
EG UK Computer Graphics & Visual Computing (2022)
M. Turner and P. Vangorp (Editors)

Real-time indexing of point cloud data during LiDAR capture

P. Bormann1 and T. Dorra1 and B. Stahl2 and D. W. Fellner1,3

1TU Darmstadt & Fraunhofer IGD, Germany
2Department of Sustainable Systems Engnineering INATECH, Albert Ludwigs University Freiburg & Fraunhofer IPM, Germany

3Graz University of Technology, Institute of Computer Graphics and Knowledge Visualization, Austria

Abstract
We introduce a software system that is capable of indexing point cloud data in real-time as it is being captured by a LiDAR (Light
Detection and Ranging) sensor. Our system extends the popular MNO (modifiable nested octree) structure so that it can be built
progressively without knowing the bounding box of the point cloud. Using a task-based parallel algorithm incoming points are
continuously processed and distributed to the octree nodes using grid-based sampling. Different task priority functions enable
prioritization of either high point throughput or low latency. We provide a reference implementation of this system and evaluate
it using both a synthetic and a real-world test scenario. The synthetic test demonstrates good scalability up to 16 threads, with
maximum point throughputs of up to 1.8 million points per second. These numbers are verified on a sensor system using a
Velodyne VLP-16 LiDAR sensor, where our system is able to index all data produced by the scanner in real-time.

CCS Concepts
• Information systems → Geographic information systems; Mobile information processing systems; Data structures; • Com-
puting methodologies → Point-based models; Vector / streaming algorithms;

1. Introduction

Point clouds are an important tool for many applications that re-
quire precise spatial information over potentially large areas. Use-
cases for point clouds include object recognition tasks [QSMG17],
such as those used by self-driving cars [Qi,17], risk assessment and
disaster management [LVM∗21,WZM∗14], or the preservation and
visualization of cultural heritage sites [PNVW∗17].

The two major ways of obtaining point cloud data are the usage
of LiDAR (Light Detection And Ranging) sensors and photogram-
metry. Since both technologies are continuously improving in their
precision, point cloud data sets are constantly getting bigger, with
many of the aforementioned use cases requiring large scale point
clouds with billions of points. This ultimately leads to challenges
in data handling, as the size of point clouds grows beyond what
regular machines can handle trivially. To make even the largest
point clouds usable in visualization and analysis applications, point
clouds are typically preprocessed and an index structure is created.
The type of the index structure varies depending on the specific
use case, but typically some form of a spatial acceleration struc-
ture such as an octree or kd-tree is used. Creating a suitable in-
dex structure for a point cloud with billions of points is a time-
and resource-intensive process, which often cannot be performed
in-core on most machines and requires specialized software. As
a result, preprocessing times of many hours or even days are not
uncommon, and the resulting index structures are often stored as
separate files, resulting in duplication of the original data.

In this paper, we present an approach for indexing point cloud
data in soft real-time during the capturing process with a Li-
DAR sensor. Our approach allows for data that is being cap-
tured to immediately be inserted into a high-quality octree struc-
ture that is similar to those generated by tools such as PotreeCon-
verter [SOW20], Schwarzwald [BK20], or Entwine [ent], contin-
uously updating the index structure with new points generated by
the LiDAR sensor. In contrast to these tools, which are batch-based
and require full bounding box information upfront, our approach
indexes the point cloud in a streaming manner using parallel task-
based processing, enabling it to run in parallel to the capturing pro-
cess. A multi-root octree structure enables indexing without know-
ing the full bounding box, and a variety of task priority functions
make it possible to prioritize either high point throughput or low
latency. To demonstrate our approach, we implemented a point
cloud server that performs the indexing and allows clients to query
data during the indexing process, notifying them of any changes in
the index structure that are relevant to the queries. We are able to
achieve indexing rates of about 1.8 million points per second on
commodity hardware, which is high enough to keep up with the
point output of most current LiDAR scanners. Our approach sup-
ports the same grid-based sampling as Entwine and Schwarzwald
and thus achieves similar visual quality.

The key contributions of this paper are:

• To the best of our knowledge, this is the first approach that is

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.
This is an open access article under the terms of the Creative Commons Attribution Li-
cense, which permits use, distribution and reproduction in any medium, provided the orig-
inal work is properly cited.

DOI: 10.2312/cgvc.20221173 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6687-0082
https://orcid.org/0000-0002-8810-3818
https://orcid.org/0000-0002-9655-5566
https://orcid.org/0000-0001-7756-0901
https://doi.org/10.2312/cgvc.20221173


P. Bormann & T. Dorra & B. Stahl & D. Fellner / Real-time indexing of point cloud data during LiDAR capture

able to perform point cloud indexing in real-time during LiDAR
capturing

• A stream-based indexing algorithm based on the popular MNO-
structure, using a priority queue to keep the latency between cap-
turing a point at the scanner and inserting that point into the in-
dex low

• A detailed evaluation of the effect that different priority func-
tions have on expected point throughput and latency

• An evaluation of our indexing algorithm on a real-world scan-
ner system, using a Velodyne VLP-16 sensor and running on an
nVidia Jetson AGX Xavier system

2. Related Work

Point cloud indexing can be grouped into two major categories:
Visualization-optimized indices and general-purpose indices. Wim-
mer and Scheiblauer [WS06] were the first to introduce a nested oc-
tree structure to enable point rendering without knowing sampling
densities or point normals. Based on their approach, the modifi-
able nested octree (MNO) structure was developed, which stored
points as a regular grid inside the octree nodes [Sch14]. While ini-
tially developed to enable easy modification of the points within the
octree, it is mainly used for representing different levels-of-detail
(LOD) of a point cloud due to the work by Schütz [Sch16], who
came up with a variety of sampling strategies for generating LODs.
While the sampling gives visually pleasing results, it introduces a
non-trivial runtime overhead for the construction of the MNO, re-
sulting in a variety of tools that aim to generate the MNO index
as fast as possible. Notable works are PotreeConverter [SOW20],
Schwarzwald [BK20], and Entwine [ent], which run on a single
machine, as well as the Cloud-optimized approach by Kocon et
al. [KB21].

While these systems focus heavily on the visual aspect by
answering view frustum queries quickly, there are also general-
purpose systems that can perform a broader set of queries on
point cloud data. Van Oosterom et al. [VMRI∗15] evaluated several
database management systems (DBMS) for their usage with point
cloud data, and proposed grouping points by space-filling curves.
This approach was generalized to higher-dimensional indices with
the HistSFC system by Liu et al. [LVMV20]. With the Point Cloud
Server [CPP17], Cura et al. developed a system that unifies require-
ments from many different application domains into a single point
cloud DBMS.

All these systems require some form of preprocessing to gener-
ate the respective index structure, sometimes with additional over-
head for importing data into the DBMS. In terms of interactive
indexing of point clouds, GPU-based approaches for generating
accelerators such as bounding volume hierarchies [JG21] or kd-
trees [ZHWG08] have been studied extensively. While these ap-
proaches can index multi-million point datasets in a few millisec-
onds, the resulting accelerators lack the LOD support that is crucial
for efficiently visualizing larger point clouds.

3. Approach

Any point cloud index that is geared towards visualisation must
support efficient spatial queries based on the view frustum of the

virtual camera with multiple levels of detail. In order to handle large
point clouds, both indexing and querying must be possible using
out-of-core methods. For real-time indexing of point clouds, two
additional requirements apply:

High indexing throughput Points need to be processed on-the-
fly, as they arrive from the sensor. While fast indexing is de-
sirable for batch-processing, with real-time indexing the index
must be able to keep up with the incoming points from the sen-
sor. The number of points per second generated by current Li-
DAR sensors is typically in the magnitude of 105 to 106 points
per second.

Query result updates In order to provide a real-time view of the
point cloud during capturing, there needs to be a mechanism that
keeps query results up to date when new points are inserted. The
delay between receiving a point from the sensor and it being
visible to clients should be low enough to still give a real-time
impression.

Our implementation ensures the first requirement by using an in-
dexing scheme that parallelizes well and by issuing a number of op-
timisations to reduce the number of load and store operations. We
are also using a modified octree structure that can be built without
bounding box information. The second requirement is satisfied by
keeping an open socket connection between the point cloud server
and the client visualization applications, through which the server
can send updates to the clients whenever an octree node that is in
use by a client changes.

3.1. Index structure

The index structure described in this paper is based on the MNO
datastructure by Scheiblauer [Sch14]. The MNO is an octree vari-
ant that stores a grid of points in every node. The grid spacing
halves in every tree level, so that the tree levels form the different
levels of detail.

When indexing points in real-time, the bounding box of the full
point cloud is not known up front. However, the vanilla MNO needs
this information to determine the correct size of the root node. In-
stead of a single root node, we use a regular grid of fixed sized
nodes in the first tree level. New root nodes are created on de-
mand when the first point falling into its area is indexed. This struc-
ture is similar to the hybrid hash-grid/MNO approach by Kocon et
al. [KB21]. Figure 1 shows an example of this datastructure.

The index is stored on disk using the LAS file format [Ame13],
or optionally the compressed LAZ format. Unlike the PotreeCon-
verter [SOW20], we cannot store the full index as a continuous
point buffer in a single file. This is because we do not know in ad-
vance how much space to reserve for each node. Instead, each node
is stored as a separate file. The files are named based on the LOD
of the node and the position in the grid that the nodes of this level
of detail form.

In memory, a node is represented as a hash map that maps each
occupied cell in the inner node grids to the contained point.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

66



P. Bormann & T. Dorra & B. Stahl & D. Fellner / Real-time indexing of point cloud data during LiDAR capture

LOD 2

LOD 1

LOD 0

Figure 1: Example of our datastructure. Each LOD consists of a
sparse grid of nodes, seperated using black lines. The nodes con-
tain an inner grid of points, that is drawn using grey lines. The
example shows three root nodes in LOD 0.

3.2. Indexing process

In batch-process indexing, the order in which points are processed
is important for the indexing performance, because more locality in
the point data leads to nodes having to be swapped between mem-
ory and disk less frequently [Lei13]. While batch-process indexers
can pre-sort [Sch14] or tile [SOW20] the raw point data, we do not
have control over the order in which points are added in the real-
time indexing use case. Our indexer uses an in-memory point buffer
for each node that collects incoming points local to this node’s sub-
tree. We call this the inbox of the node. It enables us to insert mul-
tiple points in one step, having to load and store the updated node
only once, rather than for each incoming point seperately.

The indexer works using a top-down approach: New points are
initially added to the inbox of their corresponding root node. From
there, they descend into the tree until a matching node is found.
This is done by repeatedly performing the following steps:

1. Choose a node with a non-empty inbox and take the contained
points, leaving it empty.

2. Load the corresponding node from disk. If the node does not
already exist, a new empty node is created.

3. Try inserting the points into the node using grid center sampling.
This will accept points for grid cells that are still empty. For
occupied cells, whichever point is closer to the center of the grid
cell is accepted and the other one is rejected.

4. Store the modified node to disk.
5. Split the rejected points into eight groups depending on which

child node they fall into.
6. Add each group to the inbox of the corresponding child node.

The indexer parallelizes trivially: There are multiple worker
threads that execute these indexing steps independently from each
other. Synchronisation is only needed when accessing the inboxes,
which are shared between all workers, and when choosing the next
node to process, to make sure that a node is never picked for pro-
cessing while it is already being processed by another thread.

The performance of the indexer depends on how the next node
to be processed is chosen in step 1. We implemented and evaluated
several task priority functions that assign a priority value to each
node. Out of all available nodes we always choose the one with the
highest priority:

NrPoints We always select the node with the highest number of
points in its inbox. This puts a strong emphasis on the core idea
of processing many points together, so that we have to swap be-
tween disk and memory less frequently. For a node to get chosen
for processing, it will have to wait until enough incoming points
have been collected for that node.

TaskAge This priority function selects nodes based on the time for
which their inbox has been non-empty. Old inboxes are preferred
over new inboxes. While the NrPoints priority function has no
guarantee on how long it lets a node with incoming points wait,
the TaskAge priority function tries to achieve that all nodes with
incoming points will be processed in a timely manner. It ensures
a relatively steady flow of points down the tree for all parts of
the data structure, which leads to good caching properties.

NrPointsTaskAge A combination of both previous priority func-
tions.
If we have NrPoints, the number of incoming points for a node,
and TaskAge, the number of time steps for which the inbox was
non-empty, then equation 1 shows how to calculate the priority
of a node:

Priority = NrPoints ·2TaskAge (1)

The NrPoints priority function has the disadvantage that at
higher tree levels less points fall into a node and the inbox grows
extremely slowly, because the side length of the nodes shrinks
exponentially with the tree level. This leads to very high laten-
cies in the higher tree levels, because it takes a long time for
enough incoming points to accumulate for the node to be picked
for processing. Also, it leads to many cache misses, because a
node is often evicted from cache before it is picked for process-
ing again. In the worst case, nodes are never selected for pro-
cessing at all, because their inbox stopped growing completely
after the LiDAR sensor moved away. To alleviate this, we added
the additional factor 2TaskAge to the NrPoints priority function,
that boosts the priority of nodes which have been waiting for
processing for a long time.

TreeLevel Among all candidates with a non-empty inbox, this pri-
ority function always selects the node with the largest tree level.
This leads to new points being collected in the root nodes only.
Once a root node has been picked, its points are fully inserted
into the tree before the next root node can be picked.

An overview of the whole indexing process can be seen in fig. 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

67



P. Bormann & T. Dorra & B. Stahl & D. Fellner / Real-time indexing of point cloud data during LiDAR capture

Figure 2: Overview of the indexing process starting at the LiDAR scanner and ending at the indexed points on disk

3.3. Optimizations

The index structure already makes an effort at keeping the number
of load and store operations low. The cost for loading or storing
a node can be further reduced by an additional caching layer. All
nodes are accessed via a global LRU (least-recently-used) cache.

During indexing, loading and storing of frequently accessed
nodes is less expensive, because they can be accessed from the
cache rather than disk. As long as the sensor does not move, points
will mostly fall into the same set of nodes. If the cache is large
enough to fully cover this set, the disk only needs to be accessed
for nodes entering or leaving this set as the sensor moves. The
cache is shared between the indexing process and query execution.
This allows the point data of updated nodes to be made available
to the query without requiring an extra round trip to disk. For each
node, the cache can store the point data either as LAS encoded bi-
nary data, or in its decoded form, or both. The point data is lazily
(de)serialized into the representation that is required when access-
ing it. This avoids unnecessary (de)serialisation operations which
is especially important if compression is enabled, which makes
LAS/LAZ encoding and decoding expensive.

Small insertion operations with only a handful of points do not
contribute much to the overall indexing progress, but the average
cost for loading and storing the point data is the same as for any
other insertion operation. We implemented an optional optimisation
that tries to avoid such insertion operations.

In addition to the sampled points, each node can store up to n
points that have been rejected in the grid center sampling step. We
call these bogus points. When enabled, we add the rejected points
to the node’s bogus points after the grid center sampling step. If
this list contains less than n points, we store the node as is. Only if
the number of bogus points exceeds the threshold n, we empty the
bogus points list and let the points further descend down the tree.

In leaf nodes, bogus points help to avoid excessive tree heights.
Here, they are equivalent to how the first version of PotreeCon-
verter [Sch16] only expands a leaf node into eight child nodes if
a sufficient number of points is exceeded. Another advantage of
bogus points is that, when used together with the NrPoints prior-
ity function, they help counteract its problems with slowly growing
inboxes in the higher tree levels.

The disadvantage of using bogus points is that they lead to visi-
ble irregularities in the point density when rendering a query result.
Figure 3 shows an example. Since the bogus points lead to a local
increase of the point density, these artefacts are only visible when
rendering with a relatively small point size compared to the av-
erage point distance in the selected LOD. Therefore, we deem this
not to be an issue in most practical visualisation applications. Alter-
natively, excluding bogus points from the query result hides these
irregularities. However, from a correctness perspective this means
that some of the captured points will never be visible in query re-
sults, as if they are not part of the point cloud. Considering this, the
threshold n has to be picked carefully, acting as a trade-off between
render quality and indexing performance.

Figure 3: Artefact caused by bogus points

3.4. Implementation

In order to show that the previously described index structure also
works well in practice, it was implemented as a part of a proof of
concept. The system consists of three network-connected compo-
nents, as shown in fig. 4.

The LiDAR Server is the core of the system. As the name sug-
gests, it plays the role of a central server. Both the point source
and the viewer connect to the server as clients. It is responsible for
indexing and storing the point data that it receives from the point
source. Multiple clients can connect and subscribe to queries. The
LiDAR server will execute these queries and send the query result

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

68



P. Bormann & T. Dorra & B. Stahl & D. Fellner / Real-time indexing of point cloud data during LiDAR capture

Point Source LiDAR Server
Captured points

Viewer

Points

Queries

Viewer

Viewer

Figure 4: Architecture of the proof of concept implementation

Dataset Capture duration Points Size
Indoor 1 1 m 31 s 6.39M 216 MB
Indoor 2 2 m 32 s 11.94M 404 MB

Outdoor 1 5 m 23 s 89.8M 2.7 GB

Table 1: Properties of the point clouds used in the evaluation

back to the clients, while also keeping the query result up to date
after new points have been received from the point source.

The Point Source is a small application that connects the LiDAR
server to the physical capturing setup. It receives point and trajec-
tory data from the sensors and forwards it to the LiDAR server,
while transcoding it to the expected data format. Keeping the point
source as an independent service from the LiDAR Server has the
advantage that it is easy to connect our system to a new captur-
ing setup by just swapping out the point source, which acts as
an adapter between LiDAR Server and the specific LiDAR sensor
used.

The Viewer visualizes a live view of the point cloud as it is being
captured and indexed. The user can freely navigate in 3D space and
the viewer will always issue a query for the currently visible subset
of the point cloud to the server. An unlimited number of querying
clients and at most one point source are allowed to connect to the
server in the current implementation.

We released the source code for all three components under an
open-source license on GitHub [Fra22].

4. Evaluation

First we evaluated the limits of the index structure in terms of point
throughput and scalability using a synthetic test scenario. Addition-
ally, we performed a real-world end-to-end test where our software
was run live on a sensor system during point data acquisition.

Table 1 gives an overview of the point clouds used for the eval-
uation. The indoor datasets Indoor 1 and Indoor 2 were generated
during the real-world test, the Outdoor 1 dataset was generated up-
front and used for the synthetic test.

We used three different devices for the evaluation. Table 2 gives
an overview of their respective hardware configurations. The Vir-
tual Server and the Laptop System were used for the synthetic tests.
The Nvidia Jetson device is part of the capturing setup that we ran
the indexer on during the real-world test.

For data acquisition, the sensor system is equipped with a Velo-
dyne VLP-16 hi-res LiDAR system combined with a 360-degree
RGB-camera ring. Additionally, a further Intel RealSense stereo
camera is integrated. The positioning system contains a GNSS-
Receiver (global navigation satellite system) combined with an

Name Storage CPU cores Memory
Virtual Server HDD 16 64 GiB

Laptop System SSD (NVMe) 8 16 GiB
Nvidia Jetson SSD (USB-C) 8 32 GiB

Table 2: Overview of the used test systems

Figure 5: Image of the scanner system that is used for the evalua-
tion

IMU (inertial measurement unit). Furthermore, the prediction of
the position is supported by a visual odometry algorithm. For the
localization of the point cloud a SLAM (Simultaneous Localiza-
tion and Mapping) algorithm is used which is based on the rtabmap
[LM19]. The communication of the individual sensors as well as
the referencing of the data runs via the Robot Operating System
(ROS) on a Nvidia Jetson Xavier as embedded GPU to provide a
fast data processing pipeline. The individual sensor data streams
are each provided with a time stamp, which is made available by
the GNSS module. The scanner is synchronised via the NMEA (na-
tional marine electronics association) protocol and a PPS (pulse per
second) signal. For the indexing of the data, only the data of the
Velodyne VLP16 hi-res without colour information was used. The
scanner produces 300,000 points per second with a vertical field of
view of ± 10 ° and has a range of 100 m.

4.1. Synthetic test scenario

The goal of the synthetic tests was to evaluate the indexing process
and data structure. Therefore, all measurements were performed in
isolation and directly on the index structure, without the surround-
ing LiDAR server. The results do not account for additional over-
head needed by the client/server approach, e.g. for transmitting the
point data over the network.

For the synthetic test we used the Outdoor 1 dataset, which
was obtained from the sensor platform driving through an outdoor
scene. This point cloud was repeatedly replayed to the indexer, em-
ulating a physical capturing setup, while giving us reproducible re-
sults. By speeding up or slowing down the replay, we could also
test different point rates.

The most important metric for real-time point cloud indexing is

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

69



P. Bormann & T. Dorra & B. Stahl & D. Fellner / Real-time indexing of point cloud data during LiDAR capture

NrPoints TaskAge NrPointsTaskAge TreeLevel
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

In
se

rti
on

 ra
te

 | 
po

in
ts

/s
 ×

10
6

Virtual Server
Laptop System

Figure 6: Insertion rate measured for the different priority func-
tions

the point insertion rate, which defines how many points per second
our system is able to process. If this value exceeds the point output
from the LiDAR sensor, real-time indexing is possible. We measure
the insertion rate by monitoring the overall number of points in all
inboxes. In regular intervals, we insert enough new points to fill up
the inboxes to a fixed number of points. Like this, new points are
inserted as fast as previously added points are processed. From the
time that it takes to index the full test dataset in that manner, the
insertion rate is calculated.

Figure 6 shows the insertion rates that we measured for the dif-
ferent priority functions. The TaskAge function comes out as the
winning one. However, we observed it suffering from insufficient
cache sizes. Therefore, NrPointsTaskAge or TreeLevel might be a
better choice in cases where the cache size is limited, for example
due to memory constraints. Finally, the NrPoints priority function
performs relatively weak, due to its issues that we already described
in section 3.2.

Next we measured the insertion rate for different numbers of
worker threads. The results in fig. 7 show that the parallelisation
works well and the insertion rate increases with the number of
threads.

We also analyzed how the size of the LRU cache and the number
of bogus points affect the insertion rate. Data for this analysis can
be seen in fig. 8 and fig. 9.

Our system is able to run a query and keep the query result up
to date while the indexing process is running. This is used in the
viewer to render a live view of the point cloud during the capturing
process, but also applications like real-time analysis could benefit
from this. We measured the latency of these query result updates
in order to evaluate how well the index structure is suited for these
kind of applications.

For the latency measurement, the test dataset is replayed and in-
dexed at a fixed point rate. Concurrently to the indexing process, a
query is executed and the query result is kept up-to-date. For each
point, we record the timestamp when it was passed to the indexer
for adding to the point cloud, and when it was first seen in the query

0 2 4 6 8 10 12 14 16
Number of threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

In
se

rti
on

 ra
te

 | 
po

in
ts

/s
 ×

10
6

Virtual Server
Laptop System

Figure 7: Insertion rate in relation to the number of threads used

0 2000 4000 6000 8000
Cache Size | nr pages

0.0

0.2

0.4

0.6

0.8

1.0

In
se

rti
on

 ra
te

 | 
po

in
ts

/s
 ×

10
6

Figure 8: Insertion rate in relation to the size of the LRU cache

result. The delay between both timestamps is the point latency. The
latency values of all points are aggregated to the median latency, as
well as the interval between the 10% and 90% percentiles.

Figure 10 shows the measured latencies for different insertion
rates and priority functions. The latencies are stable, as there is no
visible effect of the choice of priority function and also a higher
insertion rate only yields a very slight increase in latency. The spike
in the TreeLevel priority function is most likely due to fluctuating
performance on the virtual server that the test ran on. In general, the
latency values are around 0.1s, which is fast enough to give users a
real-time impression in the viewer.

4.2. Real-world test on the sensor system

To demonstrate our system in a real-world scenario, we ran the
LiDAR Server on the Nvidia Jetson of the sensor system while
driving the sensor system through two different indoor scenes. Fig-
ure 11 shows a visualization of one of the datasets that were gener-
ated during this test run.

Both test runs used identical parameters:

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

70



P. Bormann & T. Dorra & B. Stahl & D. Fellner / Real-time indexing of point cloud data during LiDAR capture

0 500 1000 1500 2000 2500 3000
Bogus points | max nr bogus points per node

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
se

rti
on

 ra
te

 | 
po

in
ts

/s
 ×

10
6

NrPoints
NrPointsTaskAge
TaskAge
TreeLevel

Figure 9: Insertion rate in relation to the number of bogus points
that are allowed

200000 300000 400000 500000 600000
Insertion rate | points/s

10−2

10−1

100

101

La
te

nc
y 

| s
ec

on
ds

NrPoints
TaskAge
NrPointsTaskAge
TreeLevel

Figure 10: Latency of the query result updates during capture

• Worker threads: 6
• Priority function: NrPoints
• Maximum cache size: 500 nodes
• Maximum LOD: 10
• LasZip compression: disabled
• Bogus points: disabled

During the test runs, we recorded the number of non-empty in-
boxes, as well as the number of points in the inboxes. The results in
fig. 12 show that the indexer can keep up with the incoming points
from the sensor. If it was too slow, the inboxes would grow indef-
initely, which is not the case here. This is also shown by the detail
view in fig. 12c, where it can be seen that the indexer manages to

completely process all points before the next batch of points arrives
from the sensor.

The bump in number of tasks at the beginning and end of the
measurements is because at this point the capturing system was
not yet moving or already had stopped to move. With the LiDAR
sensor not moving, large amounts of points were captured at similar
coordinates. Once the system started moving, the indexer was able
to catch up.

5. Discussion

Both the synthetic and the real-world test scenarios showed that our
system is able to perform real-time indexing of point cloud data
during LiDAR capturing. In the synthetic tests, the peak insertion
rate reaches 1.8 million points per second, while on the sensor sys-
tem, the average insertion rate exceeds the maximum scanner out-
put of 300,000 points per second. Overall point latency is also low,
on average less than 0.1 seconds with all priority functions.

While these values are promising, there are some important
caveats. Similar to other point cloud indexing tools, the paralleliza-
tion of our system depends on the point distribution. In the aver-
age case, points are distributed over many octree nodes, allowing
good parallelization. However, there are edge cases where many
points fall into the same node, such as when the sensor system
is standing still, continuously generating duplicated points. If too
many points accumulate and new tasks keep building up faster than
the worker threads can process them, memory usage will increase
continuously. In the limit, our system will run out of memory and
cease to function. Potential mitigations for this will have to be im-
plemented in the future, for example by detecting an overflow of
points and writing these points to disk unindexed. This data could
be processed at a future point when the system has idle time.

As mentioned in section 3.1, the stream-based processing forces
us to write each node as an individual file, which is less efficient
than the single-file approach of the PotreeConverter. For maxi-
mum efficiency, we chose grid-based sampling instead of the often
more visually pleasing blue-noise sampling. Lastly, like all point
cloud indexing systems, ours is heavily I/O dependent, running 2-
3x faster on an SSD than on an HDD. Since SSDs have become
quite affordable they can be found even in most consumer-grade
devices nowadays. Hence, we consider this to be a marginal limita-
tion.

6. Conclusion

We introduced a system that is capable of indexing point clouds
in real-time during LiDAR capture. An index based on the state-
of-the-art MNO data structure is generated and updated on the fly
when new data arrives from the sensor. The index supports LOD
with similar visual quality to that obtained from batch-processing
tools such as Schwarzwald or Entwine. Our system achieves point
throughput rates of up to 1.8 million points per second, allowing it
to keep up with many current LiDAR scanners that produce in the
order of a few hundred thousand points per second. This is possible
through task-based parallel processing, where points are inserted
into a priority queue. We provide different task priority functions

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

71



P. Bormann & T. Dorra & B. Stahl & D. Fellner / Real-time indexing of point cloud data during LiDAR capture

Figure 11: The generated dataset Indoor 2

0 20 40 60 80 100
time | s

0

200

400

600

800

1000

ta
sk

s

0

5000

10000

15000

20000

25000

30000

35000

40000
po

in
ts

Nr Tasks, rolling maximum, window size = 1.5s
Nr Points, rolling maximum, window size = 1.5s

(a) Indoor 1

0 20 40 60 80 100 120 140 160
time | s

0

200

400

600

800

1000

1200

ta
sk

s

0

5000

10000

15000

20000

25000

30000

35000

po
in

ts

Nr Tasks, rolling maximum, window size = 1.5s
Nr Points, rolling maximum, window size = 1.5s

(b) Indoor 2

40.00 40.25 40.50 40.75 41.00 41.25 41.50 41.75 42.00
time | s

0

20

40

60

80

100

ta
sk

s

0

5000

10000

15000

20000

25000

30000

po
in

ts

Nr Tasks
Nr Points

(c) Detail view into Indoor 2

Figure 12: Capturing performance during the two real-world test cases. Grey areas indicate the time for which the LiDAR sensor was active.

that allow prioritizing either higher point throughput or lower la-
tency. We demonstrate the usability of our system in a series of
experiments, both synthetic and on a real-world sensor system.

In its current state, our system requires a sensor setup that out-
puts localized points, for example by using SLAM. This makes it
unusable for sensor systems that perform point localization as a
post-process using a high-precision trajectory. Compared to state-
of-the-art point cloud indexing tools such as PotreeConverter, our
tool has to write each node as an individual file, resulting in signif-

icantly more files. Lastly, the performance of our system deterio-
rates when many adjacent or duplicate points are inserted, as is the
case when the sensor system is standing still.

In the future we plan to use our tool as the basis for real-time ob-
ject detection on the captured point cloud, which we estimate will
benefit from the voxel-like structure of the MNO datastructure. We
also want to improve robustness of the system in situations where
the indexer cannot catch up with incoming points to prevent out-of-
memory errors.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

72



P. Bormann & T. Dorra & B. Stahl & D. Fellner / Real-time indexing of point cloud data during LiDAR capture

References

[Ame13] AMERICAN SOCIETY FOR PHOTOGRAMMETRY AND RE-
MOTE SENSING (ASPRS): LAS specification, version 1.4 -
R13. https://www.asprs.org/wp-content/uploads/
2010/12/LAS_1_4_r13.pdf, 2013. Accessed: 2022-04-06. 2

[BK20] BORMANN P., KRÄMER M.: A System for Fast and Scalable
Point Cloud Indexing Using Task Parallelism. In Smart Tools and Apps
for Graphics - Eurographics Italian Chapter Conference (2020), Biasotti
S., Pintus R., Berretti S., (Eds.), The Eurographics Association. doi:
10.2312/stag.20201250. 1, 2

[CPP17] CURA R., PERRET J., PAPARODITIS N.: A scalable and multi-
purpose point cloud server (PCS) for easier and faster point cloud
data management and processing. ISPRS Journal of Photogramme-
try and Remote Sensing 127 (may 2017), 39–56. doi:10.1016/j.
isprsjprs.2016.06.012. 2

[ent] Entwine. URL: https://entwine.io/. 1, 2

[Fra22] FRAUNHOFER IGD: lidarserv - implementation of lidar server,
point source, and viewer. https://github.com/igd-geo/
lidarserv, 2022. Accessed: 2022-05-25. 5

[JG21] JAKOB J., GUTHE M.: Optimizing LBVH-Construction and
Hierarchy-Traversal to accelerate kNN Queries on Point Clouds using
the GPU. Computer Graphics Forum 40, 1 (2021), 124–137. doi:
10.1111/cgf.14177. 2

[KB21] KOCON K., BORMANN P.: Point cloud indexing using big data
technologies. In 2021 IEEE International Conference on Big Data (Big
Data) (2021), IEEE, pp. 109–119. 2

[Lei13] LEIMER K.: External sorting of point clouds, 2013. 3

[LM19] LABBÉ M., MICHAUD F.: Rtab-map as an open-source lidar
and visual simultaneous localization and mapping library for large-scale
and long-term online operation. Journal of Field Robotics 36, 2 (2019),
416–446. doi:10.1002/rob.21831. 5

[LVM∗21] LIU H., VAN OOSTEROM P., MAO B., MEIJERS
M., THOMPSON R.: An efficient nd-point data structure
for querying flood risk. International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sci-
ences - ISPRS Archives 43, B4-2021 (2021), 367–374. doi:
10.5194/isprs-archives-XLIII-B4-2021-367-2021. 1

[LVMV20] LIU H., VAN OOSTEROM P., MEIJERS M., VERBREE E.:
AN OPTIMIZED SFC APPROACH for ND WINDOW QUERYING on
POINT CLOUDS. ISPRS Annals of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences 6, 4/W1 (2020), 119–128. doi:
10.5194/isprs-annals-VI-4-W1-2020-119-2020. 2

[PNVW∗17] POUX F., NEUVILLE R., VAN WERSCH L., NYS G.-A.,
BILLEN R.: 3d point clouds in archaeology: Advances in acquisition,
processing and knowledge integration applied to quasi-planar objects.
Geosciences 7, 4 (2017), 96. 1

[Qi,17] QI, CHARLES R AND SU, HAO AND MO, KAICHUN AND
GUIBAS L. J.: Multi-label semantic 3D reconstruction using voxel
blocks. In Proceedings of the IEEE conference on computer vision
and pattern recognition (2017), pp. 652–660. doi:10.1109/3DV.
2016.68. 1

[QSMG17] QI C. R., SU H., MO K., GUIBAS L. J.: Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition
(2017), pp. 652–660. 1

[Sch14] SCHEIBLAUER C.: Interactions with Gigantic Point Clouds.
PhD thesis, Institute of Computer Graphics and Algorithms, Vienna
University of Technology, Favoritenstrasse 9-11/E193-02, A-1040
Vienna, Austria, 2014. URL: https://www.cg.tuwien.ac.at/
research/publications/2014/scheiblauer-thesis/.
2, 3

[Sch16] SCHÜTZ M.: Potree: Rendering Large Point Clouds in
Web Browsers. Master’s thesis, Institute of Computer Graphics

and Algorithms, Vienna University of Technology, Favoriten-
strasse 9-11/E193-02, A-1040 Vienna, Austria, Sept. 2016.
URL: https://www.cg.tuwien.ac.at/research/
publications/2016/SCHUETZ-2016-POT/. 2, 4

[SOW20] SCHÜTZ M., OHRHALLINGER S., WIMMER M.: Fast
out-of-core octree generation for massive point clouds. Com-
puter Graphics Forum 39, 7 (Nov. 2020), 1–13. URL: https:
//www.cg.tuwien.ac.at/research/publications/
2020/SCHUETZ-2020-MPC/, doi:10.1111/cgf.14134. 1, 2,
3

[VMRI∗15] VAN OOSTEROM P., MARTINEZ-RUBI O., IVANOVA M.,
HORHAMMER M., GERINGER D., RAVADA S., TIJSSEN T., KODDE
M., GONÇALVES R.: Massive point cloud data management: Design,
implementation and execution of a point cloud benchmark. Computers
and Graphics (Pergamon) 49 (jul 2015), 92–125. doi:10.1016/j.
cag.2015.01.007. 2

[WS06] WIMMER M., SCHEIBLAUER C.: Instant points: Fast rendering
of unprocessed point clouds. In PBG@ SIGGRAPH (2006), pp. 129–
136. 2

[WZM∗14] WANG Z., ZLATANOVA S., MORENO A., VAN OOSTEROM
P., TORO C.: A data model for route planning in the case of forest
fires. Computers and Geosciences 68 (2014), 1–10. URL: http:
//dx.doi.org/10.1016/j.cageo.2014.03.013, doi:10.
1016/j.cageo.2014.03.013. 1

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time kd-
tree construction on graphics hardware. ACM Transactions on Graphics
(TOG) 27, 5 (2008), 1–11. 2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

73

https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://www.asprs.org/wp-content/uploads/2010/12/LAS_1_4_r13.pdf
https://doi.org/10.2312/stag.20201250
https://doi.org/10.2312/stag.20201250
https://doi.org/10.1016/j.isprsjprs.2016.06.012
https://doi.org/10.1016/j.isprsjprs.2016.06.012
https://entwine.io/
https://github.com/igd-geo/lidarserv
https://github.com/igd-geo/lidarserv
https://doi.org/10.1111/cgf.14177
https://doi.org/10.1111/cgf.14177
https://doi.org/10.1002/rob.21831
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-367-2021
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-367-2021
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-119-2020
https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-119-2020
https://doi.org/10.1109/3DV.2016.68
https://doi.org/10.1109/3DV.2016.68
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://doi.org/10.1111/cgf.14134
https://doi.org/10.1016/j.cag.2015.01.007
https://doi.org/10.1016/j.cag.2015.01.007
http://dx.doi.org/10.1016/j.cageo.2014.03.013
http://dx.doi.org/10.1016/j.cageo.2014.03.013
https://doi.org/10.1016/j.cageo.2014.03.013
https://doi.org/10.1016/j.cageo.2014.03.013

