
EG UK Computer Graphics & Visual Computing (2022)
M. Turner and P. Vangorp (Editors)

Parallelizing Rendering on Devices with Multi-Core CPUs -
Implementation Suggestion for Education

R. Porath

Lucerne University of Applied Sciences and Arts, Switzerland

Abstract
It is a well-known fact that parallelizing rendering calculations in ray tracing programs is possible and useful in many use
cases, because the calculation for each pixel is often independent of the calculation of other pixels. This is also one main
reason for the massive performance gain on GPUs and allows real-time rendering. However, it is often too difficult to teach
students at schools and universities on how to program GPUs and parallelized rendering or it goes beyond the scope of the
course. In order to still provide them a feasible way to make use of parallel rendering on their devices, be it mobile phones,
tablets or PCs, we describe in this paper an implementation method, which does not require a deep IT knowledge and can be
taught and applied easily. The implementation method is based on JavaScript, which became one of the easiest languages to
learn programming, and is therefore often used as a great educational tool to teach and learn the basics of 3D Graphics and
Rendering as well as physics, mathematics and programming. The method described in this article allows the distribution of
computations to all CPU cores in modern devices, and demonstrates shorter rendering calculation times up to 70-85%.

CCS Concepts
• Software and its engineering → Data flow architectures; • Theory of computation → Parallel computing models;

1. Introduction

JavaScript (often called JS) has undergone an incredible evolution
since it was introduced in 1995 [Net95] and has become not only a
professionally used programming language, but also one of the eas-
iest languages to learn programming. Therefore, it is a great educa-
tional tool to teach and learn the basics of 3D and image rendering
and thus to help students and interested other persons to get into the
fascinating area of 3D Graphics, with all the physics, mathematics
and programming behind it. An impressive JavaScript library called
"three.js" [Thr] is a good example to demonstrate the possibilities
of rendering of 3D worlds in browsers. It is based on graphics li-
braries like WebGL and WebGPU and can be used by students and
teachers, who are less interested in learning the ray tracing basics
from scratch (which is the basis for the article in hand), but prefer
to develop programs for 3D objects and 3D worlds and to render
them fast.

About 40 years ago, physically-based rendering as used in
[PJH16] was only possible on large workstations ([Whi79],
[CWVB83], [Ama84], [GP89]), if at all. Nowadays, software writ-
ten in JavaScript, like the one used in this study, can demonstrate
that modern internet browsers, even on a smartphone, are capa-
ble to calculate physically-based rendering images with hundreds
of thousands of triangles and vertices, in a reasonable time frame
of seconds to minutes. This is only possible because the mod-
ern JS engines make use of a built-in Just-In-Time (JIT) com-

piler, which recognizes repeatedly used code and compiles it, even
though JavaScript is an interpreter programming language in gen-
eral.

However, there is more potential to accelerate the rendering com-
putation on consumer devices by either applying conceptual meth-
ods like pre-determination of bounding boxes and geometry com-
pression for complex scenes as in [Dee95], or by applying the so-
called "JavaScript WebWorkers" as described in this article at hand.
JS WebWorkers are a fairly new functionality in modern JavaScript
engines ([WHA10]), and give the programmers an easy way to par-
allelize calculations to make use of the device’s Multi-Core CPU.
The idea behind it is, that one main JS code executes and orches-
trates other JS programs and exchanges data packages with them
via a defined protocol. By this, each of those additional JS pro-
grams can run in parallel and independently and thus the whole
calculation can occupy more than one CPU core.

Because of the fact that rendering an image can often be split into
independent calculations without the need for large coordination or
communication activities, JS WebWorkers can be applied to image
rendering with great benefit.

2. Implementation to use JS WebWorkers

For the analysis in this paper, a JavaScript program was used, which
is usually part of a course to teach students in developing a 3D edit-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.
This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

DOI: 10.2312/cgvc.20221166 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-9722-6262
https://doi.org/10.2312/cgvc.20221166

R. Porath / Parallelizing Rendering on Devices with Multi-Core CPUs - Implementation Suggestion for Education

ing and Ray Tracing app [Por21] and allows the students to learn
the basics of rendering, like vector geometry, reflection, shadowing,
refraction, surface gloss and brightness.

2.1. Concept to introduce WebWorkers into the JS code

The main differences between a single standalone JS program com-
pared to a main JS program, which coordinates WebWorkers is de-
picted in Figure 1.

Instead of using one main JavaScript program, which may in-
clude additional functions from another file (upper part of Fig-
ure 1), it uses one main JavaScript program to start and orches-
trate 1 − n other WebWorker JavaScript programs, which them-
selves may include the same additional functions file (lower part
of Figure 1). Those JS WebWorkers programs are basically a copy
of the original standalone JS program, with some additional lines
for the data transfer.

This concept of how to introduce WebWorker as depicted in Fig-
ure 1 can easily be understood by students, who have some pro-
gramming knowledge and the level to understand the basics of ren-
dering.

2.2. Data transfer

To start the data transfer, the main JS program sends all variables
and configurations to the WebWorkers, right after they were created
(arrow ‘a’ in Figure 1). Then, the main JS program gets prepared to
receive results from the WebWorkers (arrow ‘b’ in Figure 1) and to
display these received pixel colour results.

This means, the WebWorkers get the variable and config data
from the main JS code, as well as instructions on which part of the
image to calculate. Calculated pixel colours are then sent back to
the main JS program as intermediate or final results.

The time lag due to the data transfer between the main program
and the WebWorkers was determined by taking time measurements
from start of the calculations until the time when the first pixel line
calculation was completed. It turned out that the difference in cal-
culation time for the system with JS WebWorkers compared to a
standalone JS program was always below 0.1s. One can therefore
state, that the data transfer does not add a significant latency to the
calculations, but transferring data many times can still make an im-
pact to the overall calculation time. Therefore, the number of data
transfers has to be balanced with the level of data complexity. For
this reason, the WebWorkers used for the measurements presented
here received their instructions only once and have returned their
results only once per image line rather than for each pixel sepa-
rately. From an educational point of view, to make the program-
ming of the data transfer most understandable for students, all vari-
ables and configurations were sent to each WebWorker, even if not
all variables were necessary.

2.3. Distributing the calculations among WebWorkers

When calling the WebWorkers, we divided the full image height
into n parts with equal length, where n is the number of WebWork-
ers used. To minimize the number of data transfers, as described in

previous section, the WebWorkers in our implementation calculated
the pixel colours of a full image line before sending the resulting
pixel colours to the main JS program to display it. Then they con-
tinued calculating the next line, see Figure 2 where four different
random subsequent calculation situations are shown.

2.4. 3D rendering scene

For the measurements, we used a standard 3D object, namely a
rotational ellipsoid with about 650 triangles, with index of refrac-
tion of 1.5, with part of direct light equal to 60%, part of reflection
equal to 25% and part of refraction equal to 15%. Three lights were
shining on this object from three different locations and with dif-
ferent colour, and the Ray Tracing recursion depth was set to 10.
The resulting image can be seen in the right image of Figure 2. The
resolution of the image was 860 x 353 px on the PC and 818 x 476
px on the Mobile Phone.

2.5. Systems used to measure the impact of the WebWorkers

Measurements were taken both on a Windows 11 PC 8-Core-CPU
with Firefox v99.x and Chrome v100.x as well as on a Mobile
Phone 8-Core-CPU with Firefox v99.x.

Detailed specs are:

• HP EliteDesk 800 G6 TWR with Octa-Core Intel Core i7-9700
at 3.60 GHz

• Samsung A52s 5G with Octa-Core (4 Kryo 670 at 2.4 GHz, 4
Kryo 670 at 1.9 GHz)

On those systems, the calculations were repeated at least twice to
limit the effect of other processes running on the same system in
the background.

3. Results and discussion

The measured times for calculating the image in Figure 2 are listed
in the following Tables 1 and 2. It is visible and expected that the
more JS WebWorkers are involved the shorter the time to calculate
the image.

Configuration
PC

Firefox v99.x
PC

Chrome v100.x

Without WeWo 495s ± 1s =̂ 1.0x 339s ± 19s =̂ 1.0x
With 1 WeWo 363s ± 3s =̂ 1.4x 230s ± 5s =̂ 1.5x
With 2 WeWo 185s ± 1s =̂ 2.7x 117s ± 3s =̂ 2.9x
With 3 WeWo 170s ± 1s =̂ 2.9x 105s ± 1s =̂ 3.2x
With 4 WeWo 130s ± 1s =̂ 3.8x 80s ± 1s =̂ 4.2x
With 5 WeWo 110s ± 1s =̂ 4.5x 70s ± 1s =̂ 4.8x
With 6 WeWo 90s ± 1s =̂ 5.5x 57s ± 3s =̂ 5.9x
With 7 WeWo 80s ± 1s =̂ 6.2x 52s ± 3s =̂ 6.5x

Table 1: Measured calculation times and related speeding factors
for rendering the image with different configurations on a PC. All
measurements were repeated at least twice. (Abbr.: WeWo = Web-
Worker)

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

10

R. Porath / Parallelizing Rendering on Devices with Multi-Core CPUs - Implementation Suggestion for Education

Figure 1: Schematic overview of involved scripts. Upper part shows a standalone program. Lower part shows the main program orchestrating
the additional programs called JS WebWorkers. Note: As mentioned in the text, instead of sending one pixel from the WebWorker scripts to
the main script only, a whole line of pixels can be sent to reduce the number of data transfers and thus improve performance even more.

Figure 2: WebWorkers calculate their part of the image independently. These 4 images show the calculation after different times from left to
right, with the full image to the right

3.1. Detailed results from calculations executed on the PC

If we focus first on the measured time for Chrome on the PC, we
can see that the reduction in rendering calculation time when using
one versus seven WebWorkers was about 77% (from 339s±19s to
52s±3s). For calculations in Firefox, we measured a reduction by
a similar amount, namely about 78% (from 495s±1s to 80s±1s).

If we compare the calculation time used by one JS WebWorker
with the calculation time used by a standard JS program without
any WebWorker, it turns out that using even only one WebWorker
is already faster by about 32% (from 339s±19s to 230s±5s) on
Chrome and by about 27% (from 495s±1s to 363s±3s) for Fire-
fox. The reason is obviously that the use of WebWorkers enables

the browser and the operating system to run the calculations in
parallel to other browser activities. Using all possible WebWork-
ers compared to the standalone JS program reduces the calculation
time totally by up to 80-85%.

3.2. Detailed results from calculations executed on the Mobile
Phone

For Firefox on the Mobile Phone, the reduction in rendering calcu-
lation time was about 71% (from 963s±1s to 275s±15s), which is
comparable to the results from the PC measurements.

As a takeaway, one can learn that involving at least one Web-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

11

R. Porath / Parallelizing Rendering on Devices with Multi-Core CPUs - Implementation Suggestion for Education

Configuration Mobile Phone
Firefox v99.x

Without WebWorker 963s ± 1s =̂ 1.0x
With 1 WebWorker 670s ± 90s =̂ 1.4x
With 2 WebWorkers 340s ± 1s =̂ 2.8x
With 3 WebWorkers 535s ± 15s =̂ 1.8x
With 4 WebWorkers 310s ± 1s =̂ 3.1x
With 5 WebWorkers 343s ± 3s =̂ 2.8x
With 6 WebWorkers 275s ± 5s =̂ 3.5x
With 7 WebWorkers 275s ± 15s =̂ 3.5x

Table 2: Measured calculation times and related speeding factors
for rendering the image with different configurations on a Mobile
Phone. All measurements were repeated at least twice.

Figure 3: 3D object, which fills the whole image

Worker is faster than running the calculations in one main JS pro-
gram only. Also, the use of all possible WebWorkers, aligned to the
number of available CPU cores, can make the calculations faster by
a large percentage, in our cases by up to 80-85%.

3.3. Further results

Tables 1 and 2 indicate also that the calculation of images with large
areas of background (like the white areas around the sphere in Fig-
ure 2), where no ray hits any object, may not always be faster with
more WebWorkers (see the small differences in measured times
with 2, 3, 4, 5 WebWorkers for the Mobile Phone in Table 2).
The reason is that in such cases one or more WebWorkers get an
area to render, which is only or mainly background and therefore,
other WebWorkers have to calculate more calculation-intensive ar-
eas where objects are present.

When rendering other images however, in which less back-
ground areas are present (see an example depicted in Figure 3), all
WebWorkers can contribute to the calculations of the image almost
equally and the reduction of calculation time is maximized.

4. Conclusion

The education of 3D Computer Graphics and Rendering technics is
possible by means of the easy to learn JavaScript programming lan-
guage, and we have shown in this paper that this can be effortlessly
and understandably extended by the JavaScript WebWorkers with-
out becoming much more complicated. Basically, the same scripts

can be used with only a small number of amendments to include
the data transfer. This enables the students and interested persons
to run their rendering calculations on their Mobile Phones, tablets
or PCs with much higher performance, in our cases up to 70-85%
faster, which means the waiting time shrinks from minutes or hours
to seconds or few minutes.

References
[Ama84] AMANATIDES J.: Ray tracing with cones. In Proc. SIGGRAPH

’84 (1984), vol. 18, pp. 129–135. doi:10.1145/800031.808589.
1

[CWVB83] CLEARY J., WYVILL B., VATTI R., BIRTWISTLE G.: De-
sign and analysis of a parallel ray tracing computer. In Proc. of Graphics
Interface ’83 (1983), pp. 33–38. Annual Conference Series, 13-20. 1

[Dee95] DEERING M. F.: Geometry compression. In Proc. SIGGRAPH
’95 (1995). Annual Conference Series, 13-20. 1

[GP89] GREEN S., PADDON D.: Exploiting coherence for multiproces-
sor ray tracing. IEEE Computer Graphics and Applications 9(6) (1989),
12–26. 1

[Net95] NETSCAPE: Netscape and sun announce javascript. PR Newswire
(Dec. 1995). https://web.archive.org/web/20070916144913/
https://wp.netscape.com/newsref/pr/newsrelease67.html. 1

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically based ren-
dering: From theory to implementation. Morgan Kaufmann, 2016. 1

[Por21] PORATH R.: Software. https://github.com/ScienceBoy/
Parallelization-of-RayTracing-with-JS-WebWorkers. 2

[Thr] Three.js 3d library. https://threejs.org. 1

[WHA10] WHATWG: Web workers. PR Newswire (June 2010). (Ap-
ple, Google, Mozilla, Microsoft) https://www.whatwg.org/specs/
web-workers/current-work. 1

[Whi79] WHITTED T.: An improved illumination model for shaded dis-
play. In Proceedings of the 6th annual conference on Computer graphics
and interactive techniques (1979), p. 14. 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

12

https://doi.org/10.1145/800031.808589
https://web.archive.org/web/20070916144913/https://wp.netscape.com/newsref/pr/newsrelease67.html
https://github.com/ScienceBoy/Parallelization-of-RayTracing-with-JS-WebWorkers
https://threejs.org
https://www.whatwg.org/specs/web-workers/current-work

