
EG UK Computer Graphics & Visual Computing (2019)
G. K. L. Tam and J. C. Roberts (Editors)

Fast and Efficient Nearest Neighbor Search for Particle Simulations

J. Groß1, M. Köster1 and A. Krüger1

1Saarland Informatics Campus, Germany

Figure 1: A set of particles (left) and some highlighted neighbor-lookup radii. A commonly used data structure to speed up neighbor-lookup
in general is a uniform grid that subdivides the space into several grid cells (middle). Our approach (right) uses two steps to subdivide
the domain into uniform grid cells. The first step (black lines) forms a coarse-grained grid that is stored in memory. The fine-grained grid
is created on-the-fly in the second step during neighbor lookup (blue lines) and does not need to be stored in GPU device memory. This
dramatically reduces memory consumption and improves lookup times due to coherent memory accesses to global and shared memory.

Abstract

One of the fundamental algorithms in particle simulations is the identification and iteration over nearest neighbors of every par-
ticle. Well-known examples are SPH or PBD simulations that compute forces and particle-position updates in every simulation
step. In order to find nearest neighbors for all particles, hash-based, grid-based or tree-based approaches have been devel-
oped in the past. The two most prominent and fastest algorithms use virtual and explicitly allocated uniform grids to achieve
high performance on Graphics Processing Units (GPUs). However, they have disadvantages with numerous particle simulation
domains, either in terms of run time or memory consumption. We present a novel algorithm that can be applied to large sim-
ulation domains that significantly reduces memory consumption using a shared-memory based neighbor search. Furthermore,
we achieve high-performance on our evaluation scenarios that often outperforms existing state-of-the-art methods.

CCS Concepts
• Computing methodologies → Shared memory algorithms; Massively parallel algorithms; Graphics processors;

1. Introduction

Particle simulations are very useful and often an essential utility to
invent or evaluate mathematical approaches in simulated environ-
ments. Prominent examples are Smoothed Particle Hydrodynamics
(SPH) [GSSP10], Position Based Dynamics (PBD) [MHHR07] or
Position Based Fluids (PBF) [MM13, KK16]. SPH uses different
kinds of so called smoothing kernels that calculate various forces
between particles. Similar to SPH, PBF also relies on the evalu-
ation of smoothing kernels to compute local fluid densities. PBD

leverages constraints to model the interaction behavior between
particles using their position, velocity and mass information. All
these approaches use an iterative solver to approximate the final
solution. The iteration over all neighboring particles is required in
every solver step, and thus often dominates the overall run-time
performance.

A similar problem also appears in the field of computer graph-
ics. Photon mapping shoots many photon particles from all light
sources into the scene being rendered. During the actual rendering

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/cgvc.20191258 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/cgvc.20191258

J. Groß & M. Köster & A. Krüger / FENNS

process, nearest neighbor search is required to gather the k-nearest
photons in order to approximate the illumination of a particular
position in the scene. Again, a large portion of the run-time per-
formance depends on the gathering step that has to be performed
several times for every pixel in the rendered image. In contrast to
the previously presented domain, an approximation of the k-nearest
particles is often sufficient, since there is typically only a little loss
in terms of image quality if we skip some neighbors. This domain
knowledge can be exploited to create fast and efficient search algo-
rithms. Gupte [Gup12] , Pedersen [Ped13] and Fleisz [Fle09] show
interesting and promising approaches for hashing these photons in
a scene to improve run-time performance.

We are focusing on a non-approximative neighborhood search
that considers all neighboring particles. Skipping some particles
for performance reasons can lead to non-deterministic behavior
in terms of simulation correctness. For practical considerations,
all particles in a certain fixed-size radius around every particle
are considered to be neighboring particles in order to avoid use-
less calculation overhead; like for example in [KE10], [BVAT17]
and [KSG15,KK18]. For this reason, several approaches have been
developed using either grid-based or tree-based algorithms. In the
past, tree-based approaches were widely spread until the signifi-
cantly faster state-of-the-art grid-based methods have been intro-
duced on GPUs [Gre08, Hoe13]. The grid-based methods are more
suitable for these problems and much faster and easier to imple-
ment on GPUs, since they ensure coherent memory accesses and
use static memory allocations. However, major disadvantages of
these methods are the large memory consumption of O(m3), where
m is the grid size in one dimension.

In this paper, we propose a new algorithm that has significantly
reduced memory consumption using fast on-chip shared memory.
We leverage recent improvements of GPU-hardware in terms of fast
intrinsic functionality to improve performance in comparison to the
current state-of-the-art methods. Furthermore, our approach is de-
signed to benefit from coherent memory accesses to large portions
of the underlying particle data. We demonstrate that our approach
needs almost no additional memory but still has a high performance
on our evaluation scenarios.

2. Related Work

There are mainly three concepts to determine nearest neighbor par-
ticles: straight-forward, grid-based and tree-based approaches. The
simplest approach is a brute-force method, where all particles are
checked, whether they are in range of a certain particle or not. This
is very inefficient especially for domains with lots of particles, since
the lookup has a run-time complexity of O(n2). A common use case
of this method is the N-body problem which computes gravitational
forces between all objects [KSG15]. However, more advanced al-
gorithms like the Barnes-Hut algorithm [BP11, KSC∗14] use trees
to reduce processing complexity.

Generic tree-based approaches use a construction phase to cre-
ate a data structure with the overall purpose of decreasing lookup
time. The disadvantage of these trees on a GPU is their dynamic
manner since tree construction needs dynamic memory allocations
to insert all particles. These memory allocations during run time

needs long time and therefore should be avoided. A static memory
allocation before running the algorithm is much more efficient, but
makes the usage of trees more sophisticated. However, tree-based
approaches are commonly used to improve run time and mem-
ory consumption to build the neighborhood relation between par-
ticles. Otair [Ota13], Gieseke [GHOI14], Zhou [ZHWG08], Gora-
dia [Gor08] and Qui [QMN09] show different approaches to handle
efficient nearest neighbor queries with kd-trees. The original idea
of a kd-tree construction can be followed back in the 70’s where
Bentley introduced this method [Ben75]. An additional downside
of trees on GPUs are their (often) not optimal memory access pat-
terns, in general. Maintaining the data structure over time requires
either sophisticated algorithms or a complete reconstruction in ev-
ery simulation step.

The two currently fastest approaches use grid structures
to improve nearest neighbor search. The first approach from
Green [Gre12] uses a virtual grid, which hashes particles to cer-
tain grid cells. These cells represent a certain part of the simu-
lation space. After the initial insertion phase, all particles are re-
ordered using radix sort [SHG09] to improve coherent memory ac-
cesses. Later on, these grid cells (as well as their neighboring cells)
are looked up for potentially neighboring particles. This concept
mainly suffers from run-time limitations imposed by the radix sort
algorithm, which often performs slowly if we have to consider lots
of particles. The second state-of-the-art approach is the one from
Hoetzlein [Hoe13]. It was developed later on and improves Green’s
approach by using atomic functions. These functions, which repre-
sent hardware-based synchronized memory accesses, can be used
to increment counters in global memory. Such a function returns
the old value of the memory cell that (in this case) corresponds to
the particle offset within a certain cell. This value is used as a cell
offset in the reordering step that is added to the start index of a grid
cell. Hoetzlein uses a large grid, where each memory cell repre-
sents a grid cell containing its actual number of particles. A prefix
sum [MG16] algorithm calculates the offsets for each grid cell. Af-
terwards, all particles are reordered in a separate step to move them
to their final position in memory. This significantly improves run-
time performance at the expense of a high memory consumption.

Kawada [KGIN11] invents an idea in which they add some
"bounding-space" around each grid cell to eliminate an additional
lookup table. However, this leads to duplicate particles as a particle
that falls into several boundary-regions needs to be present in all
of them. The result is a higher memory consumption due to storing
of additional interim results and involves an additional duplicate-
elimination step.

3. Algorithm

Hoetzlein and Green provide simple approaches to sort particles,
that do not use much hardware-related features which can improve
run time and memory consumption. The only hardware-related fea-
ture is the use of atomic functions in Hoetzlein’s version to in-
crement cell counters in global device memory. However, increas-
ing the number of particles or the cell sizes leads to larger grids
and many atomic-function accesses to the same memory addresses.
Larger grids imply an increase of scattered memory accesses to
arbitrary locations. Furthermore, many atomic-function operations

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

56

J. Groß & M. Köster & A. Krüger / FENNS

Figure 2: A grid cell that is divided in its inner region (red) and
the border region (green). The width of the border region is equal
to the search radius.

Figure 3: A particle and its associated search radius falls into a
grid cell of the second step (left). From a theoretical point of view,
we have to check all marked grid cells for neighbors (red). How-
ever, since we do not explicitly store the grid of the second step in
memory, we have to check all potential neighbors from the border
part of the other cells resulting from the first step (right, green).

on the same memory locations often result in severe slowdowns
(due to serialization effects). Using fast on-chip shared memory in
a smart way can speed up the overall neighbor search. The gen-
eral idea of our method is the usage of small grids that still fit into
shared memory. In this case, we can use fast atomic functions to
update memory cells in shared memory in the scope of a single
thread group [NVI19].

Unfortunately, shared memory is still quite limited in terms of
size [NVI19]. Storing a single grid in shared memory, therefore,
leads to a small grid resolution and large grid cells containing hun-
dreds of particles. This does not improve performance, since we
have to iterate over all particles in the same cell (and all neighbor-
ing cells). Our idea is a general two-step approach. In the first step,
we subdivide the domain into a low-resolution grid that still fits
into shared memory and leverage Hoetzlein’s cell-counter princi-
ple (see subsection 3.1). Since we want to process all particles in
parallel, we have to launch lots of thread groups. However, these
groups cannot communicate via shared memory directly, we still
need some global synchronization step afterwards. Following Hoet-
zlein’s idea, we also perform a global prefix sum (like in [MG16]),
such that we can obtain the global start offset for each grid cell from
the first step. This means that we still need the small grid in global
memory to calculate the offsets and synchronize the results.

In the second step, we subdivide every cell from the first step
again into a low-resolution grid that still fits into shared memory of
every thread group. Note that the grid resolution in the second step
is typically lower than in the first step, since we have to store addi-
tional information in shared memory (see subsection 3.2). In con-
trast to the first step, each thread group processes a single grid cell
and its containing particles. During the actual neighbor search, the
conceptionally fine-grained grid is locally constructed on-the-fly in
shared memory. This allows us to efficiently iterate over neighbor-
ing particles within the same grid cell. However, this does not help
when iterating over potential neighbors from other grid cells of the
first step.

To solve this issue we introduce the concept of a border region
of every grid cell. Consider the particles in Figure 2. We split up the
grid cell in two sub regions. The green area represents the border
region that contains all particles that may be looked up by neigh-
boring grid cells for potential neighbors. The size of this region
depends on the chosen search radius. For practical considerations,
the search radius should chosen in a such a way that we only need
to check the 27 neighboring grid cells in 3D. The red area contains
particles that cannot be looked up by particles in other grid cells.
While Hoetzlein and Green check all neighbor cells with all parti-
cles, we only check the potentially relevant particles in the border
region of other grid cells from the first step. Hoetzlein uses huge
grids to minimize look-up overhead, because he has only some par-
ticles in this grid region to look up. We leverage border regions
since we have only low-resolution grids where each grid cell can
contain lots of particles (see Figure 3).

Figure 4: Memory layout of particles in the scope of an inner re-
gion (red) and a border region (green). We move particles that fall
into the border region to the start address. This is not a strict re-
quirement, as it is only important that one section contains the bor-
der particles and the other one the remaining particles. In our im-
plementation the border region is filled from the left, whereas the
inner region is filled from the right-hand side.

3.1. First Step: Sorting

For sorting, we can modify Hoetzlein’s approach to adapt the
method to our needs. In contrast to his method, we have to sort
the particles within a grid cell as outlined in Figure 4. Fortunately,
we can do that in a fast and efficient way using an additional step
during particle reordering. As a result, we get two sections per grid
cell, where one section contains the border elements and the other
section the inner ones. It is not important which section comes
first, but we have to store an additional index pointing to the start
location of the second section.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

57

J. Groß & M. Köster & A. Krüger / FENNS

The actual sorting algorithm consists of two parts. The first part
is shown in algorithm 1 and works as follows: In a first step, we cal-
culate the grid position for each particle and increment a counter in
shared memory with an atomic addition. After that, we store the
local counter result in the global memory, also using an atomic op-
eration. If all particles are processed and the results are written,
we perform a prefix sum over the global-memory buffer, analo-
gous to Hoetzlein’s approach. We have to compute inclusive and
an exclusive prefix-sum results since these offsets are required in
the next part of the algorithm. Hence, the counter array needs to
be twice as large, because we have to store both results in the same
buffer. Hoetzlein uses two arrays to store the grid-cell index and the
grid-cell offset of a particle, which increases memory consumption.
These temporary memory arrays are not required in our case, be-
cause we can calculate the grid-cell position and use the results
from the prefix sum to infer the offset.

The second part is shown in algorithm 2. Initially, we calculate
the grid-cell position again. We compute whether the particle lies
in the border region or not, where the result of the check is 0 or
1. This value is now added to a local counter in shared memory
to track how many border particles exist in the current cell. Then,
the offset is obtained from the global counter by an atomic add.
In this case, the global memory access is needed, because we re-
quire the globally unique offset value of the current grid cell. The
final position within a grid cell is calculated in the following way:
If it is a border element we add the particle to the beginning of the
reserved memory space (filled from left to right). The other parti-
cles are added to the end of the memory space, that means we fill
from right to left. We need to add the local offset to the exclusive
prefix sum result, if it is a border particle. Alternatively, we need
to subtract it from the inclusive prefix sum result otherwise. After
reordering, both prefix-sum parts contain the same values and we
have to subtract the local border-particle counter again from one
part to resolve the start indices of every grid cell.

Algorithm 1: The Sort Algorithm (Part 1)
Input: index idx, input buffer input, array count, grid grid

1 sharedGrid := shared memory [maximum grid size];
2 foreach particle ∈ input do

/* Calculate gridcell index */
3 pos := CalculateGridPosition (particle, grid);
4 atomicAdd (sharedGrid[pos], 1);
5 end
6 group barrier;
7 foreach (value, cellIdx) ∈ sharedGrid do

/* Store accumalated value in global
memory */

8 atomicAdd (count[cellIdx], sharedGrid[cellIdx]);
9 end

3.2. Second Step: Neighbor Search

For neighbor search (algorithm 3) we need the reordered particles
from the previous step and the buffer that contains the grid-cell start
indices and the border-section start indices. The search is mainly

Algorithm 2: The Sort Algorithm (Part 2)
Input: index idx, input buffer input, output buffer out put,

array count, grid grid
1 sharedGrid := shared memory [maximum grid size];
/* Divide the count-buffer into two

parts: grid-cell start indices and
inner-region start indices */

2 partSize := length(count) » 1;
3 foreach particle ∈ input do

/* Calculate gridcell index */
4 pos := CalculateGridPosition (particle, grid);

/* Check if the particle is in border
region */

5 isBorder := CheckBorderRegion (particle, grid);
6 atomicAdd (sharedGrid[pos], isBorder);

/* Update corresponding index in
count */

7 reorderedPos := atomicAdd (count[pos + isBorder *
partSize], isBorder * 2 - 1);
/* Adjust target position in case of

an inner-region particle since we
fill the inner region from the
right-hand side */

8 reorderedPos := reorderedPos + (isBorder - 1);
9 output[reorderedPos] := particle;

10 end
11 foreach (value, cellIdx) ∈ sharedGrid do
12 atomicAdd (count[cellIdx], -value);
13 end

done in shared memory, if possible, but some global memory ac-
cesses are needed due to space limitations (see Figure 5). We con-
sider a neighbor iterator that consists of two functions: one is in-
voked for every neighboring particle and the other is invoked when
all neighbors have been finished. This enables modeling of arbitrary
neighbor iterators.

The algorithm is started for every global grid cell from the first
step, which is represented by one GPU group. At first, we have to
calculate a smaller local grid to form the acceleration structure for
a particular grid cell. The 3D position of the minimum corner is
obtained from the global grid cell and the neighbor-search radius.
In the end, we have a grid which overlaps a global grid cell by the
search radius in every direction. As grid dimension we choose a
smaller dimension than the global grid, because we need to store
additional data in shared memory. We reserve shared memory for
managing the grid-cell offset counters of the local grid. Then, we
have to resolve the start- and end index of the current global grid
cell particles. Because we need group-wide barriers and, therefore,
have to avoid thread divergences, we pad the number of particles to
the next multiple of the group size.

The main loop processes all particles and fills up the padding
area with some dummy particles that do not have any effect on the
result. In this way we always process a subset of all particles in
the cell in parallel. Afterwards, the grid offsets are reset to prepare
the next iteration step. Similar to the first algorithm step from sub-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

58

J. Groß & M. Köster & A. Krüger / FENNS

Algorithm 3: The Search Algorithm
Input: input buffer input, array count, array innerLookup,

array outerLookup, grid localGrid, grid globalGrid
1 particles := shared memory [group size];
2 gridOffsets := shared memory [size(localGrid)];
3 localGrid.Position := Calculate3DPositionOfLocalGridCell;
4 start, end := GetStartAndEndFromCount;

5 paddedEnd :=
⌈

end - start
group size

⌉
* group size + start;

6 for i := start + group index; i < paddedEnd; i += group
size do

7 particle := i < end ? input[i] : Vector3(float.MinValue);
8 pos := CalculateGridPosition (particle, localGrid);
9 reset gridOffsets;

10 group barrier;
11 if pos >= 0 then
12 offset := atomicAdd (gridOffsets[pos], 1);
13 end
14 group barrier;
15 prefix sum (gridOffsets);
16 if pos >= 0 then
17 targetPos := Exclusive(pos, gridOffsets) + offset;
18 particles[targetPos] := particle;
19 end
20 group barrier;
21 for j := start + group index; j < end; j += group size

do
22 neighborParticle := input[j];
23 LookupNeighborCells(...);
24 end
25 group barrier;
26 if warp index < #neighboring cells then
27 outerPos := grid index + outerLookup[warp

index];
28 if outerPos >= 0 & outerPos < size(globalGrid)

then
29 startN, endN := GetStartAndEndFromCount;
30 startN := startN + lane index;
31 for k := startN; k < endN; k += warp size do
32 LookupNeighborCells(...);
33 end
34 end
35 end
36 group barrier;
37 if i < end then

/* Invoke the user-defined
finish-iteration function */

38 InvokeFinishNeighborIterationFunction;
39 end
40 group barrier;
41 end

Algorithm 4: Lookup Neighbor Cells Method
Input: input buffer input, array gridO f f sets, array

innerLookup, particle neighborParticle, grid grid
1 pos := CalculateGridPosition (neighborParticle, grid);
2 for i := 0; i < #neighboring cells; i := i + 1 do

/* Resolve the actual lookup position

*/
3 lookupPos := innerLookup[i] + pos;
4 if lookupPos >= 0 & lookupPos < size(grid) then
5 start := Exclusive(gridOffsets, lookupPos);
6 end := Inclusive(gridOffsets, lookupPos);
7 for k = start; k < end; k := k + 1 do
8 o := input[k];
9 oPos := CalculateGridPosition(o, grid);

/* Invoke the user-defined
iteration function */

10 InvokeNeighborIterationFunction;
11 end
12 end
13 end

Figure 5: The basic overview of the search algorithm. First, some
elements are copied from global to shared memory (black arrows).
Then (step 2), each element in shared memory looks up the ele-
ments from its own grid cell and checks the neighborhood relation
(red arrows). In step 3, the elements in shared memory check the
border particles from the grid cells around their current cell (green
arrows). After step 3, the next elements from the current grid cell
are copied to shared memory.

section 3.1, we locally sort all particles in the scope of the local
grid. Once the particles are sorted, we benefit from the acceleration
structure, which improves performance. The particle position in the
local grid is calculated and we increment the local counter with an
atomic addition and store the offset of a particle in the local grid
cell. Once a subset of all particles has been processed, we perform
a prefix sum over the counter array. Using the prefix-sum informa-
tion, we can calculate the locally reordered position of a particle
and store the particle information in our reserved shared-memory
array.

Now, the actual search process starts and is divided in two stages.
In the first stage, we look for neighbor particles within our grid
cell: We check all neighboring local grid cells for potential neigh-
bors of every loaded particle. For this purpose, we use an additional
algorithm LookupNeighborCells in algorithm 4. However, the bor-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

59

J. Groß & M. Köster & A. Krüger / FENNS

der particles in the neighboring global grid cells are still missing
and have to be checked in the second stage. To provide more par-
allelism, we assign each neighbor cell to a warp and process the
neighbors in parallel. Then, every warp checks, whether there are
particles in the border section or not. In the case of border particles,
we iterate over all of them and invoke the user-defined neighbor-
particle iteration function.

Once all neighboring cells have been processed and our thread
has a valid particle (no dummy element), we invoke the user-
defined finish-iteration function.

3.3. Implementation Details

We have implemented our algorithm and all related methods in C#
using the ILGPU-compiler † for all GPU programs (referred to as
kernels). The usage of grid-stride loops in algorithms 1 and 2 en-
sures a better occupancy of the GPU, and therefore a faster run
time during the sorting process. All presented algorithms are di-
rectly modeled via GPU kernels.

Because the actual memory consumption is known before run-
ning the algorithm, all memory buffers can be allocated before ex-
ecution. In this way, we can avoid unnecessary dynamic memory
allocations during run time. Our implementation of the prefix sum
uses warp shuffles to improve performance [NVI14]. Note that we
have to pad the number of elements to process in the scope of the
loop in algorithm 3 in line 6 to the next multiple of the group size.
These dummy particles are used for performance reasons only and
are omitted after the search step.

4. Evaluation

4.1. Scenarios

For evaluation, we compare our approach with Hoetzlein’s and
Green’s method on different scenarios in terms of run-time speed
(in milliseconds) which can be found in tables 1, 2, 3. We choose
the number of particles and the search radii to point out the differ-
ence between all methods. The search radii vary from 0.2 to 1.0 in
scene dimensions, to reflect common use cases in which 27 neigh-
boring grid cells have to be tested for potential neighbors. In all
cases, we uniformly distribute all particles in the simulation do-
main. We have chosen this strategy to emulate a subset of a dense-
particle simulation, in which particles are (more or less) evenly dis-
tributed across the simulation domain. For instance, a search radius
of 1.0 in scenario 1 with 4,194,304 particles corresponds to a aver-
age number of 148 neighbors per particle.

We follow Hoetzlein’s computation of the cell size from his im-

plementation, which results in cellSize = 2·neighbor radius
grid density , where

grid density is set to be 1.0 in our simulations. Therefore, the ac-
tual grid dimension m is given by m = scene size

cellSize . We apply this
formula to Hoetzlein’s and Green’s approach in tables 1 and 3.
Our method chooses the largest possible grid size that still fits into
shared memory: an 18× 18× 18 grid in the first step. In terms of

† www.ilgpu.net

scene size, we set the scene-cell size to 10 (in scenarios 1, 2) in
world coordinates. Scenario 3 uses a doubled scene-cell size of 20.
In this case, we can start measurement only with a search radius
of 0.3 (instead of 0.2 like in the two other scenarios); we exceed
global-memory limitations otherwise. Detailed information about
the used grid sizes of all methods can be found in Table 4.

We consider all particles to be unsorted in memory, so we sim-
ulate the case in which we are in the first iteration of a simulation
(with randomized placed particles, for example). This represents
the worst-case for all methods, since all approaches cannot benefit
from a previously constructed particle ordering in memory. The run
time is worse because we need a larger number of rearrangements
of particle data since lots of particles are not in the right memory
region. Increasing the number of particles increases this effect.

4.2. Run Time

We used two GPUs from NVIDIA: a GeForce GTX Titan X and
a GeForce GTX 1080 Ti. Every performance measurement is the
median execution time of 100 algorithm executions. Consider sce-
nario 1, in which we use different grid dimensions depending on the
search radii for both other approaches. In their cases, larger search
radii perform much faster since the number of scattered reads can
be considerably decreased. In our approach, the run time increases
with larger search radii, which is caused by more look-ups in the
border region (it contains more particles that have to be checked).
In most cases, our approach outperforms the other methods (max.
speedup of factor 374 in edge cases of search radius 0.2). However,
in some cases we only reach a competitive performance resulting
in a worst slowdown of factor 3.6. Scenarios, in which particles
are non-uniformly distributed, often result in a comparable perfor-
mance, but do not perform worse to our experience.

If we use the same grid size for all three approaches in scenario 2,
we can see that the run time is independent from the search radius in
Hoetzlein’s and Green’s approach, because particle look-ups need
the same amount of time. If we increase the amount of particles, the
run time increases dramatically in both approaches. The underlying
grid is not optimized for this amount of particles, since the grid size
should be significantly larger to achieve optimal performance. Our
approach is more suitable for the underlying grid in this case. The
neighbor-checking overhead per grid cell is hidden by the usage of
our shared-memory grid structure.

A run-time comparison of scenario 1 and scenario 3 results in a
similar behavior. Hoetzlein and Green have much overhead if they
have to use large grids in the last scenario. Increasing the number
of particles makes the problem more suitable for both and the run
time improves. Our approach works better in the greater scene than
in the smaller scene. This results from smaller border regions, that
have to be checked in the larger scene.

4.3. Memory Consumption

If we compare the memory consumption of the three provided algo-
rithms, we can see some differences. Green uses for sorting only a
virtual grid that is not allocated in memory, but we need additional
memory for sorting pairs (containing grid-cell and particle indices),

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

60

J. Groß & M. Köster & A. Krüger / FENNS

Parameter Hoetzlein Green FENNS
#Elem r 1080 Ti σ Titan X σ 1080 Ti σ Titan X σ 1080 Ti σ Titan X σ

1024 0.2 62.84 27.03 97.71 15.71 3.64 1.26 4.15 2.9 0.41 9.37 0.63 1.77
* 0.5 4.20 0.00 6.44 0.00 1.88 0.02 0.96 0.06 0.48 0.00 0.64 0.00
* 0.8 1.15 0.00 1.72 0.00 1.89 0.03 0.95 0.05 0.51 0.00 0.64 0.00
* 1.0 0.73 0.00 0.89 0.00 1.48 9.21 0.73 0.02 0.51 5.08 0.65 0.00

8192 0.2 65.28 5.26 98.45 0.52 3.88 6.75 4.20 0.03 1.18 5.53 1.72 1.08
* 0.5 4.40 4.20 6.51 0.76 1.92 7.34 1.06 0.00 1.18 0.00 1.78 0.00
* 0.8 1.31 6.82 1.71 1.06 1.94 8.42 0.86 1.67 1.28 7.34 1.87 1.33
* 1.0 0.77 4.74 0.96 0.06 1.63 10.44 0.74 0.01 1.29 5.32 1.91 0.00

65536 0.2 64.77 4.51 98.80 0.74 5.20 1.52 5.84 10.88 1.78 8.43 2.76 1.37
* 0.5 4.70 6.27 6.88 1.05 2.49 9.27 1.73 1.61 1.92 7.73 3.00 1.43
* 0.8 1.38 6.98 1.90 1.04 1.81 9.44 1.18 1.64 1.97 6.76 3.08 1.30
* 1.0 0.76 3.34 1.12 1.08 1.99 9.72 0.97 1.73 1.99 8.86 3.12 1.32

524288 0.2 71.02 19.62 105.05 4.80 13.82 4.65 16.62 0.65 3.16 1.10 4.68 1.43
* 0.5 7.61 6.06 9.74 1.92 4.52 8.12 6.04 1.38 3.52 8.33 5.22 1.40
* 0.8 4.00 5.03 4.65 1.05 3.29 6.20 5.02 1.22 4.16 3.05 6.32 1.77
* 1.0 3.47 5.38 3.79 1.03 3.25 8.28 4.73 1.27 4.39 5.03 6.66 1.34

4194304 0.2 90.21 17.80 131.92 3.19 41.12 2.38 53.62 2.64 17.16 1.96 29.54 1.31
* 0.5 29.13 5.67 36.72 1.06 26.27 1.15 38.34 5.70 24.47 7.98 41.06 1.24
* 0.8 27.97 4.30 34.37 1.43 29.55 1.77 43.73 2.16 31.22 7.25 52.17 1.25
* 1.0 27.13 7.77 33.95 1.95 29.25 1.46 43.29 0.18 35.29 6.94 59.71 1.22

Table 1: Scenario 1. Scene size: 180 x 180 x 180. Grid size of FENNS: 18 x 18 x 18, other: see Table 4. Times in ms.

Parameter Hoetzlein Green FENNS
#Elem r 1080 Ti σ Titan X σ 1080 Ti σ Titan X σ 1080 Ti σ Titan X σ

1024 0.2 0.18 5.48 0.12 2.07 1.14 11.91 0.56 2.76 0.52 8.74 0.69 1.80
* 0.5 0.25 0.00 0.12 0.00 0.96 0.06 0.56 0.00 0.57 0.00 0.63 0.00
* 0.8 0.24 0.00 0.12 0.00 1.69 0.02 0.59 0.00 0.62 0.00 0.65 0.00
* 1.0 0.26 0.00 0.12 0.00 1.09 0.13 0.57 0.00 0.60 0.00 0.65 0.00

8192 0.2 0.23 0.00 0.15 0.00 1.62 0.06 0.59 0.00 1.10 0.00 1.70 0.00
* 0.5 0.23 0.00 0.17 0.00 1.00 0.02 0.59 0.01 1.12 0.00 1.79 0.00
* 0.8 0.24 5.82 0.15 0.00 1.42 9.89 0.63 0.01 1.50 4.41 1.86 0.00
* 1.0 0.23 0.00 0.15 0.00 1.05 0.09 0.58 0.00 1.25 0.00 1.90 0.00

65536 0.2 0.51 0.00 0.60 0.00 1.41 2.66 1.10 0.01 1.76 5.45 2.75 0.00
* 0.5 0.48 0.00 0.60 0.78 1.55 0.07 1.02 0.00 1.89 4.53 2.99 0.00
* 0.8 0.52 0.00 0.61 0.84 1.63 0.04 1.02 1.72 1.94 0.00 3.07 1.00
* 1.0 0.52 3.22 0.59 0.00 1.42 8.29 1.01 0.01 1.96 0.00 3.10 0.00

524288 0.2 7.45 5.00 12.52 0.74 8.33 2.30 14.36 0.01 3.14 5.69 4.60 1.00
* 0.5 7.47 0.00 12.56 0.76 8.35 0.00 14.41 1.40 3.52 0.00 5.16 1.04
* 0.8 7.48 4.48 12.64 0.76 8.40 9.63 14.50 1.61 4.18 6.86 6.31 1.05
* 1.0 7.50 0.00 12.66 0.72 8.40 11.88 14.54 1.33 4.39 6.46 6.66 1.09

4194304 0.2 419.90 5.73 770.08 80.75 426.09 8.36 779.50 1.12 17.28 4.11 30.31 2.73
* 0.5 418.28 6.04 770.05 164.4 426.14 6.71 779.66 0.08 24.86 7.68 41.57 3.11
* 0.8 418.28 3.74 770.14 198.4 426.26 2.20 779.72 0.07 31.53 1.74 52.83 3.62
* 1.0 418.79 19.17 769.74 206.1 426.23 2.49 779.29 0.09 35.67 2.73 59.95 3.9

Table 2: Scenario 2. Scene size: 180 x 180 x 180. Grid size of all methods: 18 x 18 x 18. Times in ms.

which needs one 64bit integer per particle. To get the start indices
of a grid cell, we additionally need an int memory array with length
of the grid size. This leads to 8 ·n+4 ·m3 bytes of additional mem-
ory for this approach, where n is the number of particles and m
the grid-size in one dimension. Hoetzlein uses the same amount of
memory for additional particle information, because he stores the
grid-cell index and the particle offset within its grid cell resulting
in an 64bit integer per particle. For the start offsets per grid cell,
he needs m3 times more space. So Hoetzlein also uses 8 ·n+4 ·m3

bytes of additional space, if the prefix-sum computation can be per-

formed in-place. If the GPU architecture does not allow such an
implementation, we need additional 4 ·m3 memory which results
in a total memory consumption of 8 ·n+4 ·2 ·m3. Especially in the
case of large grids, the two approaches can easily exceed the mem-
ory limit. In the first scenario, a search radius of 0.1 is not possible
since memory allocation on the GPU fails. The same holds for a
search radius of 0.2, if we double the scene dimensions.

Our approach needs significantly less memory: We need 8 ∗ l3

bytes in global memory, where l << m and to our experience

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

61

J. Groß & M. Köster & A. Krüger / FENNS

Parameter Hoetzlein Green FENNS
#Elem r 1080 Ti σ Titan X σ 1080 Ti σ Titan X σ 1080 Ti σ Titan X σ

1024 0.3 148.72 36.09 231.73 6.15 6.24 2.28 8.53 15.66 0.47 8.37 0.61 1.99
* 0.5 32.19 4.13 50.29 0.00 2.59 0.03 2.48 0.06 0.52 0.00 0.62 0.00
* 0.8 7.92 0.18 12.26 0.00 1.29 0.03 1.20 0.00 0.46 0.00 0.64 0.00
* 1.0 4.13 0.00 6.37 0.07 1.66 0.01 0.97 0.05 0.49 0.00 0.64 0.00

8192 0.3 152.71 0.28 232.60 0.00 6.37 0.02 8.94 0.04 1.10 0.00 1.70 0.00
* 0.5 33.43 3.92 50.47 2.54 0.09 0.00 2.49 0.02 1.77 0.00 1.76 0.00
* 0.8 8.25 0.00 12.34 0.00 1.74 0.02 1.33 0.08 1.22 0.00 1.82 0.02
* 1.0 4.27 0.00 6.41 0.00 1.70 0.10 1.06 0.01 1.23 0.00 1.83 0.00

65536 0.3 154.82 0.00 235.57 0.00 8.07 0.02 10.18 0.12 1.75 0.00 2.71 0.00
* 0.5 33.98 5.62 51.70 0.00 4.28 0.02 4.08 0.03 1.83 0.00 2.86 0.00
* 0.8 8.89 1.25 12.92 0.00 2.98 3.92 2.35 0.05 1.90 6.45 3.00 0.00
* 1.0 4.72 0.00 6.83 0.86 2.48 0.01 1.83 0.01 1.91 0.00 3.04 0.00

524288 0.3 160.10 4.13 242.20 0.26 18.52 7.53 22.71 2.53 3.12 0.66 4.59 1.01
* 0.5 38.11 3.36 56.05 2.49 10.47 1.29 12.76 3.86 3.20 0.73 4.71 0.99
* 0.8 11.27 0.00 15.65 0.65 5.51 6.06 7.30 1.61 3.31 6.14 4.89 1.06
* 1.0 7.07 3.72 9.57 0.67 4.49 9.36 6.12 1.20 3.49 6.64 5.14 0.97

4194304 0.3 186.09 2.35 272.97 0.89 55.21 0.70 70.78 0.15 15.57 1.55 27.00 0.96
* 0.5 58.60 0.00 82.72 1.71 30.20 1.09 42.80 2.25 18.03 0.00 30.61 0.94
* 0.8 32.70 0.82 43.26 0.13 26.22 1.20 38.04 0.14 21.62 2.10 36.50 0.97
* 1.0 29.00 2.56 36.77 0.16 26.43 1.47 38.47 0.17 23.87 1.18 40.12 1.44

Table 3: Scenario 3. Scene size: 360 x 360 x 360. Grid size of FENNS: 18 x 18 x 18, other: see Table 4. Times in ms.

Radius Green/Hoetzlein FENNS
0.2 4503 183

0.3 3003 183

0.5 1803 183

0.8 1123 183

1.0 903 183

Table 4: Grid sizes for different neighbor radii.

l ∈
[m

25 , . . . ,
m
5
]
. Note that we cannot choose larger grid sizes which

would exceed the maximum amount of shared memory. On our
evaluation GPUs, this size is only about 24KB depending on the
underlying compute capability [NVI19], leading to a maximum of
48KB of additional global memory. In comparison to our method,
the two other approaches use up to several GBs of additional mem-
ory leading to lots of scattered reads.

5. Conclusion

We have shown that our algorithm significantly benefits from re-
cently introduced hardware features like shared memory in contrast
to other methods. We use a two-step approach that leverages a sin-
gle uniform grid in global memory in the first place. Afterwards,
we subdivide the previous cells into a smaller grid without the need
for additional global memory.

From a theoretical point of view, the overall memory-complexity
of O(m3) remains the same. In practice, m is dramatically smaller
compared to other methods since we require a coarse-grained uni-
form grid in global memory only. Our processing allows us to sub-
divide this grid into considerably smaller grids that are instanti-
ated on-the-fly in shared memory. This leads to an overall memory
consumption of several kilobytes in practice in comparison to sev-
eral gigabytes of additional memory. Unfortunately, our approach

is limited by the shared-memory size. An increase of the grid res-
olution can lead to better run-time performance since less particles
will be assigned to the same grid cell. However, this results in a
larger grid that has to be stored in shared memory. We do not con-
sider this as a major limitation since the amount of this fast on-chip
memory has grown continuously in the last years.

Even though, we do not require lots of memory, we are also able
to improve the overall run-time performance by a factor of up to 80
(ignoring edge cases). If the lookup radius is too large (too many
particles fall into our border-regions), we often record slowdowns
of up to 3.6 compared to the other approaches on our evaluation
scenarios. In practice, the lookup radius is typically chosen in such
a way that every particle has a certain number of neighbors on av-
erage which implicitly avoids large radii.

In the future, we want to experiment with device-wide synchro-
nization primitives to eliminate the remaining amount of required
global memory. We could perform the first step of our algorithm
with shared memory only. Furthermore, we want to extent our two-
step method with additional steps that could be beneficial in the
case of very large scenarios.

Acknowledgements

The authors would like to thank Wladimir Panfilenko, Thomas
Schmeyer and Gian-Luca Kiefer for their suggestions and feedback
on the paper.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

62

J. Groß & M. Köster & A. Krüger / FENNS

References

[Ben75] BENTLEY J.: Multidimensional Binary Search Trees Used for
Associative Searching , 1975. 2

[BP11] BURTSCHER M., PINGALI K.: An Efficient CUDA Implementa-
tion of the Tree-Based Barnes Hut n-Body Algorithm, 2011. 2

[BVAT17] BRITO C., VIEIRAESILVA A., ALMEIDA M., TEIXEIRA
J.: Large Viscoelastic Fluid Simulation on GPU. In Proceedings of
SBGames (2017). 2

[Fle09] FLEISZ M.: Photon Mapping on the GPU, 2009. 2

[GHOI14] GIESEKE F., HEINERMANN J., OANCEA C., IGEL C.: Buffer
kd-Trees: Processing Massive Nearest Neighbor Queries on GPUs. In
Proceedings of the 31 st International Conference on Machine Learning
(2014). 2

[Gor08] GORADIA R.: GPU-based Adaptive Octree Construction Algo-
rithms, 2008. 2

[Gre08] GREEN S.: Particle-based Fluid Simulation. In Game Develop-
ers Conference (2008). 2

[Gre12] GREEN S.: Particle Simulation using CUDA, 2012. 2

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PAJAROLA
R.: Interactive SPH Simulation and Rendering on the GPU. Eurograph-
ics/ ACM SIGGRAPH Symposium on Computer Animation (2010). 1

[Gup12] GUPTE S.: Real-Time Photon Mapping on GPU. Parallel Com-
puting (2012). 2

[Hoe13] HOETZLEIN R.: Fast Fixed-Radius Nearest Neighbors: Interac-
tive Million-Particle Fluids, 2013. 2

[KE10] KROG O., ELSTER A.: Fast GPU-based Fluid Simulations Using
SPH, 2010. 2

[KGIN11] KAWADA N., GAN B., IMRAN I., NINOMIYA H.: Bounding
Grid Algorithm for Calculating Particle Interactions in SPH Simulations.
In Procedia Engineering 14 (2011). 2

[KK16] KOESTER M., KRUEGER A.: Adaptive Position-Based Flu-
ids. International Journal of Computer Graphics & Animation (IJCGA)
(2016). 1

[KK18] KOESTER M., KRUEGER A.: Screen Space Particle Selection.
In Eurographics Proceedings 2018 (2018). 2

[KSC∗14] KOFLER K., STEINHAUSER D., COSENZA B., GRASSO I.,
SCHINDLER S., FAHRINGER T.: Kd-tree Based N-Body Simulations
with Volume-Mass Heuristic on the GPU. IEEE International Parallel
and Distributed Processing Symposium Workshops (2014). 2

[KSG15] KOESTER M., SCHMITZ M., GEHRING S.: Gravity Games -
A Framework for Interactive Space Physics on Media Facades. In Pro-
ceedings of the International Symposium on Pervasive Displays (2015),
ACM. 2

[MG16] MERRILL D., GARLAND M.: Single-pass Parallel Prefix Scan
with Decoupled Look-back, 2016. 2, 3

[MHHR07] MUELLER M., HEIDELBERGER B., HENNIX M., RAT-
CLIFF J.: Position Based Dynamics. 3rd Workshop in Virtual Reality
Interactions and Physical Simulation VRIPHYS (2007). 1

[MM13] MACKLIN M., MUELLER M.: Position Based Fluids. Sig-
graph2013 (2013). 1

[NVI14] NVIDIA: Faster Parallel Reductions on Kepler, 2014. 6

[NVI19] NVIDIA: CUDA C Programming Guide v10, 2019. 3, 8

[Ota13] OTAIR M.: Approximate k-Nearest Neighbour Based Spatial
Clustering usind kd-Tree. International Journal of Database Manage-
ment Systems (IJDMS) (2013). 2

[Ped13] PEDERSEN S.: Progressive Photon Mapping on GPUs, 2013. 2

[QMN09] QUI D., MAY S., NUECHTER A.: GPU-Accelerated Nearest
Neighbor Search for 3D Registration, 2009. 2

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing Efficient
Sorting Algorithms for Manycore GPUs. In 23rd IEEE International
Parallel and Distributed Processing Symposium (2009). 2

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-Time KD-
Tree Construction on Graphics Hardware, 2008. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

63

