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Abstract

We present visual analytics methods to analyze epidemiologic cohort studies. We consider the automatic identification of strong
correlations and of subgroups that deviate from the global mean with respect to their risk for health disorders. Moreover, we
tackle missing value problems and discuss appropriate imputation strategies and visual analytics support.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Computer Graphics]: Computer Applications—

1. Introduction

Medical visualization research typically aims at clinical medicine,
e.g. improved support for diagnosis and treatment planning. Our
work, in contrast, aims at the public health sector, where preven-
tion of diseases is the major task. An important branch of public
health is epidemiology, an interdisciplinary area that involves med-
ical and statistical expertise which aims at reliable statements w.r.t.
the frequency of diseases and other health indicators as well as risk
factors for developing a disease.

To create new epidemiological knowledge, large and compre-
hensive data are acquired in cross-sectional or cohort studies to
cover life style aspects, sociodemographic factors, blood, urine and
other samples as well as questions related to medical problems
in the past. Recent studies include medical image data, such as
MRI and ultrasound, or genetic samples. Examples for ongoing co-
hort studies are the Rotterdam study, the SHiP (Study of Health
in Pommerania), the UK Biobank and the German National co-
hort (see [PKH™16] for an overview of these studies). The overall
amount of information per participant comprises a few thousand
variables. Therefore, next to traditional hypothesis-driven research,
epidemiology can benefit from the advances in data mining and vi-
sual analytics for the bulk analysis of correlated high-dimensional
data and for the identification of vulnerable subpopulations.

In along-term cooperation between the Faculty of Computer Sci-
ence in Magdeburg and the Institute for Community Medicine of
the University of Greifswald we aim at an improved analysis of
large cohort study data using the SHiP as an example. SHiP en-
compasses two cohorts: SHiP (aka SHiP-core) started with 4.308
participants in 1997 (SHiP-0) with follow-up investigations every
5 years and is currently at its 4th wave SHiP-3 (1.700 participants,
2014-2016). The second cohort SHiP-Trend started wih 4.420 par-
ticipants in parallel with wave SHiP-2 and with the same protocol.
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These population-based studies allow the investigation of diseases,
such as diabetes and back pain and disorders, such as fatty liver,
that are known to be precursors of diseases. We aimed at visual
analytics solutions to support the major tasks that we derived in a
number of workshop-style discussions.

e Integrated analysis of shape-related variables derived from med-
ical image data and abstract data, e.g. related to the health prob-
lems and drugs,

o Identification of strong correlations between life style-related
variables and a disorder, such as fatty liver or back pain,

o Identification of subpopulations that differ strongly from the en-
tire population w.r.t. their risk for a health problem, and

e Analysis of quality problems, in particular missing values.

In the following we describe the solutions developed for supporting
these tasks. All these solutions are web-based prototypes, realized
with D3, that enable the cooperative analysis of the data.

2. Integrated Analysis of Shape-Related Variables and
Abstract Data

We used the SHiP data to analyze the shape of the lumbar spinal
canal to investigate whether it is associated with lower back pain —
a hypothesis of epidemiologists [KLR*13]. After the lumbar spine
was extracted and transformed to a 3D surface model, its center-
line was generated as a representative for the shape of the lumbar
spine model. Afterwards, these centerlines were grouped into clus-
ters with an agglomerative hierarchical clustering that was previ-
ously used to cluster streamlines from bloodflow data. To visualize
these clusters, a ribbon-based visualization was designed (Fig. 1).

Later, we extended this framework to a web-based exploration
tool [KOL™*14]. Based on an analytical workflow, our framework
enables the generation of hypotheses and its subsequent statistical
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Figure 1: Clustered centerlines of the spinal canal are displayed.
Cluster size encoded by width of the ribbon and color encodes dis-
tance to the midsaggital plane. Selection of a cluster leads to the
display of related image data (From: [KLR* 13]).
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Figure 2: A shape-variance visualization is enhanced with infor-
mation visualization techniques. The bars indicate the sizes of sub-
groups defined by body size. The two background colors discrimi-
nate participants with and without back pain within the last three
months (From: [KLR* 13]).

Body size

analysis. All variables in the cohort are listed, the expert can drag
and drop certain variables onto the main canvas, which leads to
a representation of the mean lumbar spine model of the patients
in the selected group. Additional refinement or selection of new
variables results in a visualization showing correlations. Brushing
and linking options support the analysis. We employed a subset of
the SHiP (2.240 participants) with 134 variables from which 21 are
metric and 113 categorical. In addition, we derived 9 variables from
the spinal canal centerline. No participants were excluded (to avoid
selection bias), but the number of variables was strongly restricted
for data protection reasons.

Results. Our comprehensive analysis of various shape variables,
e.g. mean shape and mean torsion, with respect to back pain did
not yield any significant result for the entire population, for males
or females and for large age groups. A more fine-grained analy-
sis that involves individual vertebrae and the angle between them
and the spinal canal may lead to an association. Instead, we found
a number of correlations with other data: Increased body fat, body
weight, blood pressure, alcohol consumption, the presence of atten-
tiveness disorder and a large amount of sleep are associated with

back pain. For the epidemiologists, the strength of some of these
correlations was surprising and may serve as starting point for test-
ing new hypotheses. Many aspects have to be considered to derive
valid conclusions [KOL*14]. As an example, it is often necessary
to categorize scalar values. Equally-sized bins is a simple strategy
but not appropriate when outliers are present. Quantiles of the dis-
tibution are the better choice for binning.

3. Identification of Strong Correlations

Klemm et al. [KLG*16] presented the 3D regression heat map
to analyze correlations between variables. The idea of this ap-
proach is to let the experts input simple regression formulas, e.g.,
Cancer ~ X +7Y to explore the correlations. This calculates all com-
binations of pairwise variables for a correlation of cancer by using
the R? metric. For the visualization a heat map was employed. In
case the experts type Z ~ X + Y, a regression cube was generated
showing for every slice a 2D heat map of correlations. This ap-
proach is computationally intensive. Even with parallel computing
for a dataset with 100 variables and 2000 participants 14 hours are
needed to compute Z ~ X + Y. Nonetheless, the approach was con-
sidered helpful to find out non-obvious correlations.

Results. This system was employed to analyze various subsets
of the SHiP data. One example was a dataset compiled to in-
vestigate factors that contribute to an increased breast density—
a known risk factor for breast cancer. Thus, the epidemiolo-
gist steered the 3D regression heat map generation with the for-
mula a ParenchymaPercentage ~ X +Y + Z. Strong correlations
are emphasized with saturated colors and perceived as hotspots.
Strong correlations were observed for glandular tissue density and
parenchyma segmentation metrics. Also, strong correlations were
observed with diabetes which confirmed previous knowledge. A
surprising finding was the strong correlation with kidney disorder
(correlation around 0.9). Further analysis revealed that only 8 par-
ticipants exhibit this disorder. Thus, the sample size is too small for
a valid conclusion.

4. Identification of Subpopulations with Increased Risk

Subspace clustering is frequently used for analyzing high-
dimensional data where global clustering is not promising due to
the curse of dimensionality. For public health data subspace clus-
tering is beneficial, since persons are likely to be similar in some
attributes but not in all. Subspace clustering is typically a two-stage
process: clusterable subspaces are analyzed in the first stage and a
clustering method is applied to these clusterable subspaces. We de-
veloped a visual exploration workflow for subspace clustering re-
sults for the SHiP data [AHN™17]. As an overview, subspace clus-
ters are displayed in a 2D view where multi-dimensional scaling
was applied to map the similarity between the clusters to the spa-
tial proximity (Fig. 3). Similarity for subspace clusters relates to
the overlap between the dimensions and the overlap of instances of
subspaces. For selected subspace clusters, details are presented in
additional views (Fig. 4). The colors used in these displays repre-
sent different categories of the data that were carefully discussed
with the epidemiologists. They suggested the following categories:
laboratory values, medication, physical status and habits. To ex-
plore a selected subspace in detail, scatterplot matrices are also
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Figure 3: The results of subspace clustering applied to cohort study
data are shown in an overview based on a similarity metric that
evaluates the overlap of instances and dimensions. Each subspace
cluster is shown as a donut where donuts with a larger hole rep-
resent clusters with few members only. Gray values represent di-
mensions that do not contribute to this subspace cluster. The detail
view (right) reveals information on the participants. Darker col-
ors represent greater values and black represents missing values
(From: [AHN*17]).

available. For supporting an overview, also scaled bar charts were
employed. They reveal for a health risk, such as high blood pres-
sure, the portion in the different clusters. Thus, it becomes obvious
when a cluster (representing a subpopulation) exhibits a strongly
increased risk compared to the global mean (see Fig. 4). These and
other design decisions were based on discussions with epidemiolo-
gists w.r.t. good overview visualizations.

Subspace clusters may have arbitrary shapes. For epidemiolo-
gists, however, hyperrectangular clusters are beneficial, such that a
subpopulation may be described by rules, e.g. "While in the study
population only 18 % exhibit goiter, in the subpopulation described
by Body mass index > 30.5kg/ m?, Thyroid Stimulating Hormone >
1.5mU/1 goiter occurs in 52 %". We therefore support the transfor-
mation from arbitrary shapes to hyperrectangular clusters such that
users draw in rectangles in scatterplots showing the dependencies
between two variables [AHN™17]. Since epidemiologists aim at a
verification of findings from any data mining technique, the authors
also supported the validation of the subpopulations in an indepen-
dent cohort, e.g. subpopulations determined in the SHiP data are
validated by means of the SHiP trend cohort.

Results. We focused on fatty liver as a widespread disorder. The
information of the liver status was extracted from radiologists. Par-
ticipants with a liver fat concentration of > 10% are considered as
positive for fatty liver. Our analysis revealed a subpopulation with a
50% portion with a fatty liver. This subpopulation comprises 6.7%
of the overall population, it is older than the entire population (av-
erage age 59 years), has a high body mass index (34,2 on average)
and also a high number of diabetes patients (18%). For replica-
tion, it was analyzed whether these findings also apply to the SHiP-
Trend data. Here, the corresponding subpopulation is interactively
constructed and compared with the original one, with respect to the
distribution of laboratory values. Indeed, the SHiP-Trend subpopu-
lation exhibits very similar values for variables, such as creatinine
and serum GGT. Also the relative size of these subpopulations is
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Figure 4: A number of views are combined for an in-depth anal-
ysis of the disorder fatty liver among SHIP participants. A matrix
view (1) shows the dimension overlap between any pairs of sub-
space clusters. A donut chart displays the currently selected cluster
(2). A scatterplot matrix reveals the distribution of pairwise vari-
ables where orange represents participants with an outcome, such
as fatty liver (3). A mosaic plot (4) juxtaposes the relative frequency
of participants with a positive outcome between male and female
participants. The barchart view (5) shows the portion of partici-
pants with a positive outcome (red). One cluster stands out with a
particularly high number of participants. Error bars represent the
statistical uncertainty (From: [AHN*17]).

VIVID Visual Analysis of Missing Data in Cohort Study Dat:

Figure 5: Overview of missing data from an epidemiologic study:
Rows represent variables and columns show participants. Missing
values are indicated in black. Completely black columns represent
drop-out participants (From: [ANI*17]).

similar. Thus, the identified SHiP subpopulation with strongly in-
creased risk for fatty liver is likely to be valid.

5. Visual Analytics of Missingness

Missingness may occur in one cycle of a longitudinal study, i.e.,
the values for one participant are not complete, and between cycles
where participants do not show up in a later stage. Missingness
maps [HK*11] give an overview that may serve to identify patterns
(see Fig. 5). There are various strategies to cope with missingness.

o Complete case anaylsis, where only complete datasets are ana-
lyzed,
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e Single imputation, where missing values are replaced with a me-
dian or average value, and

e Multiple imputation, where dependencies between variables are
considered and multiple replacements are computed.

The first two strategies are straightforward to realize but not appro-
priate for typical PH data. If only complete cases are considered,
the number of cases often shrinks drastically. The resulting sub-
set is no longer representative, if the missingness is not completely
at random, i.e. the likelihood of a missing value for one variable
depends on the value of other variables. Single imputation would
preserve all datasets and thus the representative character, however
the median or average is often not a good guess for the missing
value. If all missing values are replaced with the (same) average
value, the distribution changes such that the variability is reduced.

Multiple imputation is appropriate when the missingness is not
completely at random. Multiple imputation is based on a regres-
sion analysis: for a variable v; that is affected by missingness, the
(linear) correlation to all other variables is computed. Only if the
correlation value for a variable v; is high (e.g. one of the N highest
values or above a threshold), it is used to predict the missing value.
Thus, the computation of the relevant predictors is accelerated. Im-
putation is performed several times, leading also to an estimate of
the uncertainty involved. This strategy is known as multiple impu-
tation with chained equations (MICE).

The number of iterations (default value is 5 in MICE) strongly
influences the computational effort. We used MICE for the analysis
of the SHiP data w.r.t. hepatic steatosis [ANI*17]. Visual analytics
plays an essential role in the handling of missing data. Because in
case of missing at random the distributions of missing and observed
values are usually different, it is necessary to check the distribu-
tions of observed values and imputed values to validate the imputa-
tion. An extended version of the workshop paper was invited by the
Computer Graphics Forum and is "Probably accepted" [AVPeal9].

6. Related Work

So far, visual analytics solutions for public health were focused on
more urgent problems, primarily on the detection of outbreaks of
infectious disease and the response management, e.g. [MRHeal0].
These applications have different requirements, in particular the
spatio-temporal distribution of cases is essential and thus (dynamic)
map displays are used. Powerful cohort construction for patient
data were developed by Krause et al. [KPS16]. Our work differs,
since epidemiological data has not such a strong temporal compo-
nent, e.g. the flexible temporal query interface is not needed.

7. Summary and Outlook

We developed a number of visual analytics solutions to leverage
the potential of large cohort study data in epidemiology. Our de-
sign considers also aspects of data quality and trust in the gener-
ated results, e.g. a validation component for subpopulations. While
the solution that we fully realized is restricted to linear regression,
we also investigated the automatic search for quadratic regression
between pairs of variables with a low linear regression. The longitu-
dinal character of the SHiP and other cohort data is not adequately
analyzed so far. It would be interesting to analyze and display the
development of subpopulations. As a first step in this direction, in
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Figure 6: A subpopulation has an increased body mass index over
time. However, this is typical since the entire (ageing) population
had the same development (From: [Mayl8]).

a student project data from different time points can be loaded and
are analyzed with an exhaustive search for association rules. The
resulting subpopulations can be displayed over time (see Fig. 6).
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