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Abstract

We outline an adaptive sampling framework based on Conway'’s pinwheel tiles. It offers a unique feature that the generated
tiles have infinite number of orientation angles, minimizing the strong auto-correlations found on all other lookup-sampling
frameworks. We describe a novel string-based approach to enumerate distinct neighbor configurations in pinwheel tiles.

1. Introduction

Optimal point sampling is one of the longest-standing problems
in computer graphics. The primary application for point sampling
is Monte Carlo integration for rendering, which typically involves
very high dimensions, making it infeasible to sample scene func-
tions faithfully. Instead, many sampling strategies were developed
based on tweaks, intuitions, and skills of the rendering practition-
ers.

Even with today’s fast machines, only deterministic techniques
can cope with the high sampling rates required by rendering appli-
cations [LDO8]. The poor frequency spectrum of low-discrepancy
sequences lead many researchers to look for sophisticated lookup
techniques that offer the favorable blue-noise spectrum [CSHDO3,
0ODJ04,LD06,KCODL06,0st07, WPC* 14,AHD15,ANHD17]. All
these approaches, however, share one fundamental problem, that
they exhibit strong auto-correlations (translational symmetries) in
the neighborhoods of similarly-indexed tiles. The consequence of
this is that, thanks to Wiener—Khinchin Theorem [LDOS], the fre-
quency spectrum of the generated point set deteriorates when the
number of generated points grows significantly relative to the size
of the lookup tables.

Among the many self-similar tiling sets, Conway’s pinwheel
tilings [Rad94] are one of the rare tessellations that offer a twirls
effect of the tilings, producing infinitely many orientations. In the
rest of this article we briefly outline our proposal of using these
tiles for adaptive sampling.

2. Pinwheel Tilings

The base tile in pinwheel tiling is a right triangle with side length 1,
2, and v/5. As illustrated in Figure 1, a recursive tiling is obtained
by subdividing this triangle into 5 similar triangles. The simplest
way for using such tiles for sampling is to place a sample point
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Figure 1: Recursive subdivision of pinwheel tiles.

at a fixed location inside each tile. Figure 2 shows three examples
using different sample locations. As can be seen, without any opti-
mization the tile set offers a rich frequency spectrum thanks the the
continuously-rotating sub-tiles.

3. Enumerating the Tiles

Like the mentioned tiling techniques, the quality of sampling sets
could be improved by positioning the sample points in optimized
locations inside different tiles, in coordination with the sample lo-
cations inside adjacent tiles. Towards that end, it is desirable to
identify geometrically identical configurations around each tile.

Following Ostromoukhov [Ost07], we start by assigning sym-
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Figure 2: Point distributions and frequency power spectra obtained
from pinwheel tilings by placing sample points at centroids, self-
coincident points with child tiles, and vertices.

bols {A,B,C} to the vertices of each tile, and assign one more
symbol, D, to the midpoint between A and C, where neighbor ver-
tices may meet; see Figure 1. We use lower-case symbols for the
mirror-reflected triangles. For each triangle in a tiling, then, each
vertex is identified by the symbols from all the triangles that meet
there, starting from the one belonging to the inspected triangle, and
reading down clockwise. Each tile is then identified by a string of
identifications of its vertices A to D. For example, the gray tile in
Figure 1 is identified by the string ADa-BbBbcCcC-CBad-DaA.

The challenge now is to exhaustively enumerate all distinct tiles.
For Ostromoukhov’s polyominos, it is considerably easier thanks to
the rectilinear nature of them that makes it easy to locate adjacent
units. It does not seem equally feasible in our case to trace adja-
cency relations geometrically. We consider the main contribution
of this work so far is the novel string-based approach we devel-
oped to solve this problem. The starting point is to note that, upon
subdivision, each symbol maps into a fixed sequence:

A—cb; B—b,;

Thus, given the string that identifies a tile, we may use this map-
ping to enumerate the new identification of each of its vertices, and
use this, in turn, to read out the identification string of its child

tiles; without having to know the full identity of the neighbor child
tiles. We insert the distinct newly-found identification strings in a
list, and recursively process them, until we find all distinct strings,
which comprise the whole set. In the supplementary materials we
included a program to implement this search procedure, given the
full identification string of a distinct tile. The whole pinwheel set
amounts to 108 distinct geometrical configurations of neighbors.

Once the set of tiles is indexed, optimized locations for the
sample points could be computed for each of the tiles using,
for example, blue noise through optimal transport (BNOT) [dG-
BODI12], and applying similar techniques to those described in
[ODJ04, KCODLO6, Ost07, WPC™* 14, ANHD17]. We are yet to in-
vestigate on this.

4. Conclusion

In this brief discussion we shed the light on a potentially-interesting
tile-based technique for sampling. Our research is still at an early
stage, but the initial results are quite promising. Pinwheel tiles
magically offer a combination of the rich frequency spectrum of
Polyhexes [WPC*14] and the tight lookup table size of Penrose
tiles [ODJ04], using only 108 entries. In addition, they offer two
unique features not found in other existing alternatives: the infinite
orientations of the tiles, and the simple triangular shape of these
tiles that could be useful in applications like sampling over meshes.
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