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Abstract
Autonomous Vehicles became every day closer to becoming a reality in ground transportation. Computational advancement has
enabled powerful methods to process large amounts of data required to drive on streets safely. The fusion of multiple sensors
presented in the vehicle allows building accurate world models to improve autonomous vehicles’ navigation. Among the current
techniques, the fusion of LIDAR, RADAR, and Camera data by Neural Networks has shown significant improvement in object
detection and geometry and dynamic behavior estimation. Main methods propose using parallel networks to fuse the sensors’
measurement, increasing complexity and demand for computational resources. The fusion of the data using a single neural
network is still an open question and the project’s main focus. The aim is to develop a single neural network architecture to fuse
the three types of sensors and evaluate and compare the resulting approach with multi-neural network proposals.

CCS Concepts
• Computing methodologies → Object identification; Object detection; • Applied computing → Transportation;

1. Introduction

Autonomous vehicles have been the target of great interest in uni-
versities, research centers, and industry. With the advance of com-
puter technology and computational techniques, autonomous cars’
implementation became increasingly viable. However, implement-
ing autonomous vehicles on urban streets requires a thorough per-
ception of the environment, including detecting objects and their
movements. These tasks require exteroceptive sensors to measure
the car’s surroundings. Sensors in this category include Cameras,
Radio Detection and Ranging sensors (RADAR), and Light Detec-
tion and Ranging sensors (LIDAR).

Current works combine the information from two of these
three sensors. Methods based on LIDAR-Camera have shown con-
vincing results concerning visual detection, distance, and geom-
etry estimation of objects [PMR20]. However, the methods are
not adequate to estimate objects’ velocities [YZK21]. Velocity
estimation is better tackled by LIDAR-RADAR fusion methods
[SHL∗20]. However, the absence of cameras in LIDAR-RADAR
approaches precludes objects’ visual identification, impacting au-
tonomous decision-making. Finally, the RADAR-Camera detection
shows gains in performance for detecting objects in low light and
rainy/cloudy weather [KRBG20]. Although RADARs are reliable
all-weather sensors, they can not provide a dense environment sam-
pling as LIDARs.

The fusion of three sensors can cover the limitations of each sen-

sor and provide a high-performance estimation of object character-
istics. However, this merger has not yet been properly explored.

The principal approaches present a Late Fusion of the sensors.
Based on parallel networks, each sensor passes through a differ-
ent neural network, and in the end, the results are combined. This
method provides a robust result. However, it requires complexity
and demand for computational resources. On the other hand, the
Early Fusion fuses the sensors’ information before the network,
implementing a single architecture for the prediction. This process
produces a low computational demand, a relevant characteristic for
autonomous vehicles’ application. Therefore, our project proposes
a new fusion approach based on a single Neural Network. This net-
work will combine and analyze information acquired by LIDAR,
RADAR, and Camera sensors to detect vehicles and pedestrians in
the street. Moreover, it will be based on the latest detection tech-
niques for fast predictions and onboard implementations.

2. Methodology

We unify the Camera image (RGB) and the LIDAR data (XYZ),
in a single input tensor with Width×Height× 6 (channels RGB-
XYZ). The input tensor is divided into an Sx×Sy×Sz grid. Our
model uses Sx = 10, Sz = 10, and Sy = 4.

In the grid, the object is presented in one of these grid cells.
The grid cell that has the center of this object will be responsible
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for detecting it (Figure 1). Each grid cell stores an 8 length array
prediction: class,x,y,z,w,h, l,P. Where the first value represents
the object class, the following six values represent the 3D bounding
box (center of the object and its dimensions), and the last is the
confidence of its estimation.

Figure 1: Illustration of the model’s approaches with Sx=4, Sy=2,
and Sz=2.

2.1. Network

Our proposed network is composed of 2 types of convolutional lay-
ers, 2D and 3D. First, an EfficientNet Backbone with a sequence of
2D convolutional layers receives the input tensor (W×H×6). Then,
the last backbone’s layer’s output passes by a reshape, introducing
one dimension to the architecture. The result of this process passes
by two 3D convolutional layers with kernel size = 1 and stride = 1.
After Flatting, the output pass by a Fully Connected (FC) layer. Fi-
nally, the output of the FC layer is reshaped into an Sx×Sy×Sz×8
tensor of predictions.

2.2. Loss

As presented in Equation 1, the loss considers the error between
center position, dimension, confidence, and class of each cell pre-
diction. The λ values represents variables to implement weights in
each loss calculus. The 1

ob j
i results to 1 if the cell is responsible

for detecting an object, otherwise 1
ob j
i results 0. The λ values was

defined as: λx = 20, λy = 5, λz = 20, λdim = 5, λob j = 5, λnoob j = 1.

λx

SX
∑
i=0

1
ob j
i (xi − x̂i)

2
+ λy

SY
∑
i=0

1
ob j
i (yi − ŷi)
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3. Initial Results and Analysis

In Table 1, mAp, mIoU, and MaxIoU represent the mean Average
Precision (IoU > 0.5), the mean Intersection over Union, and the
maximum Intersection over Union, respectively. Furthermore, the
Obj. Recognition shows the percentage of vehicles detected by the
model which present a minimum IoU.

Figure 2: Example of model detection. The top image is the camera
input. The lower images are the comparison between the prediction
(blue) and the ground truth (green).

Table 1: Model’s Performance

mAP mIoU MaxIoU Obj. Recognition
3D 12.46% 0.25 0.71 68.35%
2D 17.75% 0.28 0.84 69.12%

Besides the mAP performance, the model correctly identifies the
mean position of fully and partially visible vehicles, recognizing
around 68% of the vehicles on the street. Figure 2 shows an exam-
ple of the model’s detection, detecting most of the cars on the street.
The model approach presents a potential candidate to achieve high
performance in 3D object detection tasks.

4. Conclusions and Remaining Work

This study presents a different approach to fuse sensors’ data. This
paper shows the use of a single network to predict the 3D bound-
ing box of objects for autonomous vehicles. Besides the model’s
actual performance, it showed itself a candidate detector with high
potential to achieve high performance.

For the remaining work, we aim to test new architectures and
optimize the system’s variables to extract all the model’s potential.
Next, we aim to add RADAR data in the input tensor and estimate
the velocity of the objects. Finally, the project seeks to build and
publish a new dataset to contribute to research in the Self-Driving
cars field.
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