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Figure 1: A network of spiny cortical neurons. The meshes are generated with the proposed algorithm based in the union modifiers in Blender.

Abstract

Neurons are characterized by thin and long interleaving arborizations in which creating accurate mesh models of their cellular
membranes is challenging. While union operators are central for CAD/CAM modeling and computer graphics applications,
their applicability to neuronal mesh generation has not been explored. In this work, we present the results of exploring the ef-
fectiveness of using union operators to generate high fidelity surface meshes of spiny neurons from their morphological traces.
To improve the visual realism of the resulting models, a plausible shape of the cell body is also realized with implicit sur-
faces (metaballs). The algorithm is implemented in Blender based on its Python API and is integrated into NeuroMorphoVis, a
neuroscience-specific framework for visualization and analysis of neuronal morphologies. Our method is applied to a dataset
consisting of more than 600 neurons representing 60 morphological types reconstructed from the neocortex of a juvenile rat.
The performance of our implementation is quantitatively analyzed, and the results are qualitatively compared to previous imple-
mentation. The resulting meshes are applicable in multiple contexts including visualization and analysis of full compartmental
simulations and generation of high quality multimedia content for scientific visualization and visual computing (Figure 1).

1. Introduction

Our brain consists of billions of interconnected neurons. Under-
standing the functional aspects of the brain entails studying the
structure-function relationship of individual neurons, in which the
structure (or morphology) of a neuron affects the network topology
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and its dynamics. Visually, neurons are complex structures; they
have extremely thin and lengthy branching arborizations that cross
different brain regions. They also have multiple morphological
(shapes) and electrophysiological classifications that make study-
ing them a computational dilemma, requiring a unifying model to
enable full compartmental brain simulations [RCA*15; MMR*15].
Accurate visualization of simulation results depends on the pres-
ence of high fidelity neuronal mesh models, with which each mor-
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phological compartment can be mapped to a specific vertex or facet
on the mesh surface [LHH*12]. Nevertheless, the generation of
those neuronal meshes is a challenging, and in certain cases, com-
putationally intensive task.

We hereby present a simple and effective method capable of cre-
ating accurate and detailed mesh models of spiny neurons from
their corresponding morphologies using union operators. The al-
gorithm is implemented in Blender [Foul6] based on its Union
Modifier. The implementation is then applied to a diverse set of
neocortical neurons that have various morphological types.

1.1. What is a Neuronal Morphology?

Neuronal morphologies are digitally traced and segmented from
optical microscopy stacks (brightfield or fluorescence microscopes)
of stained tissue slices using semi-automated methods [GSS07]. In
other cases, biologically plausible morphologies are synthetically
generated in computer simulations based on stochastic sampling
techniques and increasingly prescriptive rules inspired from real bi-
ological samples [KRS*19]. The end result is a skeleton composed
of a series of connected samples. Those skeletons are then stored
in a common hierarchical structure representing a directed acyclic
graph (DAG). The root node reflects the cell body — or soma — of the
neuron. The branching fibers, where the propagation of electrical
activity takes place, emanate from the soma. In principle, the mor-
phology is stored in a neuroscience-specific format called SWC
as a list of samples. Each sample defines a three-dimensional (3D)
Cartesian coordinate and a radius. Each two consecutive samples
form a segment, where a series of connected segments between two
branching points define a section. Sections are connected to each
other in a hierarchical structure, and stored in a tree, where par-
ent and child sections can be accessed from any node in the graph.
Figure 2 illustrates the structure of a neuronal morphology.

Figure 2: The structural composition of a neuronal morphology
skeleton showing soma, samples, segments, sections and arbors.

After their reconstruction, neuronal morphologies are processed
to remove any artifacts that might arise due to the segmentation
process itself. Reconstructed skeletons are then used to perform
biophysically detailed compartmental simulations to model their
electrical behavior [MCL*06]. Visualizing simulation results can-
not be performed on compartmental or simplified geometries, such
as spheres and cylinders; the process entails the existence of ac-
curate polygonal mesh models of the neurons that can reflect their

membranes [HBB*13]. Nonetheless, creating realistic, smooth and
optimized meshes of neurons that can fulfill this objective is not
trivial; it is still largely unfulfilled.

1.2. Related Work

Creating mesh models of branching structures, such as trees and
blood vessels, is considered an active and important research theme
in computer graphics. However, creating polygonal models of neu-
rons from their morphological graphs in particular is compara-
tively challenging due to their complex structure. Neurons are spa-
tially characterized by extremely large extent with low space oc-
cupancy [EBA*12]. They have complex branching structures that
cannot be meshed easily and require careful handling and in certain
cases pre-processing for successful mesh generation. Reconstruct-
ing realistic somatic shapes and having a continuous and smooth
connection with the arbors is also a major concern.

Research methods covering neuronal mesh generation can be
broadly classified into two categories. The first one is focused on
creating optimized, two-manifold and watertight mesh models that
can be used to create tetra- or hexahedral meshes for performing re-
action diffusion simulations, for example using STEPS [HCWD12]
or FEniCS [LMW12] simulators. These methods are required to en-
sure that resulting meshes are topologically optimized and water-
tight regardless the realism of their somatic profiles. For example,
Morschel et al. have used a sphere to account for the somatic vol-
ume in the simulation [MBQ17]. McDougal et al. [MHL13] have
presented a better somatic shape, but the tessellation of their result-
ing meshes was questionable. Despite being watertight, the meshes
belonging to this category do not have natural-looking branching
and have high tessellation (~5-15 million polygons) that would
potentially limit their usage in visualization applications to small
neuronal circuits with tens or hundreds of neurons on average de-
pending on the application used to visualize them.

The second category is concerned with creating low-tessellated,
smooth and realistic meshes that can be used to visualize simulated
compartmental activity and render high quality content for scien-
tific dissemination. The principal focus of this category is the tes-
sellation, or polygon count, of the resulting meshes, in order to be
able to pack as many neurons as possible in the scene for visualiz-
ing large scale neuronal circuits [EBA*12; HBB*13].

Lassere et al. developed an algorithm based on extru-
sion [LHH*12]. Their implementation builds an initial quadratic
proxy mesh around the morphology skeleton. Then, Catmull-Clark
subdivision is used to smooth the surface of the proxy mesh. How-
ever, their approach was limited in several aspects: (i) the algorithm
was implemented in Maya (Autodesk, USA) using its embedded
scripting language (MEL) [WKO0S5] which makes it challenging to
reproduce the results; (ii) the branching quality was limited; the
branches have hard edges and long flaps; (iii) the somatic profile
was slightly better than a sphere but still not realistic and (iv) the
performance of the technique was poor; it might take more than 15
minutes in some cases to create a single mesh of highly branched
pyramidal neuron.

Three methods addressed the reconstruction of realistic so-
matic profiles from incomplete tracing data. Brito et al. devel-
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oped Neuronize and presented a novel approach for creating 3D
somatic profiles using a physically plausible method based on
mass-spring models and Hooke’s law [BMB*13]. Their method
uses soft body dynamics and pulling forces to transform an ini-
tial ico-sphere into an accurate mesh model of the soma. Abdel-
lah et al. have presented a similar approach that uses the physics
engine in Blender [AHA*17]. Garcia et al. presented with Neu-
roTessMesh another approach for building realistic somatic pro-
files using finite-element modeling [GBM*17]. Their reconstruc-
tions were demonstrated on various morphological types to validate
the results. Nevertheless, these approaches lacked reconstructing
arborizations with realistic and geometrically accurate branching.
Creating neuronal meshes with natural-looking branching was pre-
sented in a recent study based on skin modifiers [AFH*19]. The
results were satisfying for the majority of the cases, but unfortu-
nately, there were some complex branching scenarios (Figure 11b2)
that the skin modifier failed to handle.

Contributions Our contributions can be summarized as follows:

1. Based on the recent meshing work of Abdellah et al. [AHA*17],
we present a simple method for reconstructing high quality sur-
face meshes of spiny neurons from their morphological graphs
using union operators.

2. Integrating the implementation in the meshing toolbox of Neu-
roMorphoVis [AHE*18], to make it freely available to compu-
tational neuroscientists, content creators and media specialists.

3. Comparing the results with several previous implementations
from [GBM*17], [AFH*19], and [AHA*17].

2. Neuronal Mesh Reconstruction with Union Operators

Boolean operations (intersect, difference and union) are principally
used in geometric modeling in two cases: to create sophisticated
polygonal models that cannot be modeled otherwise or to design
models employing several manual editing [UMC*19]. Our method
uses union operators to: (i) bridge secondary branches to primary
ones along each arbor in the morphology; (ii) connect each arbor
independently to the somatic model; and (iii) attach spine meshes
along the surface of aspiny (without spines) neuronal mesh.

2.1. Arbors Reconstruction

Our algorithm creates a single and continuous mesh object per ar-
bor. As detailed previously, neuronal arbors (or branches) are com-
posed of a list of connected sections arranged in a hierarchical
manner. Geometric extents of parent and child sections are par-
tially overlapping at their terminal samples. Therefore, performing
a union operation on each parent-child pair could produce a single,
however discontinuous, mesh with intermediate gaps and overlap-
ping branching geometries as illustrated in Figure 3.

Instead of creating one mesh object per section, where the union
operation can be performed, we define a list of primary sections
that represents the most natural continuation from a parent section
to a child one along the arbor, and another list of secondary sec-
tions that branches off the primary ones. This scheme has been
implemented before in piecewise-watertight meshing [AHA*17]
and extrusion-based meshing [LHH*12]. This labeling helps to
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Figure 3: Overlapping geometries and gaps between the different
sections in the morphology. The configurations are rendered with
transparency in the bottom row to reveal the overlapping.

construct independent — and geometrically intersecting — objects,
which could be potentially connected using union operators to get
rid of the overlapping and intersecting parts to form a continuous
and natural looking emanation of child sections from the parent
ones at branching points.

Labeling Sections A pre-processing kernel is initially applied to
verify if each section in the morphology is primary or secondary.
This process can be performed either based on the angles between
parent and child sections or based on the radii of their termi-
nal samples at the respective branching points. It has to be noted
that the radii of the terminal samples of the sections that are con-
nected to the same branching point are not necessarily the same.
The branch labeling kernel determines the most optimum branch-
ing configuration based on a combination of the angle-radius strate-
gies. If the angles between the child and parent sections are com-
parable, we label the child section with the largest diameter to be
primary. This kernel identifies the primary section and adapts the
secondary sections accordingly. This adaptation adjusts the radius
of the initial sample of secondary sections according to the radius
of the last sample of their parent section. This step does not alter
the structure of the morphology skeleton per se, but it is essential
to avoid any meshing artifacts as shown in Figure 3. Figure 4 illus-
trates how sections are segregated into primary and secondary to
identify principal paths along the arbors.

Resampling Sections In some cases, morphological traces are ex-
cessively oversampled in a non-uniform way. This oversampling
could be a potential source of error that might introduce geometric
artifacts along the surface of the neuronal mesh. To guarantee the
generation of a smooth surface (without sharp or jagged edges), an-
other pre-processing kernel is applied to adaptively resample each
section in the morphology.

Generating Polylines We recursively process each arbor in the
morphology to identify the principal paths starting from root sec-
tions that are connected to the soma until reaching the terminal
sections, which have no children. Once a path is identified, we
construct a corresponding polyline by interpolating a bevel object
along the entire path. For example, in Figure 4c, five principal paths
are identified and five corresponding polylines are constructed.
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Figure 4: Labeling sections in the morphology into primary and
secondary based on the radii of their terminal samples. The mor-
phology is illustrated (a) before and (b) after the application of the
labeling kernel. The principal paths are identified in (c) after the
labeling process.

Generating Arbor Meshes Each polyline is converted into a mesh
object and stored in an ordered list. Then, all the mesh objects are
welded together one-by-one using the union modifier! in Blender
to construct the final arbor mesh. Figure 5 shows several closeups
on different branches before and after applying union modifiers to
bridge the principal paths together.

(4 ‘ Y \ |

Figure 5: Applying union modifiers to meshes of principal paths to
construct the final arbor mesh. The closeups show the results before
(in red) and after (in blue) the application of union modifiers where
the overlapping parts are totally removed.

2.2. Soma Reconstruction

Unfortunately, morphometric analysis of neuronal somata is highly
subjective and the definition of the soma is fuzzy [LBB*15]. More-
over, with the technical limitations imposed by optical imaging
methods, reconstructing an exact 3D profile of a soma from its
imaging data is not always applicable. Somata are typically rep-
resented by a centroid and a mean radius approximating the dis-
tance between the somatic center the initial morphological sample
of each arbor emanating from it. Traces with superior accuracy pro-
vide a few more somatic samples called profile points, which char-
acterize a two-dimensional projection of the soma along the optical
axis of the microscope. This projection might be slightly guiding,
but it cannot account for actual 3D profile.

We present an intuitive and efficient algorithm that can recon-
struct realistic somatic shapes even if the soma is solely represented

T The union operator in Blender is called union modifier.

by a symbolic sphere. The algorithm is based on implicit surfaces,
or metaballs [AFZ*21]. It uses a set of auxiliary points from the
dendritic sections that are directly connected to the soma to define a
3D profile. Initially, a metaball with a radius equivalent to the mean
radius of the soma is created. Starting from the somatic origin, we
then build a group of conic meta-segments, each of them connect-
ing the origin to the first sample along the corresponding dendritic
tree. The path of each meta-segment is resampled and filled with
a series of metaballs with gradually increasing radii. The radii of
the first and last metaballs along the segment are set based on the
radius of the first sample of the respective dendrite. After the gener-
ation of all the meta-segments, all the resulting meta-elements are
blended and polygonized to generate a 3D somatic surface that can
approximate the natural growing shape of the soma. Figure 6 shows
several somatic meshes reconstructed with metaballs.
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Figure 6: Generation of somatic meshes of multiple neurons hav-
ing different morphological types with metaballs.

2.3. Integrating Spines

Spines are those small protrusions (a few microns size) that em-
anate from dendritic shafts of neurons to receive an input signal
from an axonic terminal of a connecting neuron at a specific site
called a synapse. Unlike neurons, spine models are relatively lack-
ing. Spines are segmented into mesh models from volume stacks
that are primarily acquired with scanning electron microscopes due
to their unprecedented resolutions. Using skeletonization, detailed
morphological descriptions of spines are reconstructed from these
mesh models. Commonly, morphologies of neuronal reconstruc-
tions do not include any spine information. Our circuits [MMR*15]
use an algorithmic approach to define spine locations along the den-
dritic arbors of a neuron. We therefore retrieve the spine informa-
tion from the circuit and accordingly generate spine mesh models
that can be integrated in the mesh reconstructed with our approach.
Figure 7 illustrates how spine meshes are integrated along the shafts
of dendrites.

2.4. Welding Components

So far, we have created individual and disconnected — but never-
theless overlapping — surface meshes for the soma, dendritic spines
and neuronal arbors. We therefore use the union operator to con-
nect, or weld, these components together in order to create a single
mesh object that can model the surface of a spiny neuron membrane
as shown in Figure 8. This welding process is implemented in two
steps. The union operator is first applied on the somatic mesh (as
the target mesh) and the polyline mesh of each arbor in the mor-
phology (as the modified mesh) in an iterative scheme. Note that
the somatic mesh is only used in the first iteration. The resulting
mesh from this iteration represents the merge between the soma and
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Figure 7: Spine meshes are grouped into a single mesh with a joint
operation. This mesh is then merged with the aspiny neuron mesh
with a union operation to create the final spiny neuron mesh.

the first dendritic arbor. This target mesh will be used in the second
iteration as an alternative to the somatic mesh that was used in the
first iteration. Therefrom, the resulting mesh from an iteration will
be used as the target mesh in the following iteration. After weld-
ing all the dendritic meshes to the soma, a single surface mesh of a
non-spiny neuron is reconstructed. Depending on the target appli-
cation, for example: to visualize electrophysiological compartmen-
tal simulations, this mesh can be exported without any necessity to
integrate the spines along the surface of its dendritic shafts. The in-
tegration of the spines can be seamlessly implemented similar to the
reconstruction of dendritic arbors in an iterative scheme. However,
pyramidal neurons, for example, can have up to tens of thousands
of dendritic spines. Consequently, welding the spines one-by-one to
the surface of the neuron mesh with such a scheme is computation-
ally expensive and time consuming. The overhead of this process is
reduced by grouping the meshes of the dendritic spines into a single
mesh object (with multiple partitions) using the joint operator. The
union operator is then applied only once on the neuron mesh and
the joint mesh of the spines. Geometrically speaking, this process
has the same effect of welding the individual spines to the neuronal
mesh surface, but it radically improves the performance.

2.5. Smoothing the surface

The surface of the resulting mesh from the welding process is low-
tessellated. This mesh is optimum for visualizing scenes with large
scale simulations that contain tens or hundreds of thousands of neu-
rons. However, this mesh does not qualify for high quality scientific
visualization with closeup shots; there are some sharp and bumpy
edges along the surface. We apply a vertex smoothing algorithm to
improve the quality of the surface, in particular around the branch-
ing regions where the union operations were applied. This algo-
rithm averages the angles between the facets of the resulting mesh.
Initially, we clean the mesh by removing any coincidental redun-
dant or duplicate vertices that are relatively located at the same
coordinates. Then, we triangulate the mesh by converting all the n-
gons (where n > 3) into triangles using the triangulation modifier.
Afterwards, the mesh is subdivided to increase the density of trian-
gles across the surface. Finally, we smooth the surface by flattening
the angles of all the vertices of the mesh in multiple iterations. This
process results in a smoothed surface, yet with a high number of
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Figure 8: Welding components to generate a smooth spiny neu-
ron mesh. Each component in the morphology skeleton (arbors and
soma) is processed to generate a corresponding mesh (a). The ar-
borization meshes are overlapping with the somatic mesh (b). The
union modifier is applied per mesh to reconstruct a single aspiny
neuron mesh with smooth connections between the soma and the
arbors (c, d). The spines are attached to the surface of the aspiny
mesh with another operation to obtain the final mesh (e).

triangles. So we apply a decimation operation to reduce the tessel-
lation of the mesh to convenient levels comparable to that before
the subdivision operation, with which we can load it interactively
into any rendering engine. Figure 9 shows a comparison between
the surface of the mesh before and after applying the smoothing
kernel.
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Figure 9: Smoothing the surface of the reconstructed mesh. The
closeups show a comparison of the surface of the neuron mesh be-

fore (in red) and after (in blue).

2.6. Implementation

Our algorithm is implemented in Blender using its Python APL
To make it accessible to public, the code has been integrated into
NeuroMorphoVis [AHE*18], an open source neuroscientific add-
on package for neuronal morphology analysis, visualization and
mesh reconstruction. The code can be executed from the graphi-
cal user interface (GUI) of Blender or the command line interface
(CLI) of the add-on.
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3. Results

Our implementation has been assessed with a dataset containing
600 exemplar morphologies that are randomly selected from a re-
cent digitally reconstructed circuit that assembles ~4,230,000 neu-
rons. The selection reflects 60 different morphological types of neu-
rons that are originally reconstructed from the neocortical micro-
circuitry of a rodent brain [RCA*15; MMR*15]. Figure 1 shows a
rendering of a synthetic neural network where the neuronal meshes
are reconstructed with our technique.

3.1. Quantitative Analysis & Error Measurements

The overall precision of the resulting meshes is assessed by com-
paring the deviation of the resulting surface of the mesh with re-
spect to the extents of the morphological samples of the neuron.
We measured the distance between each morphology sample and its
nearest neighboring point along the surface of the resulting mesh.
The measured values are normalized to evaluate the relative error
across the entire morphology. The values are mapped using the heat
color-map as shown in Figure 10.

Sharp Edges

Relative Error %

Figure 10: Error estimation represented by the difference between
reported morphology sample diameter and distance from the re-
constructed mesh surface expressed as percent error for sharp and
smooth meshes created using our algorithm.

3.2. Comparison with Previous Approaches

Union operators are extremely powerful to yield high quality
meshes with smooth surfaces compared to other meshing tech-
niques. This is demonstrated with the results shown in Fig-
ure 11 comparing three other meshing techniques that have open
source implementations. For example, NeuroTessMesh [GBM*17]
is GPU-accelerated, but the branching quality of the resulting
meshes is limited even with increased tessellation. Moreover, the
soma reconstruction approach seems questionable; the arbors do
not emanate smoothly from the soma as they negatively overlap
with it. The piecewise meshing technique [AHA*17] produces
overlapping geometries that cannot be used to visualize any simula-
tions with transparent colormaps. Skin modifiers [AFH*19] are ca-
pable of creating high fidelity meshes with natural looking branch-
ing and smooth surfaces, but they fail in several complex branching
scenarios and do not provide smooth extrusion of the arbors from

the soma. Our method is capable of handling all the limitations of
these prior techniques providing: natural-looking branching in all
cases, including dendritic spines, smooth surfaces, and continuous
soma-to-arbor connections.

a b

Figure 11: A comparison between the results of meshing a
pyramidal neuron obtained with (a) NeuroTessMesh [GBM*17],
(b) skinning modifiers [AFH*19], (c) piecewise watertight mesh-
ing [AHA*17], and our implementation with union modifiers with-
out (d) and with (e) surface smoothing.

3.3. Performance Analysis

The performance of our implementation is assessed with a dataset
that contains one neuron per morphological type. Detailed bench-
marks and running times of every stage in the algorithm, shown
in Figure 12, are generated on a mid-range machine with an Intel
Core 19-10900 CPU running at 2.80 GHz and 64 GBytes of DDR4
memory.

Although union operators are powerful in modeling complex
branching scenarios, they are known to be relatively slow and
compute-expensive compared to skin modifiers [AFH*19], but
nonetheless faster that extrusion-based methods [LHH*12]. The
performance of union operations depends in principle on the tes-
sellation of operand meshes. But the performance of our algorithm
depends on other nested factors as well. Initially, we use multiple
union operations per arbor to weld the meshes corresponding to
secondary sections to those of primary ones. The performance of
this stage does not depend on the number of samples in the mor-
phology per se, but mainly on its number of sections, in addition
to the sampling distance used to resample each section in the mor-
phology a priori. The polygonization of each polyline is almost in-
stantaneous, but the tessellation of the corresponding mesh depends
on the number of samples in the polyline. Therefore the main per-
formance bottleneck in this stage will be due to the union opera-
tions, depending on the number of sections in the morphology. On
average, this stage takes several tens of seconds for a neuron with
more than 100 morphological sections (e.g. L23_NGC, L5_TPC:A
and L5_TPC:B.
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The resulting mesh of each arbor is then connected to the somatic
mesh with another union operation, per arbor, to generate a single
aspiny mesh before the integration of the spines. Somatic meshes
have relatively much less tessellation than those of the arbors. Con-
sequently, this bridging operation takes less time than welding the
sections along the arbors. On average, the entire neuron reconstruc-
tion operation for a smooth neuronal mesh takes from several sec-
onds to tens of seconds.

4. Conclusion

‘We presented the results of using union operators to synthesize high
fidelity meshes of spiny neurons from their morphological graphs.
Our method enables the generation of smooth surfaces with plausi-
ble somatic profiles, natural-looking branching geometries and de-
cent tessellation, making it possible to build meshes for visualiz-
ing electrophysiological compartmental simulations and rendering
high quality scientific media content as shown in Figure 1. The
quality of our meshes is assessed and compared to the results of
other recent methods. The implementation is made freely acces-
sible in NeuroMorphoVis, a widely used tool in the neuroscience
community for neuronal visualization and analysis.

Data

Our implementation can be tested by downloading NeuroMorpho-
Vis and selecting the Union method from the Meshing Toolbox.
We provide a list of cortical morphologies in the supplementary
data. Other cell types are publicly available from the NeuroMor-
pho.org [ADHO7].
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flecting 60 various types of cortical neurons [MMR*15]. The profiles are shown with respect to the number of

es re

Performance profiles representing the time (in seconds) of reconstructing surface meshes with our method for a set of exemplar

morphological samples, number of morphological sections and number of polygons in the reconstructed mesh to complete the analysis.

neuronal morpholog

Figure 12





