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Abstract

Laser scanners enable the digitization of 3D surfaces by generating a point cloud where each point sample includes an intensity
(infrared reflectivity) value. Some LiDAR scanners also incorporate cameras to capture the color of the surfaces visible from
the scanner location. Getting usable colors everywhere across 360°scans is a challenging task, especially for indoor scenes.
LiDAR scanners lack flashes, and placing proper light sources for a 360°indoor scene is either unfeasible or undesirable. As a
result, color data from LiDAR scans often do not have an adequate quality, either because of poor exposition (too bright or too
dark areas) or because of severe illumination changes between scans (e.g. direct Sunlight vs cloudy lighting). In this paper, we
present a new method to recover plausible color data from the infrared data available in LiDAR scans. The main idea is to train
an adapted image-to-image translation network using color and intensity values on well-exposed areas of scans. At inference
time, the network is able to recover plausible color using exclusively the intensity values. The immediate application of our
approach is the selective colorization of LIDAR data in those scans or regions with missing or poor color data.

1. Introduction

Laser scanners provide a fast and convenient way of acquiring the
shape of 3D scenes in a number of applications, including survey-
ing, architecture, building, construction, engineering and cultural
heritage. Terrestrial LIDAR equipment (TLS) is often mounted on
a rotating support, allowing horizontal sweeping while using a ro-
tating mirror to deflect the infrared beam vertically, so a single scan
captures every surface point visible from the scanner location. The
distance (range) to a given surface is estimated by measuring the
time it takes for the beam to return to the sensor after bouncing on
it (time-of-flight).

High-end LiDAR scanners provide accurate geometry data.
Moreover, due to the use of an infrared beam, the accuracy of the
geometric data is not affected by external lighting conditions. This
makes LiDAR scanners much more robust than photogrammetry
approaches, in terms of shape acquisition.

Unfortunately, the quality of color data in LiDAR equipment is
not on-par with that of geometry data. Although LiDAR scanners
embed cameras to capture color, they lack flash units to help illu-
minate a scene, since these units would only be practical for taking
good pictures at distances of over a few meters. Therefore, the qual-
ity of the acquired color data heavily depends on existing lighting
conditions. As a result, images from LiDAR scans often contain
regions with poor/missing color data (Figure 1). Notice that color
quality could be improved by using auxiliary lighting kits (such as
softboxes) to illuminate the scene more uniformly, but these de-
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vices and their supports will appear in the point cloud and thus
partially invalidate both color and geometry data. Furthermore, Li-
DAR color acquisition technology is prone to other color artifacts
not directly related to exposure, such as lens flares or geometry and
color miss-registrations (Figure 2).

Figure 1: Color artifacts from a sample LiDAR scan: over-exposed
areas (1), under-exposed areas (2), and undesirable shadows cast
by scanning equipment (3).

This contrasts with competing photogrammetric approaches,
where flash units, moving illumination devices, and color calibra-
tion patterns can be used to get accurate color data, at the expense
of requiring a much higher number of photos and much longer post-
processing times. For this reason, both technologies are often com-
bined to achieve a final result.

In this paper, we present a deep-learning approach to gener-
ate plausible color data from the infrared data. We benefit from
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Figure 2: Color artifacts from LiDAR scans. Top: lens flare arti-
fact. Middle: color-geometry miss-registration (a captured person
which does not appear in the geometry). Bottom: Clipped highlight.
From left to right: Original color map, infrared intensity (artifact-
free) captured by the scanner and color reconstructed with our
method.

the fact that the intensity values measured by the laser beam are
nearly illumination independent , specially in indoor scenes. The
key idea is to use an image-to-image translation network. The net-
work is trained end-to-end using tiles from selected regions of Li-
DAR scans containing high-quality color data (i.e. after removing
image parts with poor color data). The network learns to predict
RGB values just from the (illumination-independent) intensity val-
ues. We have tested this approach with actual LiDAR scans. We dis-
cuss key issues (preventing border artifacts, importance of the loss
metric) to get suitable colors. Our first experiments show promis-
ing results, the network being able to fully recover plausible color
data, sometimes close to the original color.

2. Previous Work

Colorization Colorization techniques can be classified into
scribble-based, exemplar-based, and deep learning based.

In the former, the user must provide some type of local infor-
mation (usually color scribbles) that allow the algorithm to extend
the color to the rest of the image [LLWO04]. The result is greatly
improved if scribbles and edge information are used to segment the
image before spreading the color [HTC*05,LWCO*07].

In the second type, the key is to transfer the colors of an ex-
emplar to the target grayscale image [WAMO02, GCR* 12, BTP13].
Although this allows to considerably reduce the work on the part of
the user, a sufficiently representative exemplar is needed.

Finally, given the possibility of generating pairs of color and
grayscale images from a large collection of input images, it is possi-
ble to train neural networks to colorize [ZIE16]. It is even possible

to combine information provided by the user with this type of tech-
niques [ZZI*17], or to apply more general architectures capable of
dealing with the problem of transforming between different types
of images [IZZE17].

Laser Scan Intensity The intensity acquired by LiDAR scanners
records the power of the reflected beam on the surfaces, often in the
infrared range. This intensity might be affected by several factors,
and many authors have proposed correction processes to reduce
their influence, including incidence angle [KOPW15]. For diffuse
surfaces, intensity is typically assumed to follow a cosine law with
incidence angle [Bol19], as we do here.

It has been shown that intensity values correlate well with mea-
sured luminance [BPMTMML17]. Oishi and Kurazume exploit this
to colorize intensity images from laser scans, but requires finding
correspondences with color images [OK14]. Color accuracy has
been recently evaluated for different scanners in controlled lab con-
ditions [JKR*20]. Such conditions do not show typical illumination
changes that happen in real situations, and no solutions are pro-
vided to improve color accuracy itself.

3. Our approach

Consider a point cloud of a certain scene captured from a discrete
set of scanner locations Q C R? (our methodology does not require
any registration information). LIDAR scanners measure the time-
of-flight of infrared pulses to estimate the distance to the surface of
the objects in this scene. Consequently, they can provide, for each
point p, its associated position (x,y,z) and infrared reflectivity (ir)
information.

After capturing the scene geometry, color is usually recorded by
stitching a mosaic of photographs. Therefore, for each scan location
q € Q, the associated color information is provided as a registered
panoramic texture (either LDR or HDR). Sometimes the color is
sampled and provided as (r, g,b) values associated with each point.
In this case, we convert these into a texture using a procedure simi-
lar to the one used to produce an infrared reflectivity texture, which
is explained next.

Figure 3: From left to right: original infrared intensity, estimated
normal map and calibrated infrared. We adjust the infrared values
using the cosinus between the view direction and the normal of the
surface to obtain a more homogeneous signal. Calibrated infrared
are the input to our colorization network.
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Figure 4: Top: Original color. Bottom: masked regions with low-
quality color information. Training tiles will only be generated from
non-masked areas.

Recall that our aim is computing a color texture from the
(illumination-independent) intensity values. In order to use an
image-to-image translation network for this task, we need an in-
frared texture aligned with the color texture. We follow Comino
et al. [CACB17] and raycast a panoramic infrared reflectivity tex-
ture from each scan location. Multiple splatting weights are used to
ensure the sharpness of the result. Although some LiDAR equip-
ment may already perform some kind of radiometric calibration,
we found that for our test device (Leica RTC 360 [web]) the in-
frared values become much more homogeneous when adjusted us-
ing the cosine of the angle between the view ray and the surface
normal (Figure 3). Because surface normals are not directly avail-
able on raw LiDAR point clouds, we use the method of Comino et
al. [CACB18] to estimate them.

In our experiments, we use images of 8192 x 4096 pixels of res-
olution and we have on average 20 images (corresponding to 20
scan locations) for each scene. Most neural networks can not di-
rectly work on images of such resolution and, therefore, we need to
subdivide them into image tiles. For this, we consider two impor-
tant factors:

e The receptive field of the chosen architecture (explained below)
is very large. This means that the influence of border artifacts
can potentially be very strong leading to tile discontinuities. In
order to alleviate this, we augment our dataset by producing tiles
with a huge overlap.

e We want to avoid training on parts of the images which are incor-
rectly exposed or contain color artifacts. For this, we manually
annotate these regions and avoid producing tiles containing them
(Figure 4).

More specifically, we regularly generate tiles of 512 x 512 pixels
with a constant stride of 64 pixels skipping any tile which partially
overlaps a masked area. On a dataset with 29 scans we produced
64k tiles. Each tile has associated RGB and calibrated infrared in-
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formation. We further augment these by performing random verti-
cal and horizontal flips at train time.

We learn to generate color (RGB) images from the calibrated
infrared textures. For this task, we used the image-to-image trans-
lation UNet [RFB15] architecture. This architecture was origi-
nally designed for segmentation but it has been extensively used
to directly predict the RGB channels by modifying the last layer.
In particular, we tuned the Pytorch implementation by Buda et
al. [BSM19] and introduced the following changes:

e We substituted the intermediate ReLU activations by LeakyRe-
LUs with negative slope of 0.1, as it is known to produce better
learning gradients and ease the learning process.

e We replaced the upsampling deconvolutions by nearest-neighbor
upsampling units to avoid upsampling cross artifacts.

e We removed the last sigmoid activation. This is used in classi-
fication tasks to output probability values between 0 and 1. Al-
though pixel values are also often limited to this range, sigmoid
activations can cause vanishing gradients and hinder the training.
Moreover, similar results can be achieved without them.

Our network is trained end-to-end and learns to directly pro-
duce RGB values between 0 and 1. As loss function, we use the
perceptual loss proposed by Zhang et al. [ZIE* 18], in particular
its Pytorch implementation using the VGG16. Moreover we add
a traditional L1 loss weighted by 0.1. Perceptual losses compare
the difference in the activations of the generated and ground truth
images after going through a pretrained network (in this case, the
VGG16). They are more informed losses than pixel-based ones and
have proven to produce sharper results in image generation tasks.

4. Results

All tests were run on a PC equipped with an Intel Core i7-8700
CPU, 32GB of RAM, 4TB Seagate ST4000DM004 HDD, and a
NVIDIA TITAN V with 12GB of memory running Ubuntu 20.04.
Each epoch processed about 64k images in batches of 4 tiles and
took about 90 minutes. All results on this paper were generated
after training our models for 16 epochs.

Figure 5 shows how our colorization method behaves both on
areas which were used for training and areas which were masked.
The reconstructed color looks homogeneous, plausibly resembling
the original textures on well-exposed areas, while the prediction
on saturated or shadowed areas is consistent. Figure 7 shows ours
results on multiple complete panoramas corresponding to different
scan locations from the same scene. Other color artifacts are also
corrected, as shown in Figure 2.

Notice there is also a lot of consistency between different views.
To further illustrate this, in Figure 6 we show the reference and
reconstructed colors for two close-ups of mural paintings captured
from different locations.

Although our approach alleviates the effect of border artifacts,
some smaller color discontinuities can still be observed on the re-
constructed color textures in Figure 7. This can easily be addressed
by, at prediction time, producing tiles with certain overlap and
keeping only their central region, as shown in Figure 8.
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Figure 5: Left: Original images. Middle: Depicting the manually annotated regions (black boxes) from which no training tiles were generated.
Right: Predicted colorization for these images. The color is consistent whether the original pixels were masked or not.

Figure 6: Mural painting captured from two different locations.
Top: reconstructed color. Bottom: original color.

5. Conclusions and Future Work

Obtaining a good colorization for LiDAR data is a challenging
task. In this work, we present a simple strategy to produce a plau-
sible consistent colorization for the different scan locations of a
given scene. One major limitation of this approach is reconstructing
color just from infrared information. Multiple materials can map to
the same infrared intensity and, in order to discern them, the net-
work must look at higher-order features on the infrared channel.
The amount of available training data is limited (few scan loca-
tions), which translates into a trade-off between correct color re-
construction and generalization capability. In other words, we have
observed that some strategies can overfit the training data result-
ing in more faithful colors at the seen regions while predicting less
plausible results for the unseen ones.

Another limitation is the current way of delimiting the training
area. In this work, a user must manually annotate the pixel values

containing color artifacts. This implies a subjective definition of the
color quality. One option would be to automate this process by de-
tecting regions with extreme illumination, both shadowed and sat-
urated, especially when HDR images are also acquired. However,
the quality of the images captured by LiDAR equipment is already
limited even on correctly exposed areas. This could be solved by
learning on high quality photographs taken from high-end digital
cameras projected onto the point clouds.
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Figure 7: Results on several scan locations. From left to right: Original color, calibrated infrared and reconstructed color. In this case, the
color prediction was done over non-overlapping 1024 x 1024 pixel tiles.

Figure 8: Results on several scan locations. Left: Tile-based colorization without overlapping. Right: To prevent border artifacts we produce
multiple overlapping tiles and keep their central regions.
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