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Figure 1: (Left and right) Unmarked input image, inferred image with markers, and inferred template landmarks.

Abstract
We propose a general purpose approach to detect landmarks with improved temporal consistency, and personalization. Most
sparse landmark detection methods rely on laborious, manually labelled landmarks, where inconsistency in annotations over a
temporal volume leads to sub-optimal landmark learning. Further, high-quality landmarks with personalization is often hard to
achieve. We pose landmark detection as an image translation problem. We capture two sets of unpaired marked (with paint) and
unmarked videos. We then use a generative adversarial network and cyclic consistency to predict deformations of landmark
templates that simulate markers on unmarked images until these images are indistinguishable from ground-truth marked images.
Our novel method does not rely on manually labelled priors, is temporally consistent, and image class agnostic – face, and hand
landmarks detection examples are shown.

CCS Concepts
• Computing methodologies → Interest point and salient region detections; Tracking;

1. Introduction

Sparse landmarks detection is an important problem for face de-
tection applications [ALS∗16], face tracking with landmarks align-
ment as a sub-task for 3D face model fitting [BBA∗07, DBea21]
or to guide video synthesis for faces [Wea20], other body
parts [CGZE19], among several others. These tasks rely on high-
quality and temporally consistent landmarks; however, off-the-shelf
landmark detection methods suffer from inconsistencies due to am-
biguity in manual landmark annotations as well as temporal im-
perfections of frame-to-frame labeling, as landmarks are difficult
to define precisely, see [Dea18, WQYea18] for a discussion. As a
result, landmark detection models suffer from temporal jitters, and
sub-optimal personalization. Wu et al. [WQYea18] approach this
problem with a focus on the boundary, taking advantage of well
defined face boundary lines along which the landmarks reside. Dong
et. al. [Dea18] note that frame-to-frame landmark detection should
ideally resemble the presence of physical markers and present an
approach that uses optical flow, and later a triangulation-based ap-

proach [DYea20] that exploits the temporal information inherent in
video data.
With the goal of temporally consistent and personalized landmark
detection, we propose a method that involves capture of two sets of
unpaired videos for a given body region: one in which semantically
(e.g. eyes, nose, fingers, etc.) meaningful lines are visibly marked,
and the other, unmarked. We predict the landmark deformations for
a template, for each unmarked image and render them, such that,
it resembles the marked images. Following Zhu et al. [Zea17], we
pose this problem as an unpaired image translation problem, with an
image generator network that translates from marked-to-unmarked
images, while our novel landmark deformation prediction network
performs the reverse translation. Thus, our method is capable of
learning a set of predefined landmarks in an unsupervised fashion,
circumventing the need for laborious and imprecise manual annota-
tions, while providing landmarks that are inherently personalized
and temporally stable.
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Figure 2: (Left and right) Temporally consistent landmark predictions for faces and hands.

Figure 3: Top: Cyclic consistency between IUreal and IMreal . Bottom:
Unmarked image IUreal , is fed into the encoder, L∆, that gives land-
mark deformations ∆. The deformations are applied to template T,
and combined with IUreal via our decoder – differentiable renderer R.
The resultant image is treated as a fake marked image IMf ake.

2. Method: Generative Landmarks
Given two unpaired image sets – marked {IM} and unmarked
{IU}, our goal is to train a landmark deformation network, L∆ :
IU → IM, that takes-in unmarked images, iMi ∈ R3×H×W and
predicts landmark deformations, learning from the marked im-
ages in an unsupervised fashion. Rather than predicting these
landmarks directly, we use a template T ∈ RN×2 with prede-
fined spatial landmarks ti, that form lines corresponding to the
marked image set. In L∆, we intrinsically predict landmark
deformations, ∆ ∈ RN×2, that are applied as offsets to the
template T (below) and rendered onto the unmarked images.

Synthetically marked images resemble
marked images while maintaining the
spatial integrity of the template, where

template landmarks on the unmarked images are intrinsically in-
ferred. Our formulation is agnostic of the image class, and gives full
control over the landmark definitions. Thus, we can even predict
landmarks for body parts that previously lacked detailed training
data, such as feet.

Landmark Deformation Network L∆. Similar to Zhu et. al
[Zea17], our network L∆ learns unmarked-to-marked images, where
landmark deformation are used to simulate markers on images,
Fig. 3. Cyclic consistency assures consistent learning. For land-
mark deformation prediction, we use a simple network that consists
of 4 convolutional followed by 3 fully connected layers. During
training, we employ an off-the-shelf generator network [Zea17],
G : IMreal → IUf ake that translates marked images into fake unmarked
images, and similarly discriminators DM , DU . When translating
from domains IU→ IM, we first predict landmark template defor-
mations, ∆ = L∆(IUreal) that are then rendered onto the input image
via a differentiable renderer R, that gives us IMf ake = R(∆, IUreal).

Spring Potential Loss. In addition to CycleGAN loss above, we
also employ a spring potential loss [NMea06], that helps maintain
spatial consistency of the initial semantic template. As a result,

landmarks maintain their spatial structure w.r.t template definitions.
This is essential for recovering smooth landmarks while regulariz-
ing the GAN loss. Since, we want these separations to be consis-
tent with the original template, we define this loss in terms of the
change in deformations between neighbouring pairs of landmarks,
Lspring(ti) = K

∑
t j∈{T} ||∆i j||22, where K defines the spring con-

stant, and ∆i j the change in spring length for a neighbouring pair
{ti, t j} of template landmarks over which the spring loss is defined.
Our full objective is given by:
L(L∆,G,DU ,DM) = LGAN(L∆,DU , IMreal , I

U
f ake)

+LGAN(G,DM , IUreal , I
M
f ake)+Lcyc(L∆,G)+Lspring(L∆;T )

3. Results
The proposed method is capable of learning landmarks for vari-
ous body regions, including faces and hands. Our training set con-
sists of roughly 18k frames (about 10 minutes each) for each do-
main – marked and unmarked, scaled down to resolution 128×128.
The landmark template is rendered as 2D points via PyTorch3D
[RRN∗20]. Training took about 2 hours (wall-clock) on an RTX
Titan. Fig. 1 shows results for face and hand body regions.
4. Conclusion
This paper presents a novel method for performing landmark predic-
tion on body regions. While manual annotations suffer inconsisten-
cies due to ambiguities of precise landmark locations, our method
uses ground truth-like data for learning landmarks as template-based
deformations that match the visible ground truth information when
rendered, although in this work we do not model occluded marker
regions. In addition, our method is not limited by body regions or
landmarks for which there are no available datasets.
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