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Abstract
Physically-based synthesis of high quality imagery results in a significant workload, which makes interactive rendering a very
challenging task. Our approach to achieve such interactive frame rates while accurately simulating global illumination phe-
nomena entails developing a Virtual Point Lights (VPL) ray tracer that runs entirely in the GPU. Our performance guarantees
arise from clustering both shading points and VPLs and computing visibility only among clusters’ representatives. Previous ap-
proaches to the same problem resort to K-means clustering, which requires the user to specify the number of clusters; a rather
unintuitive requirement. We propose an innovative massively parallel, GPU-efficient, Quality-Threshold clustering algorithm,
which requires the user to specify a quality parameter. The algorithm dynamically adjusts the number of clusters depending
both on the specified quality threshold and on camera-geometry conditions during execution.
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• Keyword → Rendering; Ray Tracing; Global Illumination; Real-time Rendering; Parallel Programming;

1. Introduction

Virtual Point Lights (VPL) based rendering solutions have been
accelerated by leveraging local smoothness [OP11]. In general,
these approaches cluster VPLs and/or Shading Points (SP) using
some similarity metric. Visibility evaluation between SP and
VPLs is then performed using each cluster representative point,
rather than the original data. This results in a drastic reduction
in the number of computations and, consequently, in rendering
time. Several works have been published that aim to exploit
local smoothness in indirect lighting to reduce computational
complexity and rendering time while handling accurate global
illumination light transport phenomena and interactive frame rates.

Usually the K-means clustering algorithm is used in this context
and the user is forced to define upfront (i.e., before rendering) a
fixed number of clusters. Selecting a suitable number of clusters
is unintuitive since it depends on the desired expected quality,
the geometry and illumination features of the scene, as well as
the camera position and orientation. In this work, we resort to
Quality-Threshold Clustering [HKY99], or QT-clustering for
short, which does not require the number of used clusters to be
specified. Instead, the user only supply a quality threshold which
acts as a minimum quality guarantee and the number of clusters is
automatically adjusted by the algorithm.

2. Related Work

Several works have been published aiming at achieving interactive
VPL rendering solutions. Daqi et al. [TMKS20] propose a hierar-
chy method to reduce the number of evaluations needed to estimate
the rendering integral. However, their method rely on a hybrid ras-
terization/ray tracing approach. Wang et al. [WWZ∗09] presents a
K-means clustering-based solution. SPs are clustered in the context
of a caching/interpolation method similar to irradiance caching but
applied to the final gathering stage of photon mapping. Final gath-
ering is evaluated by hemispherical sampling at the centroids, and
irradiance is interpolated for the remaining points. In [CMS22] SPs
and VPLs are clustered using K-means, and have only 6 geometric
attributes (3D positions and normals). The clustering runs entirely
on the GPU and no data transfers between the CPU and the GPU
are required since VPLs and SPs are generated and stored in the
GPU. Visibility is then evaluated using each cluster representative.

3. Quality-Threshold Clustering

In QT-clustering the objective is to divide a dataset into multiple
clusters. It takes as input the dataset D, the distance threshold τ, and
the metric to use to quantify the distance between two data points.
The quality of the clustering is reciprocal of the distance threshold
τ. Given D, QT-clustering works by iteratively creating new clus-
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ters until no data-point remains to be clustered. At each iteration,
all potential new clusters are evaluated taking into consideration
the distance threshold, and the cluster with the largest number of
elements is created. The data-points of the new cluster are marked
as clustered, and the process is repeated until all the data is clus-
tered. However, the canonical QT-clustering algorithm relies on a
sequential process which makes it a challenging task to parallal-
ize [DMV12]. We propose an efficient full-fledged GPU algorithm
that allows for more than one cluster to be created at each itera-
tion. To this end, we resort to coherent acceleration structures and
efficient use of CUDA capabilities to maximize parallelism while
minimizing overheads associated with shared data updates.

4. Results

To test the benefits of QT-clustering we set up one scene (Con-
ference Room), rendered from two camera perspectives: a wide
view where most of the scene objects are visible; and a close-up
view. In both conditions, the input of both algorithms is fixed.
For K-means the number of clusters is set to K ≈ 8000 clusters
and the Distance Threshold for QT-clustering τ = 0.016. The
number of clusters for K-means clustering has been based on the
best trade-off configuration of the Conference Room in [CMS22].
The Distance Threshold parameter for QT-clustering has been
determined so that the output matches the same number of clusters
as K-means in the wide view configuration.

In Fig. 1 and Fig. 2 the data to be clustered is rather hetero-
geneous and the result of both clustering methods is relatively
similar. The output for the QT-clustering algorithm results in a
total number of 8722 clusters, a similar number as K-means. On
the contrary, in Figs. 3 and 4, the points to be clustered exhibit
similar geometry properties, since they are closer in the 3D space.
The results show that QT-clustering is able to leverage this data
coherence by creating bigger clusters where points share similar
geometric attributes. On the contrary, in K-means the total number
of centroids is defined a priori and the total number of clusters will
remain constant during the application.

It is shown that the QT-clustering algorithm takes more com-
putational time. However, in [CMS22], it’s noted that the
clustering step minimally impacts the overall rendering time. The
more significant contributors are the estimation of visibility and the
reconstruction of the image which are dependent on the number of
clusters.

Figure 1: Clustering from a
wide-view camera setting using
K-means (3ms).

Figure 2: Clustering from a
wide-view camera setting us-
ing QT-clustering (7ms). Cre-
ates 8722 clusters.

Figure 3: Clustering from a
close-view camera setting using
K-means (19.9ms).

Figure 4: Clustering from a
close-view camera setting using
QT-clustering (25.2ms). Creates
1669 clusters.

5. Conclusions and Future Work

We propose a new GPU implementation for the QT-clustering al-
gorithm that could provide faster rendering times while allowing a
more intuitive setup for the user. The current results of this work
in progress encourage pushing forward the research by evaluat-
ing the complete rendering time and image quality with previous
works. Moreover, the flexibility that QT-clustering provides moti-
vates the exploration of richer quality metrics that could result in
better-distributed clusters.
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