
EUROGRAPHICS 2018/ O. Diamanti and A. Vaxman Short Paper

Rigid Body Joints in Real-Time Unified Particle Physics

B. Lovrovic1,2 and Z. Mihajlovic1

1University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
2The Future Group AS, Norway

Abstract

In this paper, we propose a physically-based method for a rigid body joint simulation. The proposed solution is based on the
unified particle physics engine, a simulator that uses only particles for all the dynamic bodies. Such engines are implemented on
the GPU and they simulate fluids, rigid bodies or deform-able materials like cloth or ropes. To support more complex systems
like skeletal simulation, we show a joint implementation that is intuitive and unique to this environment. Four types of joints will
be shown, as well as the necessary details about the rigid body data structure. This will enable the construction of a popular
method called ragdoll. Lastly, a performance measurement and a comparison with alternatives will be given.

CCS Concepts
•Computing methodologies → Massively parallel and high-performance simulations; Real-time simulation; Interactive sim-
ulation; Physical simulation; Collision detection;

1. Introduction

Offloading the work from the central processing unit (CPU) to the
graphics processing unit (GPU) can often be desirable in modern,
real-time computer graphics applications. From cellular automata
[OLG∗07] to fluids, majority of those result in particles-based (La-
grangian), or grid-based (Eulerian) solutions that can run in parallel
on many processors, and therefore, are suitable to be executed on
the GPU. An attractive property observed in Lagrangian methods
is unification of usually-separated physical simulators (e.g. fluid,
cloth or rigid body simulators).

The idea presented in this paper is based on such a unification
and extends it by adding rigid body joints, a movement constraint
between two or more rigid bodies. There are many different types
of joints and combining those can help to model complex physi-
cal structures like the human body. This method is referred to as
’ragdoll’ and is commonly used in games and animated films. Our
approach enables easier integration with the particle system, alle-
viates the work from the CPU and removes the need to send rigid
body transformation matrices from the CPU to the GPU when ren-
dering.

2. Related work

Processing physically-based simulations on the CPU is a well es-
tablished field and authors like [Mil10], [Ebe10] and [Eri04] pro-
vide sufficient knowledge to implement most of all the well known
simulation methods.

Running simulations on the GPU in a newer concept which is

one of the reasons it is still being heavily researched. It is mostly
used in fluid simulations such as Eulerian [Har05] or Lagrangian
methods. Lagrangian methods come in traditional force-based dy-
namics (FBD) and newer, position-based dynamics (PBD) forms.
Example of a PBD fluid is shown in [MM13], while a more general
approach is given in [MHHR07]. As all matter consists of a collec-
tion of particles, it is intuitive that this approach can be extended
to deformable and rigid bodies. Harada [Har07] and Macklin et
al. [MMCK14] do this in FBD and PBD forms, respectively.

When it comes to the collision handling in a particle simulation,
either event-driven (ED) or molecular dynamics (MD) algorithms
are used. With MD it is easier to simulate the elastic deformation
of the material elements, as in [BYM05]. MD is achieved here by
using relaxation in the collision solver and by other methods that
do not guarantee complete separation of particles at all times.

This paper uses methods presented in [MMCK14] as a founda-
tion, which makes it a Lagrangian PBD solver. We choose PBD
over a force-based solution for it’s ability to interact with the sim-
ulation in real time without limitations, a feature valuable in in-
teractive environments. Other than that, it is easier to understand
and implement, it is more stable and allows for uniform constraint
handling. For spatial hashing, hash function and methods from
[THM∗03] are used. With all particles being the same size, grid
cell sizes are the same as those of the particle as in [Gre08]. Fluids,
which are based on [MM13], and granular materials are included
for the purpose of showing interaction with the joint-constrained
rigid bodies.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/egs.20181031

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egs.20181031


B. Lovrovic & Z. Mihajlovic / Rigid Body Joints in Real-Time Unified Particle Physics

3. System overview

Rigid body simulation presented here is a modified version of that
in [MMCK14]. An overview of the methods will be presented along
with our modifications in the subsection 3.3.

Figure 1: An actor made up of particles is dancing and interacting
with the environment (left image) and initiating simulation of its
skeletal system (right image).

3.1. The particle simulation update

Simulation loop from [MMCK14] performs the Euler integration
and collision handling on every particle. Particles that reach suf-
ficiently small sequential position change will be frozen. While
working on the implementation, the best minimum change value
for freezing emerged as half of the radius of the particle.

Usually while generating particle-particle contacts, tolerance is
a bit higher for something to be added as a contact since constraint
resolution can make something previously regarded as non violated
constraint into violated one. In this implementation a factor of 1.2
is used as a multiplier of the particle’s diameter which is the area
of contact creation. Big factors can hinder performance.

3.2. PBD constraints

Constraints in PBD are given by equations (1) and (2) where
x = [x1,x2, ...,xn, ]

T is a vector of positions from all particles con-
tained in a constraint. Inequality constraints are typically used for
penetration in cases where update is required only on one side of
the collision surface. Equality, for example, could be used in mod-
eling springs in a cloth simulation.

Ci(x+∆x) = 0, i = 1, ...,n (1)

Cj(x+∆x)≥ 0, j = 1, ...,n (2)

As in [MHHR07], the constraint equations give us eq. (3) for up-
dating the position of a single particle xi. The Gauss-Jacobi method
is used here to exploit the parallelism of the GPU.

∆xi =−s∇xiC(x1, ...,xn) (3)

s =
Ci(x1, ...,xn)

∑w j
∥∥∇x jC(x1, ...,xn)

∥∥2 (4)

Where eq. (4) is the same for all particles in the constraint
and wi = 1/mi is the inverse mass of a particle. An example of
this general formula in use is the distance constraint C(x1,x2) =
‖x1−x2‖−d ≥ 0 between two particles. Using (3) yields:

∆x1 =−
w1

w1 +w2
(‖x1−x2‖−d)

x1−x2
‖x1−x2‖

(5)

∆x2 =
w2

w1 +w2
(‖x1−x2‖−d)

x1−x2
‖x1−x2‖

(6)

Where d is the maximum distance between particles. Both equa-
tions (5) and (6) represent inequality constraints, so ∆x is not
zero only if ‖x1−x2‖ is less than d. An additional distance con-
straint is the one between a particle and a plane. It is given by
C(x1) = (x1−p) · n̂−d ≥ 0. The particle position update is:

∆x = [(x−p) · n̂−d] n̂ (7)

Where p is a point on the plane, n̂ is the plane’s normal vector
and d is the minimum allowed distance from the plane.

3.3. Rigid bodies implementation

By applying the shape matching method from [MHTG05], rigid
bodies are handled as a constraint as well, with a solution given in
eq. (8):

∆xi = (Qri + c)−x∗i (8)

Where Q is a rigid body rotation matrix and c is its center of
mass. The vector ri is the particle position in the local coordinate
space of the rigid body. The trickiest part in this equation is to cal-
culate the rotation matrix Q, which can be done by polar decompo-
sition of the matrix A given by:

A = ∑
i
(x∗i − c)rT

i (9)

In [MMCK14] the authors evaluated eq. (9) efficiently by assign-
ing one thread per particle, calculating all outer products separately
and then using parallel reduction to sum all of them. However, the
need for joints yields a slightly different approach. In listing 1 we
introduce our structure. This structure allows linking particles to
the rigid bodies they make, so multiple particles can be linked to
the same rigid body, as is expected. In addition to that, with this
structure, a single particle can be linked to multiple rigid bodies.

s t r u c t P a r t i c l e R i g i d B o d y L i n k
{

u i n t p a r t i c l e I n d e x ;
u i n t r b I n d e x ;
f l o a t 3 pos InRig idBody ;
u i n t p a r t i c l e L i n k s B l o c k S t a r t ;
u i n t p a r t i c l e L i n k s B l o c k C o u n t ;

} ;

Listing 1: Particle rigid body link structure

Note that posInRigidBody from listing 1 is ri from eq. (8). Vari-
ables particleLinksBlockStart and particleLinksBlockCount define
a block of links in the array for the same rigid body. This means that
links are grouped by the rigid body they are assigned to. In table 1
the first four elements are for the rigid body with an index of 2 and
the remaining three are for the one with an index of 3. Note that the

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

6



B. Lovrovic & Z. Mihajlovic / Rigid Body Joints in Real-Time Unified Particle Physics

particle with an index of 3 belongs to both rigid bodies. This is a
format ready for a parallel reduction algorithm.

particleIndex rbIndex blockInfo (start, count)
0 3 2 0, 4
1 1 2 0, 4
2 0 2 0, 4
3 4 2 0, 4
4 3 3 4, 3
5 8 3 4, 3
6 7 3 4, 3

Table 1: Example of a valid array of ParticleRigidBodyLink ele-
ments.

Some storage is required to calculate c, A and mass (a cache
value). Those are stored in a separated buffer with one-to-one rela-
tion to the buffer from listing 1.

The parallel reduction algorithm is performed over the array of
ParticleRigidBodyLink elements in several steps. The first step cal-
culates the value in question (e.g. ci). Then in each subsequent step,
the algorithm adds the value with the value of the neighbour that is
2iteration−1 elements from the element being processed. In the last
step, the total sum is stored in the first element of the block. The
number of steps in this algorithm is calculated from the rigid body
that has the most particles. This number of steps is enough for all
blocks of links (rigid bodies).

numberO f Steps = dlog2(p)e+1 (10)

Where p is the number of particles contained in the biggest rigid
body. This type of reduction is performed two times, once for c
calculation and once for A, which requires c to be precomputed.
Also, note the +1 in eq. (10). This is the first step to calculate the
initial value per link before the actual reduction begins.

Once A has been calculated, construction of Q can begin. This
process requires polar decomposition. Although there have been re-
cent publications that describe more efficient ways of implementing
such a decomposition for a 3x3 matrix (see [HN16]), the method
shown here is efficient enough and simpler to implement. In polar
decomposition, Q is an orthogonal and S is a symmetrical matrix.

A = QS (11)

AT A = ST QT QS = S2 = M (12)

S =
√

M (13)

S−1 = M−
1
2 (14)

Q = AS−1 = AM−
1
2 (15)

So the problem of polar decomposition comes down to finding
M−

1
2 . For this, eigendecomposition of M is required. The algo-

rithm used here is the QR algorithm which decomposes a matrix in
a series of QR decompositions. Householder transformation is used
for each decomposition. Equation (12) shows that M is symmetric
and because of that, the QR algorithm yields, not only eigenvalues
(non-zero elements of the diagonal matrix λ), but also an orthogo-
nal eigenvector basis E.

M = EλE−1 = EλET (16)

M−
1
2 = Eλ

− 1
2 ET (17)

Since λ is diagonal (non-zero elements are only in the diago-
nal running from the upper left to the lower right), λ

− 1
2 is easy to

calculate as it performs the operation on every non-zero element
separately.

After allowing particles to be affected by all the constraints and
then updating them with the eq. (8) to regain their configuration as
a last step, the resulting behaviour will mimic that of a rigid body.

Rigid bodies that have all of their particles lying on a plane, or
on a line will produce A that is rank deficient. This will make M
rank deficient as well and the algorithm won’t produce the required
rotation matrix. We solve this problem by introducing three vir-
tual particles per rigid body. With them being basis vectors of the
identity matrix in local coordinate space and basis vectors of the
previous frame’s rotation matrix in global coordinate space, using
the eq. (9) yields:

A′n = cQ(n−1) (18)

Where A′n is the matrix that needs to be added to the summation
given in eq. (9) and c is a constant that prevents the previous frame’s
rotation matrix Q′(n−1) from influencing the current one more than
required. For our tests, we found that the value of c = 0.01 fixes
the dimension problem while making changes in the behaviour of
other rigid bodies unnoticeable. Another solution could be to use
oriented particles (see [CL18]).

It must be noted that the system presented so far is still suscep-
tible to some other frequent problems. For example, adding unnec-
essary energy when resolving initial invalid states must be solved
with stabilization. There is also an issue with tunneling, e.g. fluid
particle getting stuck inside a grid-like rigid body particle structure.
Both of those are solved in [MMCK14].

4. Joints implementation and types

The way we implement joints is by sharing one or more particles
between two or more rigid bodies (like in table 1). As the system
tries to keep the initial configurations of all the bodies, it will posi-
tion the joint-particles in the mean of the their separated positions
from all the rigid bodies they are a part of. This will in turn af-
fect the position and rotation of the rigid bodies and the process
will converge towards an acceptable configuration, should it exist.
The selection and position of the shared particles, as well as their
’normal’ neighbours, will determine how the joint behaves. This is,
unlike traditional joints, the only way of specifying behaviour.

Figure 2: Particles belonging to just one rigid body are colored
gray, while the one belonging to two rigid bodies is colored red.

The ball and socket joint has only one common particle between

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

7



B. Lovrovic & Z. Mihajlovic / Rigid Body Joints in Real-Time Unified Particle Physics

the rigid body pair which gives it three degrees of freedom (swing-
ing in two directions and twisting). Swinging is limited by the con-
tacts between the rigid body particles, while twisting has no limita-
tions (figure 3).

The hinge joint implementation shown in figure 3 removes one
swing direction, removes the twisting and limits the only remaining
swing direction by adding two rigid body particles next to the joint
ones. This can be used to model knees and elbows whereas a regular
hinge would allow equal rotation on the both sides of the swing
direction.

With four joint-particles, the stiff joint has no degrees of free-
dom. However, the inability of the system to converge fast enough
results in an interesting behaviour where the object can slightly
bend to it’s sides but still preserve it’s general shape. This is ideal
for modeling spinal cord joints.

The universal joint removes the twist direction. Adding support
for sub-dimensional rigid bodies from section 3.3 is important for
this joint to work, since it contains such bodies. It consists of three
rigid bodies connected by two hinges.

Figure 3: The described joint implementations. From left to right:
stiff joint, hinge joint, ball and socket joint and universal joint.

5. Results and possible improvements

The skeletal actor from figure 1 is made up of joints presented
so far. The system was compared with PhysX in Unreal Engine
4 (UE4) which gave results shown in table 2. Each object is a pair
of two rigid bodies and a joint between them. All presented joints
are equally used in all demos. As complexity was increased, both
systems became more similar in frames per second (FPS). With-
out knowing the details about the inner workings of PhysX it is
hard to make a fair comparison, but it gives an idea about the ex-
pected performance. Also, our method used the GPU considerably
more than UE4 did. It would be interesting to see a similar imple-
mentation, but in a force-based system like the one from [Har07].
This would remove the need to perform expensive matrix calcula-
tions from section 3.3. Another improvement would be to exploit
temporal coherence similar to [BYM05]. Storing particle data in a
texture should also improve performance, because that way, two-
dimensional cache of the modern GPU architectures would make
cache misses less frequent.

6. Conclusions

The presented system enables great alleviation of the work on the
CPU by migrating the rigid body and ragdoll physics processing to
the GPU. This way the CPU can spend its time to do other work
that is harder if not impossible to implement on the GPU. Making
this a uniform particle simulation allows for interaction with other
types of bodies (e.g. fluids) to emerge without any additional com-
putation. The biggest utilization would be in real-time interactive

Environment Object count FPS (GPU1) FPS (GPU2)

UE4 (PhysX)
300 195 195
600 95 95
1200 39 41

Our method
300 273 233
600 133 95
1200 40 36

Table 2: Measured performance of a simple demo scene where ob-
jects are being piled up. (GPU1: Quatro P6000, GPU1: GTX 1080,
CPU: i7-6800k)

applications. Entertainment software is usually built in such a way
and could benefit from methods presented here. The measurements
show that the presented system works well in comparison with to-
day’s commercial solutions such as Nvidia’s PhysX.

References
[BYM05] BELL N., YU Y., MUCHA P. J.: Particle-based simulation of

granular materials. In Proceedings of the 2005 ACM SIGGRAPH/Euro-
graphics symposium on Computer animation (2005), ACM, pp. 77–86.
1, 4

[CL18] CHOI M. G., LEE J.: As-rigid-as-possible solid simulation with
oriented particles. Computers & Graphics 70 (2018), 1–7. 3

[Ebe10] EBERLY D. H.: Game physics. CRC Press, 2010. 1

[Eri04] ERICSON C.: Real-time collision detection. CRC Press, 2004. 1

[Gre08] GREEN S.: Cuda particles. NVIDIA whitepaper 2, 3.2 (2008), 1.
1

[Har05] HARRIS M. J.: Fast fluid dynamics simulation on the gpu. In
SIGGRAPH Courses (2005), p. 220. 1

[Har07] HARADA T.: Real-time rigid body simulation on gpus. GPU
gems 3 (2007), 123–148. 1, 4

[HN16] HIGHAM N. J., NOFERINI V.: An algorithm to compute the po-
lar decomposition of a 3× 3 matrix. Numerical Algorithms 73, 2 (2016),
349–369. 3

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M., RATCLIFF
J.: Position based dynamics. Journal of Visual Communication and
Image Representation 18, 2 (2007), 109–118. 1, 2

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M., GROSS
M.: Meshless deformations based on shape matching. In ACM transac-
tions on graphics (TOG) (2005), vol. 24, ACM, pp. 471–478. 2

[Mil10] MILLINGTON I.: Game physics engine development: how to
build a robust commercial-grade physics engine for your game. CRC
Press, 2010. 1

[MM13] MACKLIN M., MÜLLER M.: Position based fluids. ACM Trans-
actions on Graphics (TOG) 32, 4 (2013), 104. 1

[MMCK14] MACKLIN M., MÜLLER M., CHENTANEZ N., KIM T.-
Y.: Unified particle physics for real-time applications. ACM Trans.
Graph. 33, 4 (July 2014), 153:1–153:12. URL: http://doi.acm.
org/10.1145/2601097.2601152, doi:10.1145/2601097.
2601152. 1, 2, 3

[OLG∗07] OWENS J. D., LUEBKE D., GOVINDARAJU N., HARRIS M.,
KRÜGER J., LEFOHN A. E., PURCELL T. J.: A survey of general-
purpose computation on graphics hardware. In Computer graphics forum
(2007), vol. 26, Wiley Online Library, pp. 80–113. 1

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M., POMER-
ANTES D., GROSS M. H.: Optimized spatial hashing for collision de-
tection of deformable objects. In Vmv (2003), vol. 3, pp. 47–54. 1

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

8

http://doi.acm.org/10.1145/2601097.2601152
http://doi.acm.org/10.1145/2601097.2601152
http://dx.doi.org/10.1145/2601097.2601152
http://dx.doi.org/10.1145/2601097.2601152

