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Abstract

Solving jigsaw puzzles is a classic problem in computer vision with various applications. Over the past decades, many useful
approaches have been introduced. Most existing works use edge-wise similarity measures for assembling puzzles with square
pieces of the same size, and recent work innovates to use the loop constraint to improve efficiency and accuracy. We observe that
most existing techniques cannot be easily extended to puzzles with rectangular pieces of arbitrary sizes, and no existing loop
constraints can be used to model such challenging scenarios. In this paper, we propose a new corner-wise matching approach,
modelled using the MatchLift framework to solve square puzzles with cycle consistency. We further show one exciting example
illustrating how puzzles with rectangular pieces of arbitrary sizes would be solved by our technique.

CCS Concepts

e Computing methodologies — Image comparison; e Applied computing — Image composition; e Theory of computation

— Semidefinite programming;

1. Introduction

Solving jigsaw puzzles is a classic problem in computer vision. In
1964, [FG64] introduced the first algorithm for matching puzzle
pieces. Since then, approaches have focused on using shape and
colour information [WLS91, KDB*94] for puzzle solving. Puzzle
solving has great applications in many research areas, like foren-
sics [RRCL13,LZZC14] and archaeology [PPE*02, HFG*06], to
recover documents or art works from small fragments.

Techniques to solve a jigsaw puzzle consist of two steps: i)
computing constraints (e.g. colour-based similarity between puz-
zle pieces) and ii) assembling puzzle pieces via some optimisa-
tion technique. Notable examples include [Gal12] which introduces
the novel Mahalanobis Gradient Compatibility (MGC) measure to
compute the similarity between puzzle pieces, and a minimal span-
ning tree (MST) [BKJ56] approach to assemble similar pieces in
a greedy manner (Figure 1a). Based on colour space normalisa-
tion, [CAF10] proposes a global approach to assembling similar
puzzle pieces. Their compatibility measure is based on a thin re-
gion (often 1 column of pixels of the edge) of each piece. These
two measures are frequently used in subsequent works for puzzle
solving [SHC14,PT15, SMHC16,Zan16]. More recently, the loop
constraint [SHC14,YRA16,SHC18] was proposed to enforce cycle
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(a) Assembled result by [Gall2]. (b) Correct assembled result ob-
Red edges show incorrect matching  tained by our proposed technique.
pairs in greedy assembly.

Figure 1: Comparison between [Gall2] and our proposed tech-
nique on square puzzle solving. The number on each edge shows
the MGC similarity score between a pair of pieces.

consistency when pieces are matched, and good performance was
demonstrated.

From the literature, we made two observations. First, much of the
previous work focuses on puzzles with square pieces of the same
size but they may not apply to puzzle solving with rectangle pieces
of arbitrary sizes (Figure 2). The problem of solving such puzzles is
arguably harder with a larger search space because of the arbitrary
edge lengths. It challenges most of the existing edge-wise similar-
ity measures. Second, even though the loop constraint is power-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0000-0001-9830-6937
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-2701-8660
https://orcid.org/0000-0001-7387-5180
https://doi.org/10.2312/cgvc.20191266

116 T. Wang et al. / Robust and Flexible Puzzle Solving with Corner-based Cycle Consistent Correspondences

-

Figure 2: Rectangular pieces with arbitrary sizes are challenging
for edge-wise similarity measures and assembly techniques.

ful, we observe that many of the existing works assume some form
of input regularity, and either build loops explicitly from square
pieces which would be slow, or use the loop constraint by casting
puzzle assembly in a sophisticated optimisation. These techniques
however are not easy to extend to arbitrarily shaped puzzle pieces.
These observations motivate the following research question:

e Can we develop a more flexible technique that can leverage the
strength of loop constraint for puzzle solving of rectangle pieces
of arbitrary sizes?

Instead of using the whole edges of pieces for puzzle assem-
bly like in existing work, we investigate if corners of puzzle pieces
can be used. Next we cast the problem of discovering loops in
possible puzzle pieces as a cycle consistent correspondence prob-
lem [CGH14]. Once we identify good pairwise corner-wise corre-
spondences, we adapt minimum spanning tree [Gall2] for puzzle
solving. Our results show that the approach can improve the perfor-
mance of [Gall2] which uses MGC alone. Our contributions are:

e We innovate to use corner-wise correspondences for the puzzle
solving task — we demonstrate its usefulness for square puzzle
solving, and illustrate one example of how it can be adopted for
rectangular pieces of arbitrary sizes.

e We propose a loop discovery technique for puzzle solving by
modelling it as a cycle consistent correspondence problem,
which allows to use the MatchLift framework [CGH14] for puz-
zle solving.

We discuss related work in Section 2. After providing an
overview of our method in Section 3, we show how we model
corner-wise matching in the MatchLift framework [CGH14] for
square puzzle solving in Sections 4 and 5. We evaluate our method
in Section 6. Section 7 illustrates one example how puzzle with
rectangular pieces of arbitrary sizes can be solved. We discuss lim-
itations and future work in Section 8, and conclude in Section 9.

2. Related Work

We discuss existing puzzle solving techniques in three sections.
Section 2.1 discusses similarity measures for piece matching. Sec-
tion 2.2 summarises assembly techniques for puzzle solving. Fi-
nally, Section 2.3 discusses correspondence techniques that use cy-
cle consistency which inspires the technique in this paper.

2.1. Similarity Measures for Piece Matching

Pairwise similarity measures of puzzle pieces have been widely
used for puzzle solving. [Gal12, MWD13, SHC14,Zan16] use Ma-

halanobis Gradient Compatibility (MGC) to compute the pairwise
similarity of puzzle pieces. MGC is a dissimilarity metric. It uses
gradients to determine the boundary similarity of puzzle pieces.
[CAF10, YAL11,MWDI13,SHC14,DN16,Zan16] use another dis-
similarity measure SSD (Sum of Squared Differences) as pair-
wise measure. SSD sums the squared distances on pixels along the
boundary to determine colour dissimilarity of puzzle pieces. From
our experiments when image resolution is low or image content is
not distinctive, dissimilarity-based approach can provide incorrect
results (as shown in Figure 1a). [PSB11,PT15] use a probabilistic
approach to determining the similarity between puzzle pieces. The
methods use colour and size constraints on puzzle pieces. These
colour similarity measures (e.g. SSD, MGC) are not global con-
straints and may lead to inconsistent results.

2.2. Assembling Puzzle Pieces

Puzzle solving is a hard problem due to the large search space.
Many works use greedy approaches for puzzle assembly from
pieces [PSB11,Gal12,PT15,Zan16,SMHC16]. In general, a greedy
approach uses designated constraints (in terms of placement of
pieces and similarity measure) to find suitable results. They often
begin from a small confident region and gradually expand it by ac-
cepting new pieces. Since adjacent pieces are locally consistent,
these techniques often do not refine or rectify incorrect assembly
results. The final assembled results may not be globally consistent.

Greedy approaches with loop constraints show good perfor-
mance. [SHC14] introduces a novel 4-piece-loop constraint for
finding small cycles. Each cycle can be considered as an assem-
bled region that contains 4 puzzle pieces. They first compute all
pairwise MGC scores as the similarity measure between puzzle
pieces. Based on the MGC scores they find small cycles. Next, they
merge small cycles to build larger cycles, which form larger as-
sembled regions. [SHC18] builds on the idea but merges small cy-
cles in a hierarchical manner. When incorrect pieces are matched,
loop constraints provide a mechanism to examine piece neighbours
and remove inconsistent ones. This improves puzzle assembling re-
sults. [YRA16] models puzzle assembly as a linear programming
(LP) problem. They iteratively optimise pieces and increase the size
of assembled results. Each iteration of LP optimisation can be con-
sidered as a general loop constraint optimisation. It shows that LP
can perform better than [SHC14].

Global approaches [WKO01, GMB04, CAF10, MWD13] assem-
ble puzzles by optimising a global objective function. [ATG12]
proposed to use quadratic programming (QP) to globally optimise
piece placement. [AACT" 16] shows QP performs good assembled
results even when there are missing puzzle pieces from the input.

Though loop constraints have been used in the literature, we ob-
serve that these techniques are mostly tailored for solving square
puzzles only. They are not flexible to extend and handle rectangu-
lar pieces of arbitrary sizes. This inspires us to tackle this challenge,
and the use of corners and cycle consistency for puzzle solving.

2.3. Cycle Consistency

Cycle consistency is a useful constraint for matching problems
of multiple objects. For example, given three objects A, B and
C, cycle consistency enforces matchings from A to B, and from
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Figure 3: Pipeline of our method. In this example, we slice the input image into four pieces for simpler illustration. For each piece, we
break each edge into two sub-edges. We use sub-edges to represent four corners on each square piece. Next, we use MGC to determine the
similarities between all possible pairs of sub-edge based corners. We then treat these pairs as correspondences, use MatchLift to identify
cycle-consistent correspondences and update their MGC scores. Finally we apply minimum spanning tree [Gall2] on the updated MGC

scores for puzzle assembly.

B to C such that C to A is also meaningful. In recent years,
[ZKP10,RSSS11,ZLXYEI1S, ZPIE17, WZD18] have successfully
applied cycle consistency to obtain globally consistent matchings
in the image domain. [HG13] proposed a semi-definite program-
ming (SDP) approach for solving the cycle consistent matching
problem in the 3D domain. It shows that SDP can provide up to
50% error tolerance of pairwise matchings between input objects.
Building on [HG13], [CGH14] introduces MatchLift for solving
globally consistent matching in a general setting, with a tolerance
rate of 1 —®(log?n/+/n) to random outliers.

Inspired by [CGH14], we suggest that the puzzle solving can be
cast in the MatchLift framework, which helps discover loop corre-
spondences. To do so, we propose to use corners of pieces as the ba-
sic unit while most existing techniques use edges (e.g. MGC). This
provides a flexible framework for solving both square and rectan-
gular puzzles of arbitrary sizes. The high tolerance to input errors
of our method (due to the MatchLift framework) helps improve the
precision of MGC matchings, making our method more robust for
challenging inputs.

3. Method Overview

Figure 3 shows the pipeline of our technique for solving puzzles.
The input image to our method is first sliced and shuffled into (e.g.
square) puzzle pieces. Our method further breaks each puzzle piece
into four (2-by-2) corners, by subdividing each edge of a piece into
2 sub-edges (Figure 4, Section 4.2). Then we use MGC to com-
pute the similarities between all possible pairs of sub-edges. We
treat these pairs as correspondences. Section 4.3 presents how we
use MatchLift to identify cycle consistent correspondences. Sec-
tion 5 discusses how we refine the respective MGC scores of cor-
respondences identified by MatchLift, and finally solve the puzzle
using minimum spanning tree. Further, in Section 7, we discuss
how we extend our technique to solve puzzles consisting of rectan-
gular pieces of arbitrary sizes. In this paper, we assume all pieces
have known orientation with unknown position (so called Type |
puzzle problem [Gall2]).

(© 2019 The Author(s)
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4. MatchLift and Puzzle Solving

MatchLift [CGH14] is a convex optimisation technique to find
cycle-consistent correspondences from a set of noisy input. For
example, in 3D reconstruction of a chair, it is critical to estimate
depth by computing reliable point-to-point correspondences across
a collection of images of the same chair from different views. Cor-
respondences can be established by SIFT key point descriptors,
but inconsistent correspondences cannot be avoided. [CGH14] can
identify cycle-consistent correspondences across multiple images.
The idea is to encode all pairwise correspondences between images
in a permutation matrix. Then it applies semi-definite programming
with relaxed binary constraint and sparsity to enforce cycle consis-
tency. Due to page limit, we would refer readers to [CGH14] for
the mathematical details.

Here, we use MatchLift to find reliable cycle-consistent corre-
spondences for puzzle solving. In our modelling, we treat each
corner as an object (similar to one of the images in the chair re-
construction example), and pairwise matching of sub-edges as cor-
respondence between corners (similar to point-to-point correspon-
dences between images). Our contribution is to model piece match-
ing in the puzzle problem as a corner-wise cycle-consistent corre-
spondence problem in the MatchLift framework. We show that it
can handle square and rectangular puzzles of arbitrary sizes.

4.1. Computing MGC Scores

Our technique builds on MGC scores [Gall2] which we briefly dis-
cuss here. MGC is a gradient-based compatibility measurement be-
tween puzzle piece edges (all pieces must have the same size). For
an edge, it first defines a matrix of colour distribution with dimen-
sions px x 3, where px is the number of pixels of a piece edge with 3
colour channels (red, green, blue). For a pair of edges on two square
pieces, MGC determines a compatibility score by computing Ma-
halanobis distance between their colour distribution matrices.
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Figure 4: An ordering scheme to generate correspondences of sub-
edges between puzzle pieces.

4.2. Modelling Puzzle Pieces by Corners

Next we introduce the sub-edge. Let P = {py,...,pn} be the set
of all input puzzle pieces. For each puzzle piece p; € P, we break
each edge into two sub-edges. There are four edges and in total
eight sub-edges per piece. We label each sub-edge in a fixed or-
der as shown in Figure 4. We further define e,(p;) as an opera-
tor to return the sub-edge from p; where 1 < a < 8. For each pair
of pieces p;, pj, we consider eight possible correspondences as-
sociated to the sub-edges of p;, p; based on an ordering scheme
as shown in Figures 4 (a)-(d). Beginning from the left two sub-
edges of p; and the right two sub-edges of p;, we define correspon-
dences ¢, = (e1(pi),es(pj)) and ¢; = (e2(pi),es(p))) (shown as
tan coloured correspondences in Figure 4 (a)). Following the or-
dering scheme, we can define eight correspondences for p; and p;,
and we repeat the procedure for all pairs of pieces to compute the
set of input correspondences C. For each correspondence ¢; € C,
where 1 < k < 8n(n— 1), we define the similarity between the
two sub-edges using MGC score. MGC scores have a large range
(the maximum value might be ten thousand times larger than min-
imum). We normalise them into [0,1]. After normalisation, scores
close to 1 mean two sub-edges are highly similar. Take ¢ for exam-
ple, our measure is thus sim(cy) = MGCpopmaiisea(€1(pi),es5(p;))-
Other cases can be similarly defined.

Next, we define the corners of pieces as units for puzzle solv-
ing. We use p* € P to indicate a corner on a piece, where o €
{I,11,111,1V }, as shown in Figure 4. For example, assuming there
are ten pieces in a puzzle, the corner II on the tenth piece is labelled
as pil, and it contains two sub-edges e>(p10), e7(p1o). We define

(p?‘,p?) where o, € {I,11,111,IV }, as the corner-wise similar-
B

ity score of two corners p{* and p - Since the orientation of input

pieces is known (Type I puzzle), some corners are incompatible
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Figure 5: Example of matrix M with n puzzle pieces. All diago-
nal red blocks are self matching between a pair of the same piece.
Non-diagonal red blocks contain corner-wise similarity measures
of pieces.

with each other such as p{» and pg». For incompatible corners, we set

v(p?‘,p?) =0. v(p?‘,pjﬁ-) can be summarised as
o B sim(cy), ifcpeC
vip;,p-) = 1
(pi',7}) {0, otherwise, @

We encode the corner-wise similarity in a block matrix as the
input of MatchLift. Let M, p; be a 4 X 4 matrix, which is shown
in Figure 5 (left). Given a puzzle with n pieces, we can encode all
M, p; blocks into a piece-wise similarity matrix M of dimension
4n x 4n (i.e. Mp, p; C M in Figure 5 (right)). It is arranged such
that the non-diagonal block M, ,, C M, where i # j contains
all corner-wise MGC scores m(p¥, pE‘ ) € Mp, p; between pieces
pi and p;. The diagonal elements m(p{*, pY*) € M represent self-
matching between a pair of the same corner p{* and p{*. We set those
elements as 1. In summary, we define the element m(p{*, p¥) € M
as

5 v(pl ), i (Pt ph) > 0
(P?:P]) 1, l:.]7 (X.:B 2
0, otherwise

and 11 is a user defined threshold to accept correspondences with
good MGC scores. M, ,; represents partial matching whilst M
represents the full matching of input pieces. This matrix can then
be optimised using MatchLift framework, using SDP [CGH14].

4.3. Corners and Cycle Consistency

Our intuition of using corners in the MatchLift framework to handle
square puzzle pieces is that it can find two-cycle (direct correspon-
dence, white) and four-cycle consistent correspondences (yellow)
as shown in Figure 6. We mark the positions of corners to indicate
the matching between sub-edges. For example, in Figure 6 each
bottom-right corner contains sub-edges 6 and 8 and each bottom-
left corner contains sub-edges 2 and 7. If there is a matching be-
tween sub-edges 6 and 2, then it means corner IV and corner II
have been matched. Since we have cycle consistency as a constraint
there will not be displaced-matching, such as sub-edge 6 will not
match to sub-edge 1.

(© 2019 The Author(s)
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Figure 6: Yellow lines and circles indicate a four-cycle correspon-
dences between four corners. White lines and circles are two-cycle
correspondences between two corners.

Compared with sub-edges, using corners can reduce the size of
M. For example, for n square pieces and we break each edge into
f sub-edges, the dimensions of the resulting matrix M based sub-
edge matching will be 4fn x 4fn. By adopting this corner-wise
approach our M is only 4n x 4n.

5. Assembling Pieces

After running MatchLift, the matrix M will be updated. The ele-
ments m(pY, pE ) € [0,1] with 1 indicating a confident correspon-
dence that forms a cycle whilst O means the associated corner

matching is not cycle consistent. Confident correspondences with

p

m(p¥, p j) > t, are then returned and #, is a user defined threshold.

We follow [Gall2] to assemble puzzle pieces using minimum
spanning tree (MST), which is a greedy technique. Based on the
extracted corners from MatchLift we can infer the matching be-
tween sub-edges. If two sub-edges are matched we set the MGC
score of the whole corresponding edge with a small value (by mul-
tiplying 0.000001 to the MGC scores) so that MST can prioritise
the matching for piece assembling earlier. For example, in Fig-
ure 6 sub-edges 6 and 2 of the bottom pieces are matched. The
MGC score between the entire right edge (containing sub-edges 5
and 6) and the entire left edge (containing sub-edges 1 and 2) is
reduced. This allows MST to prioritise such matching to be con-
sidered first leading to correct assembly. The detailed information
about MST and how to use MST to assemble puzzle pieces can be
found in [BKJ56, Gal12].

6. Evaluation

We evaluate our method against [Gall2] in this section. First, we
perform a quantitative evaluation on a small collection of images
in Section 6.1 to compare the success assembly rate of our tech-
nique against MGC alone. Section 6.2 shows some assembled re-
sults from both methods as qualitative evaluation. For both methods

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Image 100 144 196 assemble Ht
1 10079 | 9490 | 10041 | 6.3s17.9s | 0.20.2
2 10081 | 10055 | 10037 | 5.0s18.5s | 0.10.9
3 91 94 5051 3147 | 159s16.5s | 0.40.9
4 7393 57 39 4184 | 17.4s16.4s | 0.20.7
5 5432 46 37 5135 17.2s17.0s | 0.30.9
6 96 83 76 74 4952 | 12.8s12.8s | 0.50.8
7 92100 | 6462 4958 | 11.5s10.7s | 0.30.9

avg (%) | 8780 70 58 60 51 12.35 15.7s

Table 1: We compare our method and [Gall2] by showing percent-
age of correctly assembled pieces with 100, 144 and 196 pieces
input. The assemble column shows the time requires to run MST
for assembling. t1, ty are parameters we used in our method. Our
and [Gall2] results are shown in red and blue respectively.

we use the same number of puzzle pieces and images. We also eval-
uate with puzzle pieces of different resolutions in our experiments.

6.1. Quantitative Evaluation

We evaluate our method against [Gall2] on seven images of vary-
ing numbers of pieces and resolutions. We use five of our own
(high and low resolution) images and two images from public data
set [CAF10] (low resolution). We slice each image into 100, 144,
and 196 pieces as the input of both methods. The higher number
of pieces leads to lower resolution of each piece. Though Match-
Lift [CGH14] in theory has good tolerance to random outliers, the
stability of MGC is low. When there are too many incorrect cor-
respondences, it would lead to poor results. We therefore need to
adjust two of our parameters #; and f,. #; controls the number of
correspondences accepted as input to MatchLift (more correspon-
dences mean more input noises). #, controls how confident we ac-
cept the matching results from MatchLift. These parameters are
somehow dependent on the resolution of images and stability of
MGC. For #; we try 20 values 0.6 <7; < 1 and 9 values for #,
where 0.5 <1, <0.95 and report the best assembled results in Ta-
ble 1. The overall process is time consuming. On average, it takes
five hours (i7-6700 4.0GHz CPU with 32GB memory) per image
in this experiment.

We use the ground truth coordinates of each piece to evaluate the
assembled results, so-called the direct comparison [Gall2]. When
an assembling technique misaligned a large assembled region, the
percentage of correctly assembled pieces will reduce significantly.
The evaluation results are shown in Table 1. Our initial results show
that our method can produce better results than [Gall2] with the
proper parameters. Because our technique recovers better piece
matching, the MST assembling step is faster than using MGC
alone. Nevertheless, we hope to discover the best parameter set-
tings automatically for our technique in the future, for example, to
investigate the spectrum of the matrix M [CGH14].

6.2. Image Resolution and Puzzle Solving

Next, we qualitatively evaluate our technique on high resolution
images (all input images have a resolution above 2700 by 2700) in
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(a) Original image (b) Assembled result by directly using MGC (¢) Our method result

(d) Input 100 puzzle pieces (e) Assembled result by directly using MGC (£) Our method result

(j) Input image (k) Assembled result by directly using MGC (1) Our method result

Figure 7: Experimental results on puzzles built from high resolution images. © 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.
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(d) Input image

(e) Assembled result by directly using MGC

(¢) Our method assembled result

: ;ﬂ,A a

(f) Our method assembled result

Figure 8: Directly using MGC causes more incorrect assembled results in low resolution images or images containing indistinctive pieces.

Our method maintains 100% correctness in assembled images.

(a) Rectangular pieces of arbitrary sizes. We (b) We compute all possible
compute pairwise similarity by using corners corner-wise similarities.
as labelled in the red boxes.

Figure 9: We use corners on rectangular pieces with arbitrary
sizes.

Figure 7. In Figures 7b and 7c both images are assembled from 49
pieces. For regions with distinctive texture, such as clouds at the
low part of the image, MGC and MST perform well and produce
good assembled results. However, MGC produces unreliable scores
around the white smoke and cloud at the top. This leads to incorrect
assembled results. In our case, after MatchLift refinement, MST
can assemble 100% correct results. When we increase the num-
ber of puzzle pieces to 100, MGC becomes unreliable (Figure 7e).

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Meanwhile, our technique can still discover confident matching.
This allows MST to assemble 100% correct results (Figure 7f).

Low distinctive regions are challenging for MGC. The resolu-
tion of Figure 7g is 2700 by 2700, and there are 196 puzzle pieces.
Similar to Figure 7a the sky is difficult to be assembled by MGC.
When puzzle pieces become smaller (since the number of pieces in-
creased), the number of pixels to compute in MGC is fewer. MGC
will return more unreliable scores. For example, in the red high-
lighted region of Figure 7h, MGC considers the sky and cloth are
highly similar.

Figure 7j is another high resolution image of resolution 3840
by 3840. It consists of 64 pieces. Though the resolution is higher
with fewer pieces, MGC does not perform well on under-exposed
regions and leads to incorrectly assembled top-left region.

Figure 8 evaluates the two methods with images of low resolu-
tion. Figure 8a has a resolution of 1200 by 1200, and size of 289KB.
We slice it into 144 pieces. In Figure 8b, without MatchLift refine-
ment, the technique struggles to assemble regions around the deck,
gun and road pieces. Our method models puzzle solving based on
corners and cycle consistency constraint. We can better handle un-
reliable MGC scores of such pieces and assemble the correct results
in Figure 8c. Similar situation appears in Figures 8e and 8f. With-
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(a) Result of our method. Correct corner-wise matchings are labelled as pink

half-circles. Incorrect matchings are labelled as other colours.

(b) All correct matchings obtained by [Gall2]. These matchings are insuffi-
cient to solve the puzzle. To avoid clutter, we do not show incorrect matchings.

Figure 10: By using MatchLift on corners we can find reasonable matching between rectangular pieces with arbitrary sizes.

out MatchLift refinement, MST cannot find a correct assembling of
the gun barrel and the camouflage netting behind the vehicles.

7. Puzzle Solving for Rectangular Pieces of Arbitrary Sizes

We show one interesting example of applying our technique to
solve puzzles of rectangular pieces with arbitrary sizes. To our
knowledge no existing techniques can handle such challenging
case. Since the pieces have arbitrary sizes, our earlier square puzzle
slicer does not apply. To produce the input puzzle pieces, we man-
ually slice the image as shown in Figure 9a into 9 pieces. Next, we
manually select 36 local regions (Figure 9b) to represent the four
corners of all 9 pieces (red boxes in Figure 9a). Similar to square
puzzle examples, for each corner, our technique breaks each edge
into two sub-edges and computes similarity to other corners/pieces.
We encode all similarity scores and pass them to MatchLift to ob-
tain corner-wise matchings on these rectangular pieces.

Our method outputs 15 corner-wise correspondences. 11 of them
are correct and are visualised as pink half circles in Figure 10a.
The four incorrect corner-wise matchings are visualised as coloured
bars with associated local regions (the red boxes) in Figure 10a.
Among these four mismatched pairs, the green pair and the black
pair are respectively from the same rectangular piece and can be
removed as it is not possible to assemble corners/sub-edges from
the same rectangular piece. The matched sub-edges of the blue pair
are located inside the two rectangular pieces. The sub-edges/whole
edges that are inside pieces should not be used in the assembling,
because an assembling is based on the borders of each piece. Simi-
larly, one of the matched sub-edges in the orange pair is also inside
the rectangular piece. These four mismatched pairs can be easily
removed in a pruning scheme as post-processing. On close inspec-
tion, we argue that such a puzzle with rectangular pieces of arbi-
trary sizes can be assembled correctly using the returned matched
corners (visualised as the pink half circles) as shown in Figure 10a.

Figure 10b shows all the correct matchings obtained by [Gall2]
with the same input of Figure 9b. To avoid clutter, we visualise all
(only three) correct assembled corners (the pink half-circles). Since

most corners are incorrectly assembled, we cannot refine/infer the
results as we did for Figure 10a.

8. Limitation and Further Work

Long computational time is an issue for our current technique.
MatchLift requires multiple eigen-decompositions which can be
slow for puzzles with a large number of pieces. Another problem
is that due to the nature of the images (e.g. distinctiveness, texture,
resolution), our technique requires some parameter adjustment to
obtain the best results, tailoring to the image properties. We hope
to investigate and develop a parameter-free technique.

Currently, we are using square puzzle pieces with known rota-
tions. We can use the same modelling idea to solve puzzle pieces
with unknown rotation (Type II puzzle [Gall2]). In that way, the
matrix M will be denser than the current configuration. We also
would like to try non-rectangular pieces, or a mixture of square,
triangle and polygonal pieces. Since our method models the puzzle
problem with corners, it can be extended to such challenging exam-
ples, which existing techniques cannot solve. Given our promising
cycle consistent corner constraint, we hope to develop a fully auto-
matic technique to solve such problems.

9. Conclusion

In this paper, we try to solve square puzzle problems by consid-
ering two novel ideas. First, we use corner-wise correspondences,
rather than edge-wise correspondences. Second, we model the sub-
sequent puzzle problem into the MatchLift framework, solved via
a semi-definite programming approach to recover cycle-consistent
correspondences. We then refine the confident scores of these cor-
respondences to promote their use for piece assembling early via
a minimum spanning tree puzzle solver. Experimental results show
that our technique can achieve better results than the non-refined
cases. Finally we show that our technique can be extended to puz-
zles consisting of rectangular pieces of arbitrary sizes. It is an ex-
citing and arguably more challenging problem. Our technique can
still show promising initial results.

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.
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