the same time.
All the available connectors in the current version are (See Fi-
gure 1):

E— = 3704

—_—

Figure 2: Schematic representation of two different axles (3704
and 32013). Red arrows are entry points for new connections. For
3704, the blue dot shows the union of the two brother connectors.

e Stud. The Stud connector is the male of the Stud Inlet and Cy-
lindrical Hole connectors. The kind of assembly that a Stud can
make is simple: a Stud connector can only be joined with only
one Stud Inlet or one Cylindrical Hole at the same time.

e Stud Inlet. The kind of assembly that Stud Inlet can make is the
same as the Stud connector: simple connection with a Stud.

e Axle. It is the male of the Axle Hole and Cylindrical Hole con-
nectors and has multiple (many Axle Hole or Cylindrical Hole
connectors can be connected to an Axle connector at the same
time) or simple assembling.

o Axle Hole. As the Axle connector, the Axle Hole can assemble
on a multiple or simple basis.

e Cylindrical Hole. This connector is another female to the Axle
connector and can also make multiple or simple assembling.
Connections with Studs at the extremes of the Cylindrical Hole
are also possible.

e Gear. Gears can be of several types, being the most common the
regular one, the crown, the rack, the bevel, and the worm.

e Other Connectors. Although other connectors, such as hinge
connectors, have not been implemented, it is simple to see that
they can easily be incorporated in our system.

Connector brotherhood For convenience, certain segment-like
pieces, such as axles and holes, must be subdivided in two brot-
her connectors. Two connectors will be brothers if they belong to
the same piece, they are segment-like connectors, they are coaxial
on the same axis, and they are consecutive. See Figure 2.

Connector state Connectors can be classified as either free or
busy, being selectable only the free ones. Busy connectors will have
a reference to the connector (or set of connectors for segment-like
connectors), with which they are assembled. See Figure 3-left. A
connector state can be classified by the type of the connectors (e.g.,
a point-like connector will be considered free if it has no connector
connected, and busy otherwise.) Segment-like connectors, as can
have multiple connectors connected to them, can be considered as
a free and busy at the same time.

4. Assembling

Assembling is the process of connecting two pieces by its connec-
tors. First, the user must select the connectors to assemble. We can
select a connector by "clicking" on it with the left mouse button.

(© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.



F. Gonzalez & J. A. Pérez Martin & G. Patow / LeoMCAD 105

:

Brick 1x1 (A \

-4 'n c
b

a

Figure 3: Connection creation. a) The Stud Inlet from piece A
knows that it is assembled with the Stud from B and the other way
round. b) Assembling propagation. After the initial model (left) was
created, B is removed (middle), so now the Stud from C, and the
Stud Inlet from A are free. Finally, when adding D, the Stud from D
must be connected with the Stud Inlet from A, and the same for the
Stud from C and the Stud Inlet from D. Once the user creates one
of the two connections, the other one will be created automatically.

‘We want to clarify that Axle, Axle Hole and Cylindrical Hole con-
nectors can only be selected by their extremes, where they can per-
form connections. Similarly, a Gear can only be connected trough
its outer circumference. For the assembling, the user selects a con-
nector by double clicking on it. This will be the static connector
and the other the dynamic on, as explained below. After verifying
the compatibility of the two connectors, the system applies a series
of constraints:

e The axis of the dynamic connector is aligned to the static one.

e Their respective origins are matched by translating the dynamic
connector.

e For connectors that require axis alignment, such as Axles and
Axle Holes, a rotation around their longitudinal axis is applied
to align both coordinate systems.

e For gears, perpendicularity (for racks and worms) or co-planarity
(for the other gears) are also enforced. Also, their teeth are alig-
ned, mostly for aesthetic purposes.

e Finally, the status of the connectors are updated, as well as the
lists of empty and busy connectors at each piece.

Once finished, the system automatically propagates the assem-
bling to all the candidate connections among all intervening pieces,
which consists on recursively verifying if there are more connecti-
ons resulting from the first one, see Figure 3-right. This is done with
a typical graph depth-first search algorithm, that traverses every
connecting piece and checking if its connectors satisfy the corre-
sponding constraints, which are not enforced this time. To prevent
robustness issues during propagation, our system takes advantage
of the sizes involved in Lego pieces, and verify connections using
a safety range €: if two connectors are closer than €, and if a valid
connection is available, then the two connectors are assembled.

5. Solver

One important aspect of any MCAD implementation is its solver.
Ours is based on an implicit connector-based formulation. One sim-
plifying assumption of our solver is that the constraints need to be
enforced only at the assembling stage, and not at the simulation
stage. Once two connectors are assembled, their alignments are

(© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.

not verified again, which strongly simplifies any further kinematic
computation.

Once users interact with an assembled model, they will do it by
rotating or translating a piece, which immediately informs every
connector of the transformation. Then, recursively, all the connec-
tors will inform the opposing ones that there has been a transfor-
mation, which in turn will be passed to the owner pieces, and then
recursively to the whole assembly. To prevent infinite recursions,
again a graph-based depth-first strategy was used to guarantee no
transformation was applied more than once to any piece. It is im-
portant to remark that, when possible, sliding is taken into account
using only the longitudinal part of the translation. If a collision is
detected, then the pieces start to move together with the full trans-
formation, as described below.

Translating and rotating assembled pieces. As mentioned, trans-
lations and rotations on one piece are recursively transferred over
the whole assembled model. However, it is important to mention
that, if you rotate an Axle, connected to a Cylindrical Hole, and the
rotation is over the axis of the hole, it will actually not propagate
the rotation because the Axle connector can freely rotate over the
axis of the Cylindrical Hole, and the other way round, constituting
what is usually called a revolute joint in more traditional systems.
See Figure 4, left. Also, as an approximation, our system does not
detect collisions during rotations.

Sliding Axle, Axle Hole or Cylindrical Hole connectors. When
a segment-like connector is assembled to another connector of the
same type, we can slide one of the two connectors over the other.
This is usually called a Prismatic Joint in traditional CAD systems.
This is a very useful option because we can only make assembling
using Axle, Axle Hole and Cylindrical Hole connectors by their
extremes. So when they are assembled, we can slide and select in
which position we want them, as shown in Figure4 right.

Notice that, when a connector slides over another, it can result
in the formation of new connections and the elimination of others,
and also the possible changing of the connector state. See Figure 4.
Thus, in every slide action we must verify all the assemblies bet-
ween the sliding connector (the dynamic connector) and the rest of
the model (the static connectors).

Another important thing to comment about the sliding process is
that, when we slide a connector and its piece has some others con-
nectors assembled to it, we must translate recursively the connected
pieces to the one that has the sliding connector. See Figure 4.

Collision detection. We perform this verification only by the
translation and sliding processes, and in particular only for the
Axle-Cylindrical Hole pair when one of the two connectors is trans-
lating along its main axis. Rotations do not undergo these verifica-
tions. At Figure 5 we can see a complex example of how the a
piece with a Cylindrical Hole (CH) is translated to the left. The
piece that owns the CH| and CH, (piece P,) is connected indirectly
to the piece that owns the Cylindrical Holes CH3 and CHy (Piece
P3). The collision detection can resolve cases like this, so when the
CH3 collides with the Axle Hole AH,, the whole model will trans-
late because the Cylindrical Hole "pushed" the others because of
the translation of CH,.



=y e
te Tm

F. Gonzalez & J. A. Pérez Martin & G. Patow / LeoMCAD

999

o 00

Translation ..
P ¥

Sliding connector
(Cylindrical Hole)

Figure 4: Movement Examples. a) An Axle freely rotating over a Cylindrical Hole. b) Example of the sliding process. ¢c) When we slide the
blue Axle to the right, the assembling with the red Axle Hole disappears, while a new connection between the Axle and the green Axle Hole
appears. However, when we slide the Cylindrical Hole over the Axle, the piece connected to the former must also be translated.

P

|
|
v, 4 |
|
|
|

dcollisiun

Piece 1o transiate

Figure 5: Collision Example. Piece Diagrams: P1: 3704, P2:
6541, P3: 6541, P4: 3622, P5: 32064.

6. Results

All the images in this paper have been generated with our system.
Figure 4-left, shows examples of transformations being applied to
an object and correctly propagated to the whole model, taking into
account the characteristics of each connector intervening in the pro-
pagated movement. Figure 4-middle and -right illustrate the sliding
process, and how sliding can be used to generate new connections,
or to disconnect two connected pieces. Figure 6 shows a complex
example generated with our tool.

With our system we also performed a simple test case where
more sophisticated tools, such as Autodesk’s Inventor [Aut18], can-
not solve: the system is locked and the mechanism, however simple
as it is, cannot move. See Figure 7. The reason is that the constraints
used to generate the assembly are still enforced by the solver during
the simulation, while our solver only uses the rotation relations and
does not verify the set-up constraints after the initial assembly, thus
avoiding lockout situations. Of course, it is possible to delete the
constraints once the initial assembly is done, but then simple ope-
rations such as rotating the mechanism might result in a separation
of the pieces, which does not happen in our solver.

7. Conclusions and Future Work

We have presented LeoMCAD, a simple, easy to use and flexible
mechanical CAD, based on the popular Lego parts, bringing all

Figure 6: A full model created with LecoMCAD.

the possibilities of such systems to non-expert, all age users. The
system is based on a constraint-based assembling system, and in-
teractions between the pieces are allowed thanks to a simplified
solver that works at the connector level, never building the impli-
cit full system of kinematic equations. The solver and the whole
system work interactively, as the assembly propagation and the ki-
nematic interactions are solved in a very direct way. Given the ge-
nerality of our solution, the method we present here can be used at
any level, being feasible to be easily incorporated into more profes-
sional tools. Possible lines for future work include the application
of the presented technique to other, professional-level tools such as
Autodesk Inventor [Aut18]. Another avenue for study is the gene-
ralization of the definition of assembly, allowing the use of inter-
changeable sub-assemblies which can be procedurally combined
to generate more complex mechanisms. Finally, the use of inverse
techniques as the one seen in urban procedural modeling seems a
promising way to add new possibilities to the burgeoning area of
Constraint-based design.

Acknowledgements

‘We would like to thank our reviewers for their insightful comments on the
paper, as these comments led us to an improvement of the work. This work

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.



F. Gonzalez & J. A. Pérez Martin & G. Patow / LeoMCAD 107

Figure 7: A simple mechanism that our solver can simulate, but
Autodesk’s Inventor [Autl8] cannot.

was partially funded by the project TIN2017-88515-C2-2-R from Ministe-
rio de Economia y Competitividad, Spain.

References

[Autl8] AUTODESK: Inventor.

inventor, 2018.

[BBJP12] BACHER M., BICKEL B., JAMES D. L., PFISTER H.: Fabri-
cating articulated characters from skinned meshes. ACM Trans. Graph.
31,4 (July 2012), 47:1-47:9.

[CCA*12] CALI J., CALIAN D. A., AMATI C., KLEINBERGER R.,
STEED A., KAUTZ J., WEYRICH T.: 3d-printing of non-assembly, arti-
culated models. ACM Trans. Graph. 31, 6 (Nov. 2012), 130:1-130:8.

[CLM*13] CEYLAN D., L1 W., MITRA N. J., AGRAWALA M., PAULY
M.: Designing and fabricating mechanical automata from mocap se-
quences. ACM Trans. Graph. 32, 6 (Nov. 2013), 186:1-186:11.

[CTN*13] CoOROS S., THOMASZEWSKI B., NORIS G., SUEDA S.,
FORBERG M., SUMNER R. W., MATUSIK W., BICKEL B.: Compu-
tational design of mechanical characters. ACM Trans. Graph. 32, 4 (July
2013), 83:1-83:12.

[Das18] DASSAULT SYSTEMES:
solidworks.com/, 2018.

[DVVRO7] DEMARSIN K., VANDERSTRAETEN D., VOLODINE T.,
ROOSE D.: Detection of closed sharp edges in point clouds using nor-
mal estimation and graph theory. Comput. Aided Des. 39, 4 (Apr. 2007),
276-283.

[Fre54] FREUDENSTEIN F.: Design of Four-link Mechanisms. University
Microfilms, 1954.

[GM94] Gu1J.-K., MANTYLA M.: Functional understanding of assem-
bly modelling. Computer-Aided Design 26, 6 (1994), 435 —451.

[KK11] KRECKLAU L., KOBBELT L.: Procedural Modeling of Intercon-
nected Structures. Computer Graphics Forum (2011).

[MKS*17] MEGARO V., KNOOP E., SPIELBERG A., LEVIN D. I. W.,
MATUSIK W., GROSS M., THOMASZEWSKI B., BACHER M.: De-
signing cable-driven actuation networks for kinematic chains and trees.
In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (New York, NY, USA, 2017), SCA ’17, ACM,
pp. 15:1-15:10.

[MTN*15] MEGARO V., THOMASZEWSKI B., NITTI M., HILLIGES O.,
GROSS M., COROS S.: Interactive design of 3d-printable robotic crea-
tures. ACM Trans. Graph. 34, 6 (Oct. 2015), 216:1-216:9.

http://autodesk.com/

SoludWorks.  https://www.

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.

[MYY*10] MITRAN.J., YANG Y.-L., YAND.-M., L1 W., AGRAWALA
M.: Illustrating how mechanical assemblies work. ACM Trans. Graph.
29, 4 (July 2010), 58:1-58:12.

[Sie18] SIEMENS: Solid Edge. https://www.plm.automation.
siemens.com/en/products/solid-edge/, 2018.

[WLPL*80] WESLEY M. A., LOZANO-PEREZ T., LIEBERMAN L. 1.,
LAVIN M. A., GROSSMAN D. D.: A geometric modeling system for
automated mechanical assembly. IBM Journal of Rsearch and Develop-
ment 24, 1 (1980), 64-74.

[ZXS*12] ZHU L., XU W., SNYDER J., LIU Y., WANG G., GUO B.:
Motion-guided mechanical toy modeling. ACM Trans. Graph. 31, 6
(Nov. 2012), 127:1-127:10.


http://autodesk.com/inventor
http://autodesk.com/inventor
https://www.solidworks.com/
https://www.solidworks.com/
https://www.plm.automation.siemens.com/en/products/solid-edge/
https://www.plm.automation.siemens.com/en/products/solid-edge/



