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Figure 1: Overview of the F2F Pipeline. We first predict camera poses and generate a tetrahedral feature volume from sparse input views.
Secondly, we create a textured 3D mesh from the feature volume using DMTet, with all process optimized through differentiable rendering.

Abstract

Recent progress in 3D reconstruction has been driven by generative models, moving from traditional multi-view dependence to
single-image diffusion model based techniques. However, these innovative approaches often face challenges with sparse view
scenarios, requiring known poses or template shapes, often failing in high-resolution reconstructions. Addressing these issues,
we introduce the "F2F" (Few to Full) framework, designed for crafting high-resolution 3D models from few views and unknown
camera poses, creating fully realistic 3D objects without external constraints. F2F employs a hybrid approach, optimizing
both implicit and explicit representations through a unique pipeline involving a pretrained diffusion model for pose estimation,
a deformable tetrahedra grid for feature volume construction, and an MLP (neural network) for surface optimization. Our
method sets a new standard by ensuring surface geometry, topology, and semantic consistency through differentiable rendering,
aiming for a comprehensive solution in 3D reconstruction from sparse views.

CCS Concepts

» Computing methodologies — Sparse views; 3D reconstruction; Hybrid 3D representation; Differentiable rendering;

1. Introduction

In real-world scenarios, it is common to have only a few views
of an object available for 3D reconstruction. This problem is no-
tably heightened by its ill-posed nature and the potential absence
of complete object data in input images, and thus necessitates
advanced techniques for accurately estimating unseen object fea-
tures in alignment with available observations. This challenge has
prompted the development of numerous methods aimed at recon-
structing 3D objects from sparse views. Among these, surface-
based methods have emerged as a foundational approach, leverag-
ing the deformation of template shapes through differentiable ren-
dering to align each input viewpoint with its corresponding render-
ing view. A notable implementation of this technique involves de-
forming predefined shapes, such as spheres or cuboids, using sparse
views as a guide [ZYTR21]. However, this dependence on template
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shapes that correspond to input data considerably restricts the re-
construction of objects with complex or arbitrary topologies.

To overcome topology constraints, several studies have moved
towards implicit-based methods, like optimizing SDF or neural ra-
diance fields. For instance, given a sparse view, [MCCG23] pre-
dict a SDF representation by using volumetric rendering tech-
nique [MST*20]. [ZCC23] combines a NeRF-based technique with
2D diffusion model priors, optimizing the NeRF representation
from sparse views while generating novel view images through a
multiview-consistent diffusion model. Both methods still necessi-
tate accurate camera poses and optimize only an implicit repre-
sentation. [JJGZ24] predict camera poses directly in the 3D recon-
struction pipeline. But all these approaches need a post-processing
step using marching cubes algorithms to extract the final mesh,
which introduces additional errors into the 3D reconstruction.
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Our method, "F2F" (Few to Full), is designed to directly opti-
mize a surface representation without the constraints of topology
and camera poses, outlined as follows:

e Camera Pose Independence: F2F eschews the need for pre-
defined camera poses through the use of a pretrained diffusion
model, enabling autonomous camera position estimation from
sparse images.

o Flexible Topology: By adopting a hybrid 3D representation, F2F
allows for seamless transitions from implicit functions to 3D
meshes, enabling the generation of arbitrary topologies without
relying on voxel grids.

e Direct Surface Optimization: Using differentiable marching
tetrahedra, our method allows for the direct extraction and op-
timization of 3D surface meshes, eliminating the common re-
quirement for postprocessing steps.

e Semantic Shape Consistency: F2F tackles the issue of sparse
views by reconstructing unseen 3D parts through semantic shape
consistency, comparing novel views from the reconstructed
shape against semantic CLIP embeddings to ensure a thorough
reconstruction from minimal data.

2. Method

The core methodology of F2F is depicted in Fig. 1, illustrating the
process from input images to the final 3D reconstruction.

2.1. Pose Estimation and Feature Volume Construction

Using PoseDiffusion model, we estimate camera poses {C;}Y;
from sparse views {Ii}fvzl and construct a feature volume on a de-
formable tetrahedral grid by projecting 2D features extracted with
Dinov2 [ODM23] onto it, forming the basis for geometry reason-

ing.

2.2. Latent Vector and Prediction

For each vertex v in tetrahedral grid, we create a latent vector z(v)
as a concatenation of :

e A global semantic shape embedding derived from CLIP, sum-
ming embeddings for each input view image.

e Alocal semantic shape embedding obtained from the feature vol-
ume at vertex v.

e A Positional encoding used to capture the spatial features of each
vertex v.

We then predict the signed distance function (SDF) value s(v)
and a deformation vector §(v) using an MLP:

{s(v),8(v)} = MLP(z(v))

2.3. Surface Extraction and Optimization

The predicted values enable us to extract a triangular mesh from
the tetrahedral grid using the marching tetrahedra technique while
predicting a 2D texture map using a second MLP. We define sev-
eral loss functions to directly optimize the surface mesh and texture
map.

e Photometric Loss: We render RGB images and masks
{1, M,}f\]: 61 from the mesh, computing photometric L2 loss
Lyg = |/ —1]]2 and mask L2 108s Ly = [|M — M||2.

e Semantic Shape Consistency Loss: We render a set of sparse
novel viewpoints f,,,; from the reconstructed object, obtain
CLIP embeddings for these images, and compute the semantic
loss by comparing these new embeddings to the global CLIP em-
bedding: Lssc = HZembed (Frover) — X embed(I) H2

e Regularization Loss: We also define a regularization loss for the
predicted vertex deformation to avoid artifacts.

The total loss is a weighted combination of these losses, formulated
as: Lyorq) = xrgergb + xmaskLmask + AsscLsse + kregLreg

3. Results

We show in Fig. 2 novel views from 3D models reconstructed by
F2F. We can mainly observe that F2F generate triangular meshes
with arbitrary topologies.
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Figure 2: Examples of 3D reconstruction results from a set of few
2D synthetic images with known poses.

4. Conclusion

Our goal is to propose a method for high-resolution 3D reconstruc-
tion from sparse views, addressing the complexities of unknown
camera poses and arbitrary topologies. Through a hybrid represen-
tation and surface-focused optimization, we demonstrate that our
pipeline effectively produces 3D models from few 2D synthetic
data with known poses. In future work, we will extend testing to
broader datasets, incorporating real-world data without predefined
poses, and explore how semantic shape consistency can further en-
hance neural network-based 3D reconstruction.
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