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Abstract
In this work, we investigate the performance—as well as the quality difference—between the state of the art NVIDIA DXR ray
tracing pipeline and a voxelspace ray marching (VSRM). In order to maintain an acceptable quality image outcome, as well as
frame-rate, for tested low numbers of rays from one to 32, we use a simple denoiser. We show a similar quality outcome and less
progressive dependency on the number of rays for VSRM compared with DXR. (see https://www.acm.org/publications/class-
2012)

CCS Concepts
• Rendering → Global Illumination;

1. Introduction

Due to increasing GPU processing power, real-time ray tracing be-
comes feasible for games and graphic intensive real-time applica-
tions with an underlying acceleration structure for fast ray-triangle
collision [SGFV19, MSW21]. NVIDIA DXR is using a two-level
acceleration structure to find the corresponding triangles of a given
geometry for every ray [TS∗05, GMOR14]. Ray tracing still has a
high computational demand, and for each pixel in the output-image,
only a small number of rays can be computed while still maintain-
ing real-time frame-rates. To compensate for the noisy outcome,
denoisers are used [MJL∗13]. We investigate a VSRM approach
where geometry density only affects voxelization, not ray-collision
detection. The question is whether VSRM can match the global il-
lumination quality of DXR and the performance differences due
to its different approach of ray-geometry collision detection. Our
VSRM is based on voxel-cone tracing [CNS∗11], but we use ray
marching to find the ray-geometry collison due to 1) it’s higher
collision resolution, 2) the linear scaling of computational time due
to a static raymarch distance progression (over all rays), and 3) the
necessity of a denoiser in DXR as well as VSRM for a better com-
parison.

2. Implementation

The goal is to investigate the performance and quality of the ray
tracing acceleration structure of the NVIDIA RTX platform as op-
posed to a VSRM solution for generating indirect lighting as part
of a global illumination solution. Two versions of a graphics pro-
gram with a modified version of the Crytek Sponza scene are cre-
ated, one built on top of the NVIDIA Falcor framework [KCK∗22]

for DirectX12 for access to DXR (RTX), and one built on top of
OpenGL 4.5 (Voxel Ray Marching).

2.1. Voxel-Space Ray Marching Simulation

Our VSRM approach voxelizes the scene based on three different
camera positions, and in a final render-pass employs ray marching
from each visible screenspace pixel to accumulate indirect light.
It is important to note we do not attempt to optimize the vox-
elization stage: In OpenGL 4.5, 3D textures must be in an inte-
ger format, making this pass more time-consuming for calculating
the correct average color of the voxel. Other API’s and more elab-
orate techniques based on different scene configuration will yield
better computational results. Our presented results regarding frame
rate should only be compared with DXR regarding curve shape, as
our approach presents the lower end of performance possibilities of
voxelization.

1. Voxelize the 3D scene

a. With back-face culling and depth test disabled, orthographi-
cally render the scene from three different perspectives (e.g
-x, -y, -z).

b. Calculate direct lighting and shadows for each rasterized
fragment.

c. Using fragments’ world positions, calculate the average
color of each voxel and store it in a 3D texture.

2. Calculate indirect lighting

a. Raymarch in voxel-space from each fragment’s world posi-
tion in random directions generally aligned with the frag-
ment’s normal vector. If the raymarch hits a voxel, add a

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egp.20241036 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/egp.20241036


2 of 2 S. Aristizabal& O. Erlich / EG LATEX Author Guidelines

percentage of the voxel’s color to the result; the weight of
the contribution is based on the number of samples and the
distance falloff.

Fallo f f = 1.0− (HitDistance/MaxRayDistance)

b. Denoise the ray marching results using any generic image de-
noiser. In our solution, we use a rudimentary Gaussian blur
denoiser with normal and depth testing for neighboring pix-
els.

c. Calculate and store direct lighting and shadows.
d. Render an image to the screen that combines the original col-

ors, direct lighting, and ray marching information using the
following formula (we define multiplication of two vectors
as a component-wise multiplication).

Final = DirectLighting+(Original ∗RayMarching)

2.2. DXR (NVIDIA RTX)

For the DXR approach, we use the NVIDIA RTX platform for di-
rect and indirect lighting calculations.

1. Raytrace from the fragment world-space position towards the
world-space light position. This is known as a "shadow ray".

2. If a "shadow ray" misses all geometry, evaluate the direct light-
ing information at the fragment and store in a texture. Else, the
point is in shadow; thus, direct lighting contribution is zero.

3. From each fragment, trace a set of indirect lighting rays in ran-
dom directions generally aligned with the initial point’s normal.

4. For each indirect ray-hit, add the direct lighting to the indirect
lighting result. The weight of the contribution is based on the
number of samples and a distance falloff described above.

5. Denoise ray tracing results using any generic image denoiser.
Our solution uses a rudimentary Gaussian blur denoiser with
normal and depth testing for neighboring pixels.

6. Combine direct lighting and denoised ray tracing results and
render this to the screen using the same formula listed above.

Figure 1: The Crytek Sponza Scene with two sets of images, the
left of each pair using NVIDIA’s DXR and the right using a Voxel-
Based ray marching technique.

3. Results and Conclusion

Performance metrics were captured using an RTX 3080 GPU at
1080p resolution. Each approach was tested in four different loca-
tions in the scene using 1, 2, 4, 8, 16, and 32 rays per pixel, with
the denoiser turned off. Denoising was disabled as it is generic and
any denoiser of varying performance could be substituted.

In Fig. 1, the qualitative differences between VSRM and DXR
can be seen. While both approaches are relatively similar regarding
indirect light intensity and reach, VSRM sampling from voxels,
which are set-sized volumes of average light, results in more light
accumulation as well as less pronounced indirect light colors.

Figure 2: Performance, in frames per second, recorded without de-
noising of ray tracing/ray marching results in both the Voxel-Based
(blue) and DXR (red) simulations. Data was collected at four dif-
ferent camera positions with each implementation.

As is illustrated in Fig. 2 VSRM has a much more linear-leaning
progression with increasing number of rays compared to DXR.
This is due to the screen-space voxelization as well as an in average
expected ray-collision distance with upper limit. As our voxeliza-
tion stage is not optimized, note, that frame-rates on VSRM can be
improved based on different voxelization approaches and API ca-
pabilities. With increasing number of rays, DXR falls below 60 fps
at 4 rays. These results strongly indicate VSRM has a better scala-
bility than the DXR ray tracing for reaching high sample counts.
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