EG UK Computer Graphics & Visual Computing (2019)
G. K. L. Tam and J. C. Roberts (Editors)

Optimising Underwater Environments for Mobile VR

L.ap Cenydd1 & C. Headleand”

I'School of Computer Science & Electronic Engineering, Bangor University, UK
2School of Computer Science, Lincoln University, UK

Abstract

Mobile Virtual Reality (VR) has advanced considerably in the last few years, driven by advances in smartphone technology.
There are now a number of commercial offerings available, from smartphone powered headsets to standalone units with
full positional tracking. Similarly best practices in VR have matured quickly, facilitating comfortable and immersive VR
experiences. There remains however many optimisation challenges when working with these devices, as while the need to
render at high frame rates is universal, the hardware is limited by both computational power and battery capacity. There is
also often a requirement that apps run smoothly across a wide variety of headsets. In this paper, we describe lessons learned
in rendering and optimising underwater environments for mobile VR, based on our experience developing the popular aquatic
safari application 'Ocean Rift’. We start by analyzing essential best practices for mobile app development, before describing
low-cost techniques for creating immersive underwater environments. While some techniques discussed are universal to
modern mobile VR development, we also consider issues that are unique to underwater applications.

CCS Concepts

o Human-centered computing — Virtual reality; ¢ Computing methodologies — Procedural animation;

1. Introduction

The revival and popularity of consumer VR in recent years has re-
quired a new set of standards and best practices be developed. An
essential requirement is to design and optimise apps so that they
maintain a steady frame rate of either 60 or 72 frames per second
(fps) on mobile hardware, allowing for a comfortable and immer-
sive experience. Indeed not adhering to these frame rates is often
a blocker to publishing on app stores. However maintaining frame
rates on mobile hardware is only one consideration. An app that
runs smoothly can still benefit greatly from further optimisation.
Similar to all mobile apps, reducing the load on the CPU or GPU
can extend battery life. Conversely, if conserving battery is of less
concern, knowing how to effectively optimise mobile VR applica-
tions can facilitate more advanced rendering, and more complex
environments and game play mechanics.

In this viewpoint paper we will discuss how evolving optimi-
sation strategies were used to construct an immersive underwater
environment for Ocean Rift, one of the most popular applications
in mobile VR over the past 5 years [Ocel9], Figure 1. We will con-
centrate on aspects of rendering performance, including lighting,
shading, meshes, batching, culling and level of detail. We will also
explain how the nature of an underwater world presents challenges
that are not necessarily a concern in applications where the user is
grounded.

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

DOI: 10.2312/cgvc.20191254

Figure 1: Screenshot of the Ocean Rift title screen.

2. Virtual Reality Best Practices

While VR as a popular consumer technology is a relatively new
concept, there has been a lot of advancement in terms of industry
best practices. This development has been informed by decades of
VR research, and proactive innovation by companies like Valve,
Sony, and Oculus [YHD*17]. The development and subsequent
promotion of best practices, especially as a way of mitigating cy-
bersickness in users [MS92,PMK17], has been a major focus of the
VR development community. Cybersickness is related to simulator

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.2312/cgvc.20191254

20 Llyr ap Cenydd / Optimising Underwater Environments for Mobile VR

and motion sickness, and can result in symptoms like headaches,
nausea and dizziness [Oma90].

Many VR best practices are universal across high performance
PC, mid and low powered consoles, and mobile hardware. For ex-
ample techniques for minimising aliasing and chromatic aberration,
and the use of appropriate shaders are universal considerations.
Similarly how a user moves through the virtual world is vitality
important across all platforms. We have previously discussed our
experiences in creating novel and comfortable movement modali-
ties for underwater VR [aH19]. However there are some issues that
are specific or amplified in mobile VR hardware, and it is vital not
only be aware of these throughout development but to actively de-
sign with them in mind.

A set of best practices for mobile development is maintained by
Oculus [ocul9a]. Rendering specific advice include being batch
friendly, using baked lightmaps and static geometry, no shadow
buffers, reflections or multiple cameras, minimise rendering passes,
keep transparency to minimum, avoid alpha-testing and use texture
compression. There are also CPU optimisations to consider includ-
ing being mindful of the number of objects in a scene, use physical
simulations sparingly and using object pooling to recycle objects
instead of allocating new ones at runtime.

There is also a requirement to design and optimise around the
lowest common denominator hardware. For example if you are de-
veloping an application destined for both mobile and PC markets,
the base design would need to target the lower powered platform.
Similarly within mobile there is a wide variety of VR hardware
available, from a Samsung Galaxy S6 powered Gear VR [Geal9]
to an Oculus Quest [Quel19] which can render around four times as
many polygons.

3. Targeting Frame Rate

All VR applications should aim to render at the native frame rate of
the device. While it is usually fine to have occasional short drops
in performance, perhaps due to a background process, prolonged
drops in frame rate should be avoided at all costs. There is signif-
icant evidence that drops in frame rate can lead to discomfort and
cybersickness. Indeed on curated asset stores like the Oculus Store
this is a threshold requirement for passing quality assurance. Simi-
larly pushing the boundary of what is possible on the device is also
not a good idea for a commercial application. Developers need to
be aware of every scene’s worst case scenario in terms of camera
angle, asset visibility, and extent of user interaction.

Techniques like Oculus’ Asynchronous TimeWarp (ATW)
[vW16] transform stereoscopic images based on the latest head
tracking information every frame. The idea is to eliminate or re-
duce the judder in rendering that is prevalent on mobile phone ap-
plications due to temporary drops in frame rate. ATW works by
reading the updated orientation information from the headset just
prior to displaying the last rendered image to the user. Using this
information, it constructs a transformation matrix that warps the
eye textures from where they were when the frame was rendered,
to where they should be at this exact moment. This not only helps
to have as short a motion-to-photon latency as possible, but smooth
over issues due to hitches in frame rate.

Mobile VR headsets up until very recently have only been capa-
ble of tracking 3 degrees of freedom (DOF) - that is they could only
track head rotation, and not the user’s position. However newer
headsets like the Oculus Quest are capable of positional tracking
using inbuilt cameras. While 6 DOF tracking is a massive leap for-
ward in mobile VR technology and potential experiences, it does
lead to positional tracking judder from incorrect projection, which
is not managed by ATW. However, it is possible to warp the depth
buffer similarly to perform a positional re-projection and alleviate
some juddering artifacts.

Recently Oculus introduced another tool for automatic optimisa-
tion, called Fixed Foveated Rendering (FFV). FFV takes advantage
of how the human eye works by rendering the periphery at a lower
resolution to the centre. With devices like the Oculus Quest and
Go rendering at a 1440 x 1600 per eye resolution, such techniques
can be a powerful way of conserving performance with minimal
artifacts.

While techniques like ATW and FFV have been transformative
in allowing comfortable VR experiences on mobile hardware, it is
not something that should be relied on to smooth over design or
performance limitations. For example with ATW if head rotation
is fast, the user will see black pulling into their peripheral vision,
as the time warped render texture has not rendered that part of the
world yet. Similar issues are found at the periphery of positional re-
projection. Furthermore positional time warp in mobile VR for the
foreseeable future is limited to maintaining smooth head tracking
only, and will not affect artifacts in the virtual scene.

4. Underwater Environments in Virtual Reality

In Ocean Rift, users can swim around and explore 14 different habi-
tats, ranging from coral reefs and shipwrecks to the Arctic and At-
lantis. There are over 50 animals in the app, including dolphins,
sharks, whales, sea lions, manatees and prehistoric creatures. The
creatures are animated using advanced procedural animation tech-
niques, which we discuss in [HTC17], [HTC18]. The goal is to
make the user feel like they are underwater, using techniques which
both increase immersion, and match the potential perceived realism
of the virtual creature motion and behaviour. In this section we will
look at a variety of rendering and optimisation techniques we have
used to create these vivid underwater environments, especially fo-
cusing on mobile VR optimisation. We will take specific notice of
polygonal and draw call budgets, as they are so critical in yielding
viable performance.

Ocean Rift was developed in the Unity Game Engine [Unil9b]
using the Oculus Mobile SDK for Android [Ocul9b] and Open-
GLES 3.

4.1. Draw Calls and Geometric Complexity

Two of the most critical values to monitor when designing, develop-
ing and optimising for mobile VR are the draw call and geometric
complexity of a scene. While most 3D projects will have a polygon
or draw call budget, in mobile VR it is important to be conservative
with these and not overshoot especially for long periods of time.
Conservative estimates for draw calls on mobile hardware are be-
tween 100-300 calls, with vertices and triangles similarly anything

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Llyr ap Cenydd / Optimising Underwater Environments for Mobile VR 21

between 50-300k, though this can vary greatly depending on what
is being rendered. While a scene can potentially have millions of
polygons and objects, it is essential that we do not render more
than the aforementioned budget at any one time. Draw calls in par-
ticular are often resource-intensive, with the graphics API doing
significant work for each call.

The two main techniques available when managing draw calls is
static and dynamic batching. Static batching aims to combine static
objects into larger meshes, and tries to render them in as few draw
calls as possible. Similarly dynamic batching groups small non-
static meshes together and aims to transform vertices on the CPU,
and draw them in a single call. There are many engine specific rules
for both static and dynamic batching [Unil9a]. For our underwater
environments we mostly use static batching, which provided that
objects are static and share a material can usually be batched in
a single draw call. Typical examples of this are rocks, plants and
bushes, where we can render hundreds in a single draw call with
only a modest performance impact. We do however use dynamic
batching occasionally when rendering schools of fish, explained in
Section 4.10.

Level of detail systems (LoD) are often used in real-time ren-
dering to reduce the polygonal count of a scene, usually by transi-
tioning models into simpler representations based on distance from
camera. We don’t do this often in Ocean Rift, as we are largely
CPU bound due to draw calls. Furthermore the abrupt transitions
between LoDs (commonly known as popping) can also be very
pronounced and immersion breaking in VR. However we do use
LoD techniques when rendering animals, as discussed in sections
4.10 and 4.11.

4.2. Lighting

Most habitats in Ocean Rift are rendered using a mixture of baked
and real-time lights. We use a bright directional light as the main
light source of the scene. This is accompanied by an ambient light
set to a similar colour as the water, which simulates bouncing am-
bient light. Finally a second directional light is used to light the
water surface, and occasionally provide a more subtle second light
source for large animals. While this does double the draw call on
these animals, it can be advantageous especially if in open water
where draw calls are naturally lower.

Figure 2 shows a typical example of a lightmapped environment
from Ocean Rift. We use lightmapping for all static parts of the en-
vironment, which include the sea bed, rocks, plants and objects like
shipwrecks and reefs. This is standard practice in most mobile VR
applications, where lighting is baked rather than calculated. This
allows for static but realistic shadowing, global illumination and
ambient occlusion.

Dynamic shadows are currently prohibitively expensive on mo-
bile hardware, however shadows can be very effective in grounding
dynamic objects in a scene. We use a technique called blob shad-
owing for animals close to the ground, including crabs and other
crustaceans. Blob shadows consist of a quad that is raycasted to
the surface, acting like a crude dynamic shadow that follows the
creature around, rendered using a basic transparent multiply shader.

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

Figure 2: Image of baked lightmap applied to sea bed environment
and final screenshot.

While this can result in artifacts as the quad intersects terrain poly-
gons, provided that the ground is relatively flat this can help better
ground the creatures in the surrounding lightmapped environment.

4.3. Fog

Forward rendered vertex fog is effective at giving the impression
of a murky underwater environment. In Ocean Rift, exp2 vertex
fog effect is used with an appropriate colour. The camera’s clear
colour is also set to this colour value, and the density of the fog
is set so that the fog fades to a vanishing point just before the far
clip plane, so that the water effect fades entirely to the base fog
colour before clipping can be seen. This is important to ensure that
the water plane fades completely before the far clip plane, and that
animals or objects close to the far clip plane do likewise. Different
habitats can have varying visibility (and associated fog density and
clip plane distance). The trade off is largely the denser the scene,
with lots of objects and animals, the thicker the fog needs to be in
order to pull the far clip plane closer and ensure we don’t overstep
the polygon and draw call budget.

The worst case scenario in an underwater environment is that the
user swims upwards until the sea bed is only just in view, and then
look directly downwards. This represents the largest and busiest
camera frustrum, whilst paradoxically being quite boring as most
objects are barely visible due to fog. It is therefore critical to ensure
that the user cannot overwhelm rendering by doing this. This is a
challenge that can largely be overcome through proper considera-
tion during the design of the environment.

On desktop and console a more realistic underwater atmosphere
could be created using advanced techniques like global vertical
fog. This would allow the water to get darker and murkier with
depth. However while this cannot be replicated on mobile for any
one viewpoint, it is possible to interpolate between values for fog
density and colour based on distance from the surface. We also in-
fluence the directional and ambient light with depth, so that as the
user swims deeper the entire scene changes atmosphere. It is also
possible to interpolate in 3D, allowing for separate biomes inside
an underwater habitat. For example clear blue water at the surface,
can transition to dark green murky water at the sea floor, and a sep-
arate orange-tinted quadrant to give the impression of pollution or
silt.

22 Llyr ap Cenydd / Optimising Underwater Environments for Mobile VR

4.4. Water Surface

The water surface in Ocean Rift is largely cosmetic, and acts as a
boundary at the top of each habitat. While it is possible for animals
like dolphins to jump in and out of the water, and for the user to
trigger rings and food to drop into the water, there is no camera in-
teraction. However graphically the surface does have an important
role in terms of immersing the user in the underwater environment.
It is not possible to simulate fluid surface mechanics on mobile VR
hardware yet, though such techniques are very effective on more
powerful hardware. However it is possible to create a fairly realis-
tic illusion of a water surface using simple shader techniques.

Examples of the water surface can be seen in Figures 1, 3 and 5.
The surface mesh consists of a flat plane with typically a 100x100
vertex dimension, though larger habitats require a higher resolu-
tion. During run-time a shader modifies the vertex positions of the
plane to produce a subtle wave effect. Two normal maps are also
combined and scrolled (the first on the u axis, the second on the v
axis) in the fragment shader, to simulate the finer details on the wa-
ter surface. The shader also applies specular highlighting and dif-
fuse noise to the final colour of the water surface. A variant of the
shader also allows for a second diffuse texture to crudely simulate
reflection from the sea bed for shallow water environments. This
results in a shader that is effective at representing a wide variety
of water surfaces, from still shallow waters to more open turbulent
seas.

The water surface shader is one of the most advanced used in
the application, consisting of real-time lighting calculations, three
or four texture samples and multiple normal map calculations in
the fragment shader. However simulating a pseudo-realistic water
surface is integral to providing the feeling of being underwater in
VR, and in most environments if the player is close to the water
surface it is unlikely that there will be many creatures, vegetation
or a cluttered environment to draw at the same time.

4.5. Light Shafts

It would be possible on more powerful hardware to simulate vol-
umetric lighting or sub-surface scattering effects. However these
require post-processing which are prohibitively expensive on mo-
bile hardware due to per-pixel calculations, the use of render tex-
tures, and deferred rendering. However to break up the ubiquitous
colour of the fog, and to give environment a greater sense of depth,
a crude approximation of light shafts can be added to the scene.
These consist of a quad mesh with a light shaft texture, shaded with
a simple additive transparency shader. Large transparent objects are
a big performance hit on mobile hardware due to overdraw - that
is, overlapped parts of the image must be re-rendered for each ob-
ject. However large transparent quads in the distance are possible
provided that we minimise overdraw.

Light shaft quads are spawned randomly around the user, within
arange of about 6-12m, though this is scaled with fog density. The
origin of the quad is offset so that the light shafts appear to start at
the height of the water surface. Light shafts are made to fade in and
out after 15-20 seconds, or when the user swims too close, by al-
tering the alpha channel, and their positions are randomly updated
between cycles. While there are more physically accurate methods

of simulating light shafts (such as volumetric lighting) the effect
given by a quad with additive shader is very effective for the pur-
pose of adding atmosphere to an underwater scene. Providing that
the light shafts are far enough from the camera, their lack of vol-
ume is not apparent (due to user perspective), which is especially
important in VR. The illusion can be broken if a creature swims
through a light shaft, as the clipping edge will clearly show that the
light shaft is a 2d plane. However, this is only obvious with slow-
moving or large creatures (such as whales), and can be mitigated
by detecting and fading out and cycling light shaft positions when
creatures are nearby. Similarly for shallow water a simple check to
ensure there is no collision between the light shaft and the static en-
vironment can be performed before placing. The light shaft effect
can be seen in Figures 3 and 5.

Figure 3: Screenshot of shallow water environment, with water
surface, fish school and two transparent quad-based light shaffts.

4.6. Particle Systems

Clouds of small particles such as dust motes have long been used in
VR to provide a subtle sense of depth. While the technique is now
largely ubiquitous, Ocean Rift was one of the first applications to
use a particle system to provide this extra volume. In the under-
water environment a particle system can be used to create a cloud
of detritus billboard particles which float in the water. The particle
system volume follows the camera around, and is offset based on
the user’s velocity. This ensures that particles are always being in-
stantiated around the user as they swim around. A wind modifier is
also used with a low frequency and amplitude in order to simulate
turbulence and currents in the water.

We also use particle systems extensively for bubble effects,
including emissions from cetacean blowholes, simulation of the
user’s scuba breathing, and hidden emitters in the environment to
enhance atmosphere. We use simple billboard particles for the bub-
bles rather than spherical meshes. While this does mean we lose ge-
ometrical accuracy in VR, billboards allow us to render a lot more
bubbles, and the trade-off isn’t particularly noticeable due to their
round shape and the fact that billboards always directly face the
camera.

As the user is able to freely move around, it is necessary to fade
particles that are near the camera. The reason for this is that par-
ticles passing through the eyes as the user swims forward can be
quite uncomfortable. While it is possible to modify the near clip-
ping plane to mitigate this, this in itself can be detrimental to the

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

Llyr ap Cenydd / Optimising Underwater Environments for Mobile VR 23

experience due to particles disappearing instantly, or when render-
ing near object interactions like the user’s hands. An alternative is
to use the depth buffer in a custom additive shader, which acts to
fade particles as they get near to the camera. A similar shader can
be applied to other small particle systems like bubbles, plankton
and floating detritus.

4.7. Caustics

Caustics effects aim to simulate how light appears to dance on the
surface of underwater objects due to refraction at the water sur-
face. This can have a dramatic effect on the perceived realism and
dynamicity of a scene. As caustics are quite transient and chaotic,
it is possible to crudely approximate caustics on mobile hardware
without having to perform any simulation or adhere to physical ac-
curacy. Caustics are especially useful at enhancing the underwater
effect on the surface of large aquatic creatures like sharks, dolphins
and whales. Dancing light on the skin can help break up the sil-
houette, texture and material of the creature’s skin and make a big
difference to the perceived realism. We do not apply the caustics
shader to static terrain and objects due to the performance cost,
though we do apply the effect in special enclosed environments
like a shark cage.

There are two main techniques for achieving this effect on mo-
bile hardware, depending on what is being affected and the compo-
sition of the scene. One approach is to use a projector or equivalent,
which acts to orthographically project a tiled and looping animated
caustics texture downwards onto anything in the scene. The dis-
advantage of this technique is that everything that is projected onto
will need to be rendered twice, which doubles the number of passes
and draw calls.

The alternative technique is to apply the animated caustics tex-
ture directly in the fragment shader for specific objects, masking
the effect so that it only affects polygons which are being lit by
the main directional light. The strength of the mask can also be af-
fected by the angle of light, so that the caustics effect fades with
glancing angles. This technique also have disadvantages, for ex-
ample the tongue of a blue whale would receive caustics even if
it shouldn’t due to occlusion. However this can be mitigated by a
second texture which masks the inside of the creatures mouth. An
example screenshot of sea lions lit using a caustics shader can be
seen in Figure 5.

While cycling through 32 caustic textures produces a typical fast
dancing light effect, it can be inadequate for some environments
and water depths. By interpolating between frames in the shader
it is possible to produce slower caustics. Similarly it is possible to
fade the effect with distance from the surface, so that caustics are
bright at the water surface and fade as the user swims into deeper
waters.

4.8. Terrain

There are many techniques for rendering large terrains for real-time
applications, including complex LoD systems with dynamic polyg-
onal resolution and advanced vegetation systems. The Unity engine
has its own in-build terrain system for example. However as previ-
ously mentioned we are largely CPU-bound in mobile VR, which

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

requires that we minimise the number of draw calls as much as
possible. While splitting the terrain into segments and performing
culling and LoD optimisation in real-time has many advantages, we
instead draw the entire terrain mesh in a single draw call. This does
put a limit on how complex the terrain can be, and the largest ter-
rains in our application consists of a grid of 100x100 quads (10,000
vertices) for a 1km” habitat. However with a relatively smooth
topology and well placed assets this is more than adequate.

Terrain texturing is performed using a splat shader, a common
technique where a color encoded texture map is used to blend vari-
ous tiled textures together. The effect is to have a complex surface
texture on simple geometry, rendered in a single draw call with
baked lighting. Figure 4 shows an example of the terrain rendered
using a splat map. The terrain topology and splat map were hand
crafted for each habitat inside the Unity editor, using custom editor
extensions developed for the project.

Figure 4: Screenshot showing textured sea bed (left) and splat map
(right). The terrain shader uses this map to blend four seamless
tiled sand and rock textures together to produce the final surface
texture.

4.9. Vegetation

The sea bed is often full of aquatic vegetation, especially in shallow
waters. We render vegetation using a custom shader which com-
bines light-mapping with vertex animation. Most plants are mod-
elled using polygons only, rather than billboards or alpha blended
quads. The main reason for this is to mitigate overdraw, which is
very expensive on mobile chipsets.

Using a modelling package we provide each vertex of the plant
mesh with a colour. Each channel represents a different aspect of
motion - red controls vertical movement, blue horizontal and green
high frequency. The vertices are black at the base of the plant
(to curb any movement at the terrain surface), and gradually get
brighter with height. A vertex shader at run-time applies three sep-
arate sinusoidal waves at various frequencies and amplitudes in or-
der to simulate floating and bending in the water current. In order
to stop all plants from swaying in unison, the effect is phased based
on position in 3d space.

The effect of this is that we can have veritable forests of statically
batched animated plants in a scene, with each type rendered in a
single draw call.

24 Llyr ap Cenydd / Optimising Underwater Environments for Mobile VR

4.10. Fish Schools

Fish can commonly be seen schooling in large groups, which
can be particularly impressive when seen in VR. We simulate
schooling using the standard Boids algorithm, pioneered by Craig
Reynolds [Rey87]. Here three steering forces are combined to pro-
duce schooling behaviour - ‘Cohere’ which makes fish swim to-
wards their neighbours, ‘Separate’ which ensures they don’t get too
close to one another, and ‘Align’ which allows the fish to swim in
a common direction.

We combine the Boids algorithm with a wandering steering be-
haviour, which moves fish towards an ever changing target posi-
tion within a set boundary. This boundary allows us to place many
schools within a habitat, while ensuring they don’t get too close to
one another. We also scale the number of fish in each school based
on VR platform.

By default, each fish will require their own draw call, which
would be prohibitively expensive even for small schools of fish.
However dynamic batching has limitations - for example the Unity
engine will currently dynamically batch moving meshes containing
no more than 900 vertex attributes, with no more than 300 vertices.
Dynamic batching also does not work on skinned meshes - such as
ones with skeletal animations.

Our solution currently is to have a level of detail system that
swaps each school fish from an animated skinned mesh to a sub-
300 vertex mesh based on distance. This means that only fish that
are near to the camera require their own draw call, while fish further
away are rendered in a single batched draw call. While this means
that draw calls will go up significantly if the user swims close or
into a school of fish, it does allow us to optimise at quite a short
distance, and allows schools to be much closer together and give
the impression that the sea is full of life.

While Boids is a relatively cheap algorithm, it does have CPU
overhead especially when evaluating neighbourhoods and calculat-
ing forces between neighbours. In order to optimize performance,
we disable schools that are just outside the camera frustrum. We
perform similar optimisation on all small singular animals in the
app. This does somewhat reduce the dynamicity of the environ-
ment, but is an important trade-off to preserve CPU bandwidth.

While we have concentrated on skinned mesh animation for
schooling fish in Ocean Rift, it would also be possible to animate
schools using a custom animation shader, similar to the technique
developed for the video game ABZU [Abz19]. This would work
in a similar way to our vegetation shader, where vertices are di-
rectly animated in the shader to produce animation. While this tech-
nique would only be suitable for smaller fish or large fish schools,
it would allow for low-cost animated static batching, potentially al-
lowing us to render thousands of fish in a single draw call. Further-
more such a technique could be extended to accomodate the render-
ing and animation of more amorphous and complex morphologies,
such as jellyfish, octopus and squid.

4.11. Star Animals

Star animals like dolphins, sharks and whales are the main attrac-
tion. It is therefore necessary to spend as much processing power

as possible on rendering and animating these creatures in order to
produce the most vivid experience. VR can give users an enormous
sense of presence in a virtual environment, and the requirement
to have quality models, shaders, animation and behaviour are all
heightened due to this increased immersion.

Figure 5: Screenshot of two sea lions with caustic shader effect.

There are many rendering issues which could potentially pull
users out of the experience, such as visible polygon defects on the
mesh, unrealistic shaders and materials, and texture stretching due
to inadequate mesh skinning. Similarly, sub-par animation, glitch-
ing or unrealistic behaviour are also amplified in VR, due to the
user’s attention being focused intimately on the animal in front of
them. The added perceptual volume that a player has in VR due to
the immersive experience can make them more critical of unrealis-
tic behaviour.

A lot of these issues can be alleviated by having good qual-
ity models, textures and shaders. For mobile VR this can present
a challenge, as you cannot simply throw polygons and complex
multi-pass shaders at the problem. For example, a common tech-
nique in video game development is to generate a low poly model
from a high poly one, and bake the extra surface information into
normal maps. While perfectly adequate on a flat screen, normal
maps do not account for stereoscopy, so the effect can break down
in VR, especially up close. However it is possible to mitigate this
issue by modelling specifically with low poly in mind, and normal
maps can still be very effective at producing high frequency in-
formation like scales, pores, scratches and scars in VR. Similarly
baking an ambient occlusion map into the diffuse texture can also
help give extra detail to a creature or environment in some circum-
stances.

Figure 5 shows a screenshot of two Sea Lions from Ocean Rift.
Each model consists of around 7500 polygons and 15000 faces in
total, split into three sub-meshes - the body, eyes and whiskers,
teeth and tongue collectively. This is also our typical setup for most
large animals like whales, sharks and prehistoric creatures.

The facial area is very important in VR, especially for large in-
telligent creatures like sea lions. This is where the user will tend to
look most often, and their focal point when tracking the creature as
it moves. It is therefore important that there is a higher frequency
of polygons around the face, both to provide extra geometric detail
and facilitate facial animation.

We control the jaws and eyelids using bones which allows for

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Llyr ap Cenydd / Optimising Underwater Environments for Mobile VR 25

expression, micro movements and blinking. We also rotate the eye
spheroids at runtime so that the creatures are looking at something
- usually towards the camera, with some micro random adjustments
to simulate saccadic eye movements and give the impression that
the animal is studying the user. These micro movements of the eyes
and eyelids are a very important feature for selling the realism of
close encounters, as dull lifeless eyes can be very detrimental to
immersion.

Level of detail techniques are commonly used in 3d applications
to render the environment or characters at lower detail based on
distance (less polygons, simpler shading or animation). For large
animals we tend to keep the overall body mesh the same number
of polygons with distance, due to the fact that underwater the ani-
mal will be quite close when visible, and transitions between LoD
levels are quite apparent in VR. However with smaller animals it
is possible to switch between several LoD mesh levels, especially
with exp2 fog where visibility reduces quite quickly.

Our sea lions are rendered in three draw calls when up close, and
in a single draw call when further away. While we render the eyes,
mouth parts and body up close, we only show the latter when ani-
mals are distant. The exact crossover point is a matter of tweaking
and varies based on fog density and animal in question.

Creature optimisation is usually about balancing the require-
ments of each scene. If for example there are five sea lions in a
habitat, expensive draw calls are multiplied by five if all are in the
closest LOD (perhaps due to items of interest like a ring or food
being dropped into the water). In this case, we mitigate the chances
of this happening by only allowing a few sea lions to show interest
in an area near the player at any one time. This does vary based
on platform however - on older Samsung Gear VR hardware we
might limit this to two at a time, while on PC we can remove this
limitation altogether.

5. Conclusion

Developing mobile VR apps is a significant challenge, and adher-
ing to best practices is essential in creating compelling and com-
fortable VR experiences. Developers need to maintain a high qual-
ity player experience, while being mindful of the limitations of a
low-power platform. This is not a problem that is likely to be re-
solved in the near future, despite the rapid development and intro-
duction of more powerful devices. Publishing platforms still serve
older devices, such as the Samsung Gear VR. Furthermore, while
computational power has increased so have the demands on power.
Unfortunately, battery technology has not improved significantly so
this will continue to be a bottleneck for developers for some time.

In this paper we have presented a number of optimisation tech-
niques used in the popular VR experience 'Ocean Rift’. We have
explained how we follow universal best practices, and given exam-
ples of how we have applied these when creating underwater envi-
ronments. We present this case study from our commercial experi-
ence in the hopes that it will support the community in developing
increasingly visually impressive and interactive experiences.

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

References

[Abz19] Creating the Art of ABZU, 2019. URL:
https://www.gdcvault.com/play/1024409/
Creating-the-Art-of-ABZU. 6

[aH19] AP CENYDD L., HEADLEAND C. J.: Movement modalities in
virtual reality: A case study from Ocean Rift examining the best prac-
tices in accessibility, comfort, and immersion. I[EEE Consumer Electron-
ics Magazine 8, 1 (Jan 2019), 30-35. doi:10.1109/MCE.2018.
2867971.2

[Geal9] Samsung Gear VR website, 2019. URL: https://www.
samsung.com/global/galaxy/gear-vr/. 2

[HTC17] HENSHALL G. 1., TEAHAN W. J., CENYDD L. A.: Crowd-
sourced procedural animation optimisation: Comparing desktop and vr
behaviour. In 2017 International Conference on Cyberworlds (CW) (Sep.
2017), pp. 48-55. doi:10.1109/CW.2017.52. 2

[HTC18] HENSHALL G. I., TEAHAN W. J., CENYDD L. A.: Virtual
reality’s effect on parameter optimisation for crowd-sourced procedural
animation. The Visual Computer 34, 9 (Sep 2018), 1255-1268. doi:
10.1007/s00371-018-1501-2.2

[MS92] MCCAULEY M. E., SHARKEY T. J.: Cybersickness: Percep-
tion of self-motion in virtual environments. Presence: Teleoperators &
Virtual Environments 1,3 (1992), 311-318. 1

[Ocel9] Ocean Rift Gear VR Store webpage, 2019. URL:
https://www.oculus.com/experiences/gear-vr/
1249878741704255. 1

[ocul9a] Oculus Best Practices for Mobile Develop-
ment, 2019. URL: https://developer.oculus.
com/documentation/unity/latest/concepts/
unity-mobile-performance-intro/. 2

[Ocul9b] Oculus Mobile SDK, 2019. URL: https://developer.
oculus.com/downloads/package/oculus—-mobile-sdk/.
2

[Oma90] OMAN C. M.: Motion sickness: a synthesis and evaluation of
the sensory conflict theory. Canadian Journal of Physiology and Phar-
macology 68, 2 (1990), 294-303. PMID: 2178753. doi:10.1139/
y90-044. 2

[PMK17] PALMISANO S., MURSIC R., KiM J.: Vection and cybersick-
ness generated by head-and-display motion in the oculus rift. Displays
46 (2017), 1-8. 1

[Quel9] Oculus Quest website, 2019. URL: https://www.oculus.
com/quest/. 2

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A distributed
behavioral model. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 25—
34, doi:10.1145/37402.37406. 6

[Unil9a] Unity Documentation - Draw Call Batching,
2019. URL: https://docs.unity3d.com/Manual/
DrawCallBatching.html. 3

[Unil9b] Unity Game Engine, 2019. URL: https://unity3d.
com/. 2

[VW16] VAN WAVEREN J. M. P.: The Asynchronous Time Warp for
virtual reality on consumer hardware. In Proceedings of the 22Nd ACM
Conference on Virtual Reality Software and Technology (New York, NY,
USA, 2016), VRST *16, ACM, pp. 37-46. doi:10.1145/2993369.
2993375.2

[YHD*17] YAO R., HEATH T., DAVIES A., FORSYTH T., MITCHELL
N., HOBERMAN P.: Oculus best practices. Oculus VR (2017). 1

https://www.gdcvault.com/play/1024409/Creating-the-Art-of-ABZU
https://www.gdcvault.com/play/1024409/Creating-the-Art-of-ABZU
https://doi.org/10.1109/MCE.2018.2867971
https://doi.org/10.1109/MCE.2018.2867971
https://www.samsung.com/global/galaxy/gear-vr/
https://www.samsung.com/global/galaxy/gear-vr/
https://doi.org/10.1109/CW.2017.52
https://doi.org/10.1007/s00371-018-1501-2
https://doi.org/10.1007/s00371-018-1501-2
https://www.oculus.com/experiences/gear-vr/1249878741704255
https://www.oculus.com/experiences/gear-vr/1249878741704255
https://developer.oculus.com/documentation/unity/latest/concepts/unity-mobile-performance-intro/
https://developer.oculus.com/documentation/unity/latest/concepts/unity-mobile-performance-intro/
https://developer.oculus.com/documentation/unity/latest/concepts/unity-mobile-performance-intro/
https://developer.oculus.com/downloads/package/oculus-mobile-sdk/
https://developer.oculus.com/downloads/package/oculus-mobile-sdk/
https://doi.org/10.1139/y90-044
https://doi.org/10.1139/y90-044
https://www.oculus.com/quest/
https://www.oculus.com/quest/
https://doi.org/10.1145/37402.37406
https://docs.unity3d.com/Manual/DrawCallBatching.html
https://docs.unity3d.com/Manual/DrawCallBatching.html
https://unity3d.com/
https://unity3d.com/
https://doi.org/10.1145/2993369.2993375
https://doi.org/10.1145/2993369.2993375

