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Figure 1: A facial UV completion example for an occluded UV texture constructed by sampling an image using the fitted facial model. In
this paper, a self-referenced discrimination method is presented to model the facial UV distribution without the complete UV ground-truth
based on face symmetry, enabling the network to be trained to synthesize high-quality facial texture with a set of incomplete UVs.

Abstract

A facial UV map is used in many applications such as facial reconstruction, synthesis, recognition, and editing. However, it is
difficult to collect a number of the UVs needed for accuracy using 3D scan device, or a multi-view capturing system should
be required to construct the UV. An occluded facial UV with holes could be obtained by sampling an image after fitting a 3D
facial model by recent alignment methods. In this paper, we introduce a facial UV completion framework to train the deep
neural network with a set of incomplete UV textures. By using the fact that the facial texture distributions of the left and right
half-sides are almost equal, we devise an adversarial network to model the complete UV distribution of the facial texture. Also,
we propose the self-referenced discrimination scheme that uses the facial UV completed from the generator for training real
distribution. It is demonstrated that the network can be trained to complete the facial texture with incomplete UVs comparably

to when utilizing the ground-truth UVs.
CCS Concepts

e Computing methodologies — Image processing; Neural networks;

1. Introduction

Significant progress of recent years in 3D face alignment enables
us to obtain accurate and dense correspondence between a 3D face
model and a 2D facial image [ZLL* 17]. A facial UV map generated
by sampling textures over the fitted image using the correspondence
has been widely used in many applications such as facial recon-
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struction, face recognition, and face editing [DCX* 18, TL19]. The
facial UV has many missing pixels due to the self-occlusion of the
face, i.e., the UV map is an image with hole regions. Fortunately,
image inpainting methods recently proposed have demonstrated
impressive completion capability of the hole regions on image
[DCX*18,LRS™18, YLY*19]. In particular, Deng et al. [DCX*18]
proposed a framework for Deep Convolutional Neural Network
(DCNN) to complete the facial UV map with the self-occluded re-
gion. However, the corresponding ground-truth images without the
holes for training the hole completion networks are necessarily re-
quired for the previous methods. Whereas lots of complete images
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are collectible, gathering a sufficient number of complete UVs to
train the deep network would have come with restrictions in reality.
Textured meshes from a 3D scan device or a multi-view capturing
environment should be required to construct the complete UVs.

In this paper, we propose a facial UV completion framework for
training the DCNN with the self-occluded UVs obtained from the
alignment to a face image as described in Fig. 1. For training the
network to encode and decode the incomplete region from the valid
region without the use of the complete UV, we devise an adversar-
ial network to model the complete UV distribution of the facial
texture. The facial textures of left and right half-sides are not same
exactly. However, their distributions for a sufficient number of faces
become almost equal. At least, one of the horizontal half-sides on
the facial UV has the valid pixels mostly, even for a profile face.

Motivated by these arguments, we introduce an adversarial net-
work that utilizes the facial symmetry to model the complete UV
distribution from an incomplete UV set, rather than using the sym-
metry as a hard regularization constraint used in many works re-
lated to facial UVs [TL19]. Also, we introduce a self-referenced
discrimination scheme where the UV texture completed by the gen-
erator is used for training the real distribution instead of using one
in the training set as described in Fig. 2. It is shown that the network
can be trained with the self-referenced discrimination to complete
the facial UV comparably to one trained with the ground-truth. By
helping the network to be trained without the use of the ground-
truth UVs, the method allows to simplify the completion and analy-
sis of the facial UV constructed from numerous images in-the-wild.

2. UV Texture Completion
2.1. UV Construction

Assume that a facial mesh v; is approximatively aligned to face
on image, and the mesh has the top pointing up the y axis and the
front pointing at the z axis. We use an unwrapped 2D texture of the
face onto the UV space by using spherical unwrap. For the facial
mesh v; = (x,y,z), the projected point vy = (u,v) onto the UV
coordinates is computed as:

u = o - arctan2(x,z) + Pu, v = oy - arccos (X> +Bv, (1)
r

where r = \/x? +y2 +z2, and oy, By, 0y and B, are scale and trans-
lation constants to locate the unwrapped face in image boundaries.

2.2. Generation Network

For an input UV texture with holes I, ¢ and the corresponding mask
M that indicates the valid regions on the texture, the generator net-
work G is trained to reconstruct the facial texture I, on UV space
as an auto-encoder. As our network assumes that the ground-truth
texture, or the correspondingly completed texture, is unavailable,
the reconstruction loss (L) of the generator network is defined by
measuring the pixel-wise /| norm on the valid texture regions as:

1
Lg,. = lef H (Iout - Iref) QMHl 2
where © denotes element-wise multiplication and Ny, , is the num-
ber of elements in L,y (M,,, = H-W -C, and H, W and C are the
height, width and channel size of I, 7, respectively).

For our generator network, we use a U-Net structure similar to
the ones used in [LRS*18, DCX* 18], replacing all convolutional
layers by the gated convolution layers proposed in [YLY*19] as
described in Fig. 2. In particular, ReLU layers are used for acti-
vation functions for the encoder of the generator and LeakyReLU
layers are employed for the decoder except the last layer, where a
tanh activation layer is used for clipping the output value. The 3x3
filters are used over the convolutional layers except the first 3 con-
volutional layers of the encoder, where the 5x5 filters are employed.
The convolution layers of the encoder operated with striding of 2
and the features are nearest neighbor up-sampled after each con-
volution layer in the decoder. The gated convolution layer helps
the generator to cope with various shapes of the holes by gener-
ating a mask dynamically according to the input features, and the
input holes on the UV texture do not have to be filled with the
mean value of the valid texture or random noise as in [DCX*18].
We concatenate the incomplete UV with the corresponding mask
and its left-to-right flipped image as an input of the generator net-
work. The U-Net structure enables to obtain a high-quality image
by preserving the image information on the original scale through
the encoder-to-decoder skip connections. However, the reconstruc-
tion loss Lg,, in (2) forces the network to skip and pass the in-
put features (valid textures) to the decoder rather than to encode
textures for the incomplete regions from the features. The recon-
struction loss is to preserve the high-detail texture on valid regions,
while the adversarial loss defined in the following subsection helps
the generator to complete the occluded regions on the UV, i.e., to
encode the features for the incomplete regions.

2.3. Discrimination Network

Our key idea comes from the basis that the facial texture distribu-
tions of the left and right half-sides are almost equal when a suffi-
cient number of facial images are given. Also, the facial UV has at
least one of the half-sides that is composed of the valid pixels on
most part, even for a profile face on the image. Thus, we model the
texture distribution on the more valid side and manipulated them
to complete the hole of the other side using a Generative Adver-
sarial Network (GAN) loss. Nevertheless, the holes exist even on
the more valid side of largely posed faces and they can force to
generate the flipped hole to the other side.

To handle the problem, we present a discrimination scheme
where the discriminator the reconstructed UV texture from the gen-
erator instead of using one of the training set. In the proposed
method, the more valid side of the reconstructed UV texture is used
as the data (real) distribution and the other side as the generator
(fake) distribution. As the generator, G : (L,f,M) — Iou, has the
U-Net architecture, training the network with the loss Lg, . in (2)
makes the generated UV texture from the network nearly equivalent
to the input facial UV in a few training iterations, i.e., Loy = Iou.
In this case, the filters of the encoder in G cannot be trained since
skipping image features to the decoder without encoding features
is the best way to decrease the loss. When the adversarial loss is
jointly used, the filters of the encoder are trained to fill the hole,
resulting in the more completed UV texture while the facial texture
on the input UV is preserved in original detail. Thus, I, becomes
more completed in both the half-sides than I,.; over the training
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Figure 2: The overview of our architecture for learning UV completion. It consists of a generation network G for the UV completion and
a discrimination network for giving the context of occluded regions to the generation network during the training procedure. Between the
left or right sides of the facial UV, the discrimination network learns to distinguish the more valid side as real and vice versa, while the
generation network is trained to fool the discriminator by encoding features of incomplete regions.

Algorithm 1 Split procedure of the output UV texture from the
generator for the UV discrimination network.

1: function GET_SPLITS(Iyu:, M)

2: (Miefr>Lright) < split_horizontal(Iou)
3 (Mye g1, Myjgn) <= split_horizontal(M)
4 Liigis < flip_horizontal(L;gp )

5: M,igh; < flip_horizontal(M,gp )
6
7
8
9

if sum(Myef;) > sum(M,gp,,) then
Xuy < Ilefl’ Xz < Iright

else

: Xuv = Lijghe, Xz <= Lje gy

10: end if

11: return (X, Xz)

12: end function

iterations. Based on the property, we utilize Lo, instead of L, ¢ as
the data distribution of the adversarial loss in the discrimination
network. In addition, we denoted the adversarial scheme as a self-
referenced discrimination. The self-referenced discrimination pre-
vents the flipped holes on the UV texture and enables the generator
to complete the facial texture in detail. For Ly, let two horizon-
tal half-sides be x,» and x;. The procedure to get X, and x; from
Lour is summarized in Algorithm 1. The discriminator is trained to
distinguish those sides between real and fake, and the generator is
trained to fool the discriminator. Thus, the adversarial losses for the
discrimination (Lp) and generation networks (L, ) are defined as:

Lp =Ex,, [log (D (xu))] +Ex, [log (1 - D (x2))],
LG4, =Ex. [logD (x)]. 3)

The total loss of the generation network is defined as the summa-
tion of the reconstruction and the adversarial losses: Lg = Lg,, +
AGLg,,,» Where Ag is a constant for balancing between two losses
and we use Ag = 0.001 for our experiments. The loss Lg,,, enables
the encoder filters of the generation network to be trained, yield-
ing the more completed UV texture not only on the side x; but the
side Xyy. The loss Lg,, helps the facial texture on the UV plane
to be preserved in an original resolution. The discriminator is then
trained by the updated regions, i.e., more completed regions. We
use the spectral normalization (SN) [MKKY 18], which is recently

(© 2020 The Author(s)
Eurographics Proceedings (© 2020 The Eurographics Association.

proposed weight normalization method, to more stabilize the train-
ing of the discriminator. The architecture of the discriminator, as
well as the generator, is described in Fig. 2. The discriminator use
the 5x5 filter and LeakyReLU activation for all convolution layers
in our implementation.

3. Experiments

Training Data and Procedure For quantitative measurements of
the completion performance, we employed the UV dataset con-
structed from Multi-PIE [GMC*10] with 337 identities in the work
of [DCX*18]. The UV dataset is composed of 2,514 different fa-
cial UV maps for various illumination environment and 50,280
UV images in total. For qualitative analysis, we used the CelebA
dataset [LLWT15], which composed of 202,599 facial images with
10,177 identities. To obtain the alignments of the facial model on
images of the CelebA dataset, we employed one of the state-of-the-
art methods [ZLL*17]. The UV maps corresponding to the align-
ment were constructed using the spherical unwrap in (1). The image
size of 256x256 of the UV texture was used to feed the network for
the training. Our model was trained with Tensorflow r1.14, CUD-
NNv7.3, and CUDA10.0. We used Adam for the optimization and
trained using a single NVIDIA 2080 Ti (11GB) with a batch size
of 16 and a learning rate of 0.0002.

Methods We evaluated the qualitative performance of our network
with two variants. The first one used the flip-symmetric reconstruc-
tion loss used in [TL19] instead of using the adversarial loss in
(3), for training the generator. The other one used the more valid
side of the UV texture on the training set instead of using one ob-

(a) Input UV (b) GT (¢) Flip-loss  (d) Data-ref. (e) Ours

Figure 3: Qualitative comparisons of UV completion results.

tained from the generator, for training the discriminator. Here, we
denote the first and second ones as ‘flip-loss’ reconstruction and
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Figure 4: Qualitative results on the CelebA dataset. Best viewed in zoom-in.

Table 1: Results of measurements on the Multi-PIE UV dataset.

L (%) b (%) TV (%) PSNR SSIM

UV-GAN - - - 26.5 0.898
Flip-loss 8.575 1508 2.489 246 0.871
Data-referenced 12.168  3.028 2.732 21.8  0.846
Ours 7.257  1.083 2.212 26.7  0.907

‘data-referenced’ discrimination methods, respectively. We used
the [; error, /5 error, total variation (TV) loss, peak signal-tonoise
ratio (PSNR), and structural similarity index (SSIM) to measure
the completion performance of the network following the previ-
ous image completion works [YLY*19, DCX*18]. The qualitative
measurements are summarized in Table. 1. The PSNR and SSIM
measurements of the UV-GAN, which was trained with the com-
plete UV ground-truth, are additionally represented in the table as
reported in [DCX*18]. Our method outperforms the results of the
flip-loss reconstruction and data-referenced discrimination. Also,
it can be shown that through self-referenced discrimination, PSNR
and SSIM values comparable to the UV-GAN can be obtained with-
out the use of the ground-truth UV textures. Figure 3 shows some
visualizations of the completion results on the Multi-PIE dataset.
Although data-referenced discrimination fills the holes in fine res-
olution, the capacity of the filling is limited to the validity of the
more valid sides of the training set. The flip-loss reconstruction
method shows the lack of details in the completed regions. To ver-
ify our method on faces in-the-wild, the completion was performed
on the UV maps constructed from the alignments to the CelebA
dataset. Some results of those are visualized in Figure 4, where
synthesized faces in different facial views are constructed from the
completed UV. Our method completes the holes in a resolution of
the valid region while preserving the original texture of the facial
UV. Nevertheless, for some misaligned images where background
textures are regarded as valid pixels in the networks, it might not
correct the background region of the valid mask and complete the
hole by using the incorrect clues. Thus, our method is somewhat de-
pendent on the alignment accuracy used to construct the UV plane.

4. Conclusions

We have introduced a facial UV completion framework to train the
deep neural network with a set of incomplete UV textures. When
a sufficient number of facial images are given, the facial texture

distributions of the left and right half-sides becomes almost equal.
Based on the fact, we modeled the complete UV of the facial tex-
ture using the GAN. For training the GAN, we proposed the self-
referenced discrimination scheme that uses the UV texture more
completed from the generator as the real distribution rather than
using one of the training set. Through the experiments, it is ver-
ified that the network can be trained to complete the facial hole
on the UV plane without the use of the ground-truth UVs. Also, the
quantitative results were comparable to those of the network trained
with the ground-truth. Future works could be correcting non-facial
texture, and expanding our method to a general inpainting scenario.
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