
EUROGRAPHICS 2015/ M. Bronstein and M. Teschner Education Paper

Teaching Graphics To Students Struggling in Math:

An Experience

Amit Shesh†

Illinois State University, Normal IL USA

Abstract

Undergraduate students with a negative attitude towards Math present a unique challenge when teaching computer

graphics. Most meaningful concepts in computer graphics involve directly working with Math in the classroom,

and implementing tasks in programs requires a reasonable grounding in Math concepts and how to apply them.

This paper presents a semester-long experience in using three strategies to address difficulties faced by computer

science students who are interested in learning computer graphics, but feel less confident or uninterested in Math.

Similar to how Math is taught in schools, we focus on giving students more and more practice in implementing

progressively complex visual tasks. Students accomplish some tasks individually to develop a basic understanding

before completing other tasks in groups. Students achieve more in a semester than before, and our preliminary ob-

servations show a higher rate of completion by students, moderate gains in performance in individual assignments

and significant gains in overall class performance.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer Science

Education—Computer graphics

1. Introduction

Although all computer science (CS) degree programs have

supporting Math requirements, there are relatively few sub-

jects in the undergraduate computer science curriculum that

directly and significantly use Math. Computer graphics (CG)

is one such mathematically intensive subject, generally of-

fered as an upper-level (fairly popular) elective. Teaching

computer graphics generally involves a healthy dose of re-

viewing Math and connecting it to graphics-specific tasks

such as modeling, animation, etc. Conversely, being familiar

with not only the basic mathematical concepts but also their

application is critical for a student to truly understand com-

puter graphics and succeed in such a course. This presents

unique challenges for the students and the instructor.

In our undergraduate CG course, we regularly encounter

students who are wary about Math in general. When working

out a concept that involves Math, students are often unable

to recall concepts learned in high school geometry or even

in a recent calculus course. In other cases when they recall

† ashesh@ilstu.edu

the concepts correctly, they are not able to connect them to

the practical graphics task at hand (e.g. how to find the an-

gle and axis of rotation to align one cylinder to another). We

have observed students showing this behavior and attitude

irrespective of their grade and overall GPA and despite hav-

ing taken several Math courses as supporting requirements.

As a result, students often do not demonstrate thorough un-

derstanding (as evidenced by their performance in exams),

or are unable to accomplish as expected (submitting incom-

plete assignments, later recalling how they took an inordi-

nate amount of time on a particular part). Many students of-

ten informally convey how they “worked harder than they

thought” or “did not feel prepared for all the Math”. This

paper describes strategies for teaching and assigning course

work that we attempted, which resulted in students accom-

plishing more tasks within the same time frame, with signif-

icantly better overall performance.

Despite experiencing them in a medium-sized college in

the US, we feel the challenges we face are shared with vary-

ing degrees by most computer graphics instructors. The ex-

tent and nature of supporting Math requirements for a CS

program may have an effect on the severity of this prob-

c© The Eurographics Association 2015.

DOI: 10.2312/eged.20151023

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eged.20151023


A. Shesh / CG for Students Struggling in Math

lem. These requirements are influenced by various factors:

whether the program is housed within engineering or math

departments, time-to-degree and credit-hour requirements,

educational objectives of the department, etc. [ACM14]. The

curriculum of an undergraduate CG course typically requires

knowledge of linear algebra (vectors, matrices, etc.), geome-

try and trigonometry, not all of which may be part of college-

level Math courses taken earlier. Another possible reason

may be the time gap (often significant) between when stu-

dents typically take Math courses and the CG course. For

some concepts that students may not have seen since high

school, the effects of this time gap may be more detrimental.

A third reason may be the way in which Math courses are

taught. Often these courses are taught in other departments

that emphasize more on theory, which leads to an impedance

mismatch with the applied nature of computer science and

specifically graphics (e.g. students know the Math, but strug-

gle with how to implement or use it within a computer pro-

gram). Our degree program, like many others, have elements

of all these factors which leads us to believe our positive ex-

perience can be helpful to other instructors.

In the content of a typical undergraduate CG course, Math

is used in two ways. First, math can be used directly to solve

visual problems (for example, creating triangulated meshes

of mathematical solids, computing ray-object intersections,

etc.). Secondly, mathematical constructs and operators can

be used as-is to achieve a visual goal (for example, imple-

menting through matrix transformations a revolving light on

top of a police car that moves with it, etc.). Thus a success-

ful graphics programmer at this level does not have to be

an expert in Math, but simply know how to correctly iden-

tify which Math concept is relevant to the task at hand, and

then correctly apply it. Indeed a large number of available li-

braries already implement the nitty-gritty of the Math: iden-

tifying and learning how to use them to complete a visual

task should be the primary objective of a student. We at-

tempt to achieve this by making students complete more and

progressively complex visual tasks that force them to apply

and combine relevant Math concepts.

The two main challenges in giving more practice to stu-

dents are the constraint of time, and the difficulty of design-

ing assigned course work that covers the Math, achieves the

desired complexity of tasks and is still practical for most stu-

dents to complete them without losing motivation. We tried

three specific ideas. First, we included modeling and render-

ing tasks that asked them to directly implement Math derived

in class or used to create existing models. Secondly, we built

a more thorough understanding of transformations, matrix

algebra and coordinate geometry by assigning specific vi-

sual tasks of increasing complexity. Thirdly, we combined

individual and group work in a way that allowed students

to practice individually before working together to combine

programs and complete tasks that benefited from working

in groups. Our experience shows how our students (1) com-

pleted the individual tasks well and scored higher on compa-

rable tasks than previous semesters (2) achieved more tasks

in a group than individually possible in the same time frames

(3) performed slightly better in individual assignments and

significantly better overall in the course.

2. Related Work

We did not find much research done on addressing the par-

ticular problem that we face in our course: teaching a foun-

dational CG course to students with negative attitudes to-

wards math. However many innovative approaches to teach-

ing computer graphics that have risen over the past decades

are relevant to this specific problem. Over the years, two

ways of teaching a CG course have emerged: bottom-up

(start with low-level operations and building upon them,

use low-level APIs like OpenGL), and top-down (focussed

on high-level problem solving and assembling applications,

use high-level API) [SS03, ACSS06, TBN06]. Although the

bottom-up approach mimics most computer graphics text-

books and is often the choice for a foundational treatment

of the subject, it requires an intense mathematical founda-

tion [AK07]. Top-down approaches ameliorate this draw-

back somewhat by making the course application-focussed

instead of concept-focussed: examples include using appli-

cations such as game design [HS05, AP09], top-down API-

agnostic [SBG10] or specific APIs [Owe92]. The objective

of our course is to introduce undergraduate computer science

students with no prior CG background to the conceptual ba-

sics of computer graphics and what it takes to produce and

render a 3D scene. Students subsequently enroll in our game

programming course, apply graphics in other contexts or in

some cases, consider graduate study. Thus we feel a bottom-

up approach is best suited for our course.

3. Our approach

3.1. Background of course

Our CG course is the only course in computer graphics

offered in the degree program. It is offered as an upper-

level elective. The pre-requisite course covers data structures

and algorithms using C++. All students in this course have

had about 1.5 semesters of C++ programming from earlier

courses in our own program before they enter this course

(one student in Fall 2014 entered this course without earlier

courses in C++ in our program, but did not face any prob-

lems with the language). All students, through indirect pre-

requisites (i.e. courses required to take a pre-requisite for

this course), take the same 2 calculus courses and at least 1

discrete math course before they enter this graphics course.

A course in linear algebra is not required.

This paper presents data pertaining to this course from

4 semesters. The same instructor (the author) taught this

course during all 4 semesters without teaching assistance.

The number of students during these semesters were 12, 21,

c© The Eurographics Association 2015.

24



A. Shesh / CG for Students Struggling in Math

→

(a) (b)

(c) (d)

(e) (f)

Figure 1: Example results from student programs. (a) Surface of revolution created by a student. (b) Given a humanoid model

in scene graph form, students were asked to modify the model directly to produce various poses of the “Y”, “M”, “C”, “A”

dance [ymc14]. (c-d) An amusement ride constructed by two students individually (satisfying constraints from Task 3-2 in

Section 3.3). They also created bounding boxes per node, marked in the model file and drawn in wire frame boxes (see Task 3-3

in Section 3.3). (e) Two students combined their rides into one scene with moving lights and textures (Task 4-1 in Section 3.3).

The part shown in the box is the focus of the moving camera (see Task 4-2 in Section 3.3). (f) A view from the moving camera

pointed at the part illustrated in the box in (e).

12 and 22 respectively. This size and trend is fairly typical

for this course.

The course typically covers composite and hierarchi-

cal transformations, modeling, lighting, texture mapping,

shadow techniques and ray tracing, roughly arranged in a

canonical format (like [She13]). The course typically as-

signs 6 programming assignments. Each assignment is to

be completed individually, typically in 2 weeks. In order,

these assignments cover the following topics: 2D graphics,

basic 3D modeling and transformations, hierarchical model-

ing and animation using scene graphs, lighting and texture

mapping using scene graphs and a ray tracer. Some of the

assignments are progressive, i.e. they build on previous as-

signments and thus our overall set of assignments follows

c© The Eurographics Association 2015.

25



A. Shesh / CG for Students Struggling in Math

the “four I-s” approach [PA14]. All assignments are in C++,

use a suitable windowing library and typically use the GLM

library [glm14] for matrix operations. We have adopted the

shader-first approach since the last two years [Ang11,AS11]

and use OpenGL 4.0.

We provide an overview of relevant math as various topics

are discussed in the course. For example, coordinate geome-

try (cartesian and polar) are discussed early on, basic matrix

operations like multiplication and inversion are discussed

before introducing transformations and repeatedly reviewed

throughout the semester. Mathematical solids and their an-

alytical expressions are discussed during modeling and ray

tracing, and vector algebra (i.e. vector math, products, etc.)

are discussed before lighting and ray tracing. Students are

allowed to bring a “cheat sheet” during exams so that they

have an opportunity to write down the relevant Math formu-

las and expressions. We now motivate and discuss the three

ideas mentioned earlier.

3.2. Application of analytical math

Basic trigonometry and coordinate geometry are used in al-

most every task in computer graphics. For example, when

we introduce 3D models as triangular meshes, we typically

start from simple objects like spheres. We explain how its

equation in polar coordinates allows us to discretize it into

triangles at a sufficient resolution.

Although students typically understand these concepts

easily, they appear diffident when applying similar proce-

dures elsewhere. In a phenomenon that is difficult to explain,

we encounter with unfortunate regularity each semester stu-

dents that appear phobic to anything that reminds them of

their calculus class. This is evident in answers to exam ques-

tions and performance in assignments that asks them to work

out the math before implementing it. A classic example is to

determine the normals of a mathematical shape using partial

differentiation in the process of creating its triangle mesh.

We ameliorate this situation by providing several oppor-

tunities for directly applying math, many of them as extra

credit. For example in Fall 2014, students were asked to cre-

ate a closed surface of revolution that can be physically man-

ufactured (see Figure 1(a)). Later, students determine texture

coordinates for spheres and boxes while attempting a ray

tracer, and optionally determine ray-cylinder, ray-cone and

ray-triangle intersections for extra credit. All of these exer-

cises require the student to work out math and trigonometry

and implement them in a program. While it may be argued

that such modeling using direct math may be “advanced”

for undergraduates, we feel these exercises give students an

“end-to-end” experience of starting with Math and imple-

menting it to produce and render a 3D scene. Several exam

questions probe their understanding of how and when to ap-

ply Math.

3.3. Modeling and Manipulation

The overall task of creating a desired model and animat-

ing it in a specific way requires students to combine several

skills and concepts. An example task may be to model an

automotive that moves in a believable manner along a pre-

defined path with headlights that move with it. To complete

such tasks, the programmer must think of model assembly,

desired animation and lighting effects in terms of specific

transformations or change in coordinate systems. From our

experience, exploiting this duality of transformations to pro-

duce a given effect is difficult to master for many students,

and requires extensive practice. Our approach is to provide

just that, with many tasks that ultimately lead to inserting

specific transformations in a hierarchical model.

We start by providing students with a simple scene graph

system implemented by us. This reduces the potential learn-

ing curve compared to mature and powerful libraries such

as Open Scene Graph [ope11]. We then provide a simple

scene graph model in XML to students and ask them to cre-

ate “poses” by modifying only the model file. Next, we ask

students to create a model with some structural constraints

and produce specific animations. Lastly, we ask students to

complete several tasks that do not require adding transfor-

mations, but focus on using them.

For example in Fall 2014 we gave students the following

tasks, spanning across the 3
rd and 4th assignments:

Task 3-1: Modify given scene graph: Use the provided

model of a humanoid and create the ‘Y’, ‘M’, ‘C’,‘A’ poses

from the famous song [ymc14] by modifying the model file

only (see Figure 1(b)). This requires them to insert additional

nodes in the model that gives desired degrees of freedom.

Task 3-2: Create and animate model: Create an amuse-

ment ride model using boxes, spheres, cones and cylinders

with the following constraints (1) there should be at least 4

seats (2) seats should be attached to a main assembly (3) the

model should be animated such that the seats should move

in at least two ways (e.g. seats rotating about an axis that is

itself revolving around another axis).

This task expects students to understand the iterative pro-

cess of model assembly and scene graph modification to cre-

ate the structure and enable it to move in certain ways. Fig-

ure 1(c-d) show some student examples.

Task 3-3: Bounding boxes: Calculate bounding boxes for

each node of the scene graph that are aligned to the axes of

their own coordinate system. These bounding boxes should

be enabled and drawn per node as the model is animating.

This task expects students to use the assembled, animating

hierarchy to determine the bounding boxes and draw them in

their own coordinate system so that the animating transfor-

mations move them correctly. Figure 1(c-d) show examples

of bounding boxes highlighted in student programs.

Task 4-1: Moving lights: Implement the ability to add lights

c© The Eurographics Association 2015.

26



A. Shesh / CG for Students Struggling in Math

to any node in the graph. Use this functionality to add at least

one light fixed to the amusement ride and another light that

is stationary with respect to the scene.

This task simply underscores that lights can be treated as

vertices and transformed similarly. Figure 1(e) shows a stu-

dent example.

Task 4-2: Object-stationary camera: Implement the ability

to attach a camera to any node in the scene graph. Introduce

a globally stationary camera and implement the ability to

switch between the two cameras at the press of a button.

This task expects students to work out the world-to-view

transformations by first principles. Often students question

why they must know the math behind provided camera-

setting functions like gluLookAt (from the GLU library)

or glm::lookAt (from the glm library [glm14]). Imple-

menting a moving camera presents a classic challenge to

realize the limitations of provided functions, what transfor-

mations they provide and how to assemble them from first

principles. Figure 1(f) shows a screen shot captured from

the moving camera for the model in Figure 1(e).

Task 4-3: Keyboard-based camera control (extra credit):

Implement keyboard controls for zooming, panning and ro-

tating both cameras implemented in Task 4-2. No additional

hints on how to implement this are provided.

This task further expects students to identify that zoom,

pan and rotation of cameras are the easiest to visualize in

their own coordinate system. This makes these features in-

dependent of how the camera itself is moving.

3.3.1. Observations

Figure 2(a,b) shows how students performed in two specific

tasks across four semesters: creating a hierarchical model

and animating it (Task 3-2). We hypothesized that students

took time or had difficulty conceptualizing how a scene

graph hierarchy can be used to model a complex model

progressively and animating it in as desired. In Fall 2014

we introduced Task 3-1 that helped them with this under-

standing, before they created and animated the model. This

showed a significantly better performance in these two spe-

cific tasks. Figure 2(c) shows the student performance in the

new tasks that were assigned to them in Fall 2014 (the last

three tasks were performed in pairs and both students got the

same grade for these tasks).

3.4. Group work

Our course did not allow any group work before Fall 2014

for any assignments. However students were allowed to dis-

cuss problems at a high level with each other. We often found

students problem-solving collectively, borrowing ideas from

each other and brainstorming solutions (and acknowledging

them). In Fall 2014 we allowed students to work in pairs

for the last 3 assignments, in the hope that they would reap

0
2

0
4

0
6

0
8

0
1

0
0

Fall 2011 Fall 2012 Fall 2013 Fall 2014

A
B
C
D or F

(a)

0
2

0
4

0
6

0
8

0
1

0
0

Fall 2011 Fall 2012 Fall 2013 Fall 2014

A
B
C
D or F

(b)
0

2
0

4
0

6
0

8
0

1
0

0

Surface

of

Revolution

Bounding

Boxes

Scene

Assembly

Moving

Camera

Keyboard

control

A
B
C
D or F

(c)

Figure 2: Performance on the specific tasks of (a) creating

a hierarchical model and (b) animating it in a specific way,

completed individually in all semesters. We suspected that

before Fall 2014, several students took time in creating the

hierarchical model which led to completing the animation

part partly or incorrectly. In Fall 2014 when we introduced

scene graph modeling and manipulation more progressively,

we believe students had an easier time completing both tasks

and performed significantly better. (c) Student performance

in the new tasks in Fall 2014 (the last three tasks were per-

formed in pairs).

the benefits of pair programming and group work (brain-

storming math solutions themselves, programming and de-

bugging, etc.). Thus, tasks 4-1 to 4-3 above were completed

in pairs, after combining their individual amusement ride

models into a single scene. Students continued to work in

pairs for the ray tracing assignments. We correspondingly

increased the expected outcomes of the group assignments

so that students may achieve more (e.g. Tasks 3-3, 4-2 and

4-3 were never used together in a single semester). In order

to ensure that each students was developing necessary skills

c© The Eurographics Association 2015.

27



A. Shesh / CG for Students Struggling in Math

and understand, we mandated that the first 3 assignments and

the two exams be completed individually.

We observed three significant differences in the last half

of the semester that we attribute to group work. We found

that number of students seeking our help using office hours

dropped significantly (it picked up again during the ray

tracer). This was coupled by a retention or a modest increase

in student performance for these assignments as compared

to previous semesters, hinting that groups were working suc-

cessfully. Secondly we informally observed a lot of face-to-

face discussion between groups in the lab. Finally we be-

lieve this to be a contributing factor to the significantly better

overall grade performance in the course (Figure 4), despite

assigning more complex tasks within the same time frame.

0
2

0
4

0
6

0
8

0
1

0
0

Fall 2011 Fall 2012 Fall 2013 Fall 2014

A
B
C
D
F

Figure 4: Student grades across four semesters.

4. Results and Discussion

We measure the effectiveness of our new approach using

three primary questions that we believe fulfill the necessary

outcomes of a challenging undergraduate CG course: (1) Do

students know how to navigate a task “end-to-end” by work-

ing out Math and implementing the visual effect in a pro-

gram? (2) Have students developed the ability to set up mod-

els and assemble transformations to produce a desired visual

goal? (3) Were students able to achieve more in the semester

and did they perform better while achieving them?

To verify students’ ability to apply math directly or use

transformations, we identified (possibly overlapping) parts

of several assignments and the exams that were related to (1)

applying math and (2) using transformations. Figure 3 shows

the performance of students in these tasks, compared before

and after our approach. This shows that students performed

better in tasks that expected them to formulate transforma-

tions to complete visual tasks. However student performance

did not improve in applying math directly to implement a vi-

sual effect as the semester progressed and compared to pre-

vious semesters, although it did not worsen.

Finally Figure 4 shows a significant percentage increase in

the number of A and B grades in class as compared to previ-

ous semesters. We attribute this primarily to two factors: (i)

a slower progression into various tasks leading to better per-

formance in individual assignments, and (ii) group work in

the later assignments. In summary, students achieved more,

performed slightly better in piece-wise graded course work

and significantly better overall in the course when we tried

our new ideas.

5. Conclusions and future work

Although the above analysis is admittedly not the most rig-

orous, it provides preliminary evidence that students who

otherwise struggle with math still perform well in a graph-

ics course when given many chances to accomplish graphi-

cal tasks that require working with math. Students also per-

form better when such tasks are worked out in pairs, possibly

boosting each other’s understanding.

In the future we wish to expand this approach by assign-

ing more work in the group assignments. We wish to try an

“interactivity” approach to our assignments, where tasks re-

lated to interactive modeling would be assigned. An alterna-

tive approach may be to view such a graphics course as even

more “applied” in nature, by making the material explicitly

geared towards the usage of math in graphics [Len02]. A

more long-term ambition is to couple our CG course more

tightly with the supporting Math courses, possibly provid-

ing student material in the Math class related to how those

concepts are practically applied in computer graphics.

6. Acknowledgments

The following students are acknowledged for writing the

programs and creating the models that are shown in Figure 1:

Figure 1(a) Nathan Gregg

Figure 1(b) Nicholas Christensen

Figure 1(c) Tyler Hasz

Figure 1(d) Seth Davis

Figure 1(e-f) Nicholas Christensen and Nathan Gregg

References

[ACM14] ACM CS curriculum, 2014. http://www.acm.

org/education/CS2013-final-report.pdf. 2

[ACSS06] ANGEL E., CUNNINGHAM S., SHIRLEY P., SUNG

K.: Teaching computer graphics without raster-level algorithms.
In Proc. SIGCSE (2006), pp. 266–267. 2

[AK07] AMRESH A., KARNICK P.: Creating interest in computer
graphics by teaching game development. EG Education Papers

(2007), 9–16. 2

[Ang11] ANGEL E.: Interactive Computer Graphics: A Top-

down Approach with Shader-Based OpenGL, sixth ed. Addison-
Wesley, 2011. 4

[AP09] ANDERSON E. F., PETERS C. E.: On the provision of
a comprehensive computer graphics education in the context of
computer games: An activity-led instruction approach. In Proc.

Eurographics (Education Papers) (2009), pp. 7–14. 2

[AS11] ANGEL E., SHREINER D.: Teaching a shader-based in-
troduction to computer graphics. IEEE Computer Graphics and

Applications 31, 2 (2011), 9–13. 4

[glm14] The opengl mathematics (glm) library, 2014. http://
glm.g-truc.net/0.9.6/index.html. 4, 5

c© The Eurographics Association 2015.

28

http://www.acm.org/education/CS2013-final-report.pdf
http://www.acm.org/education/CS2013-final-report.pdf
http://glm.g-truc.net/0.9.6/index.html
http://glm.g-truc.net/0.9.6/index.html


A. Shesh / CG for Students Struggling in Math
0

2
0

4
0

6
0

8
0

1
0
0

Fall 2011 Fall 2012 Fall 2013 Fall 2014

Assignment 2
Midterm Exam
Assignment 3
Assignment 4
Ray tracer
Final Exam

0
2
0

4
0

6
0

8
0

1
0
0

Fall 2011 Fall 2012 Fall 2013 Fall 2014

Assignment 2
Midterm Exam
Assignment 3
Assignment 4
Ray tracer
Final Exam

(a) (b)

0
2
0

4
0

6
0

8
0

1
0
0

Fall 2011 Fall 2012 Fall 2013 Fall 2014

Assignment 2
Midterm Exam
Ray tracer
Final Exam

0
2
0

4
0

6
0

8
0

1
0
0

Fall 2011 Fall 2012 Fall 2013 Fall 2014

Assignment 2
Midterm Exam
Ray tracer
Final Exam

(c) (d)

Figure 3: Performance using average percentage scores on tasks related to (a-b) using transformations and (c-d) application

of direct math. We select possibly overlapping parts of each graded item that pertained to these two categories. Some items in

some semesters did not have components related to a category. (c) and (d) show the same results as (a) and (b), but highlight

the trend of average performance in the same graded items across semesters. (a-b) the percentage scores in tasks related to

using transformations, arranged chronologically in each semester. This illustrates whether students got better at formulating

transformations as the semester progressed. (c-d) the percentage scores in tasks related to working out and apply math, arranged

chronologically in each semester. This illustrates whether students got better at working with math to complete visual tasks as

the semester progressed.

[HS05] HOETZLEIN R. C., SCHWARTZ D. I.: Gamex: A plat-
form for incremental instruction in computer graphics and game
design. In ACM SIGGRAPH 2005 Educators Program (2005),
SIGGRAPH ’05. 2

[Len02] LENGYEL E.: Mathematics for 3D Game Programming

and Computer Graphics. Charles River Media, Inc., Rockland,
MA, USA, 2002. 6

[ope11] Openscenegraph, 2011. http://www.

openscenegraph.org/. 4

[Owe92] OWEN G. S.: Teaching computer graphics using render-
man. In Proc. SIGCSE (1992), pp. 304–308. 2

[PA14] PETERS C. E., ANDERSON E. F.: The Four I’s Recipe
for Cooking Up Computer Graphics Exercises and Assessments.
In Eurographics 2014 - Education Papers (2014), Bourdin J.-J.,
Jorge J., Anderson E., (Eds.). 4

[SBG10] SCHWEITZER D., BOLENG J., GRAHAM P.: Teaching
introductory computer graphics with the processing language. J.

Comput. Sci. Coll. 26, 2 (2010), 73–79. 2

[She13] SHESH A.: Toward a singleton undergraduate computer
graphics course in small and medium-sized colleges. Transac-

tions on Computing Education 13, 4 (2013), 17:1–17:21. 3

[SS03] SUNG K., SHIRLEY P.: A top-down approach to teach-
ing introductory computer graphics. In Proc. SIGGRAPH 2003

Educators Program (2003), pp. 1–4. 2

[TBN06] TORI R., BERNARDES JR. J. A. L., NAKAMURA R.:
Teaching introductory computer graphics using java 3d, games
and customized software: a brazilian experience. In Proc. SIG-

GRAPH 2006 Educators program (2006). 2

[ymc14] Ymca dance, 2014. http://en.wikipedia.org/
wiki/Y.M.C.A._(song). 3, 4

c© The Eurographics Association 2015.

29

http://www.openscenegraph.org/
http://www.openscenegraph.org/
http://en.wikipedia.org/wiki/Y.M.C.A._(song)
http://en.wikipedia.org/wiki/Y.M.C.A._(song)

