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Figure 1: Running and jumping motion of a character before (red) and after (blue) our neural motion compression. The size of the data is
8.17 times smaller while the differences of the coordinates of joint positions are below 3.7% of the character’s height. Five frequencies are
adaptively sampled for the Fourier feature to achieve high compression ratio.

Abstract

We present a neural-network-based compression method to alleviate the storage cost of motion capture data. Human mo-
tions such as locomotion, often consist of periodic movements. We leverage this periodicity by applying Fourier features to a
multilayered perceptron network. Our novel algorithm finds a set of Fourier feature frequencies based on the discrete cosine
transformation (DCT) of motion. During training, we incrementally added a dominant frequency of the DCT to a current set
of Fourier feature frequencies until a given quality threshold was satisfied. We conducted an experiment using CMU motion
dataset, and the results suggest that our method achieves overall high compression ratio while maintaining its quality.
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1. Introduction

High-quality character animation is a vital element of immersive
experiences in various interactive applications, such as video games
and virtual reality systems. To make the animation of characters
controllable, such applications often leverage a huge database con-
sisting of motion data acquired from motion capture or created by
artists [KGP02]. However, storing the motion data in the disk and
streaming the data into the memory is often costly.

Motion compression is one approach to addressing this chal-
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lenge. Researchers have investigated efficient methods for reducing
the size of motion data using a variety of techniques such as a prin-
cipal component analysis (PCA) [Ari06], wavelets [BPvdP07], and
pattern indexing [GPD09]. However, these previous studies did not
explore ways to exploit emerging neural representations.

Neural-network-based representations of images and shapes
have recently gained significant interest. Among them, coordinate-
based networks, which map spatial coordinates to the value at
the point (e.g., color and occupancy) provide memory-efficient
representations [MLL*21]. For such compact coordinate-based
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networks to learn high-frequency details, input encoding tech-
niques such as Fourier features [TSM*20] are commonly adopted
[MST*20].

Drawing inspiration from these studies, we present a method for
compressing motion sequences using a neural network with Fourier
features. The scalar time input is encoded using trigonometric func-
tions and then mapped to the configuration of the articulated joints
using a multilayer perceptron (MLP). Instead of stochastic sam-
pling, as in the original study [TSM*20], we propose determin-
ing a set of frequencies for the Fourier feature based on the dis-
crete cosine transformation (DCT) of the motion sequence. We
demonstrate the effectiveness of our method by comparing it with
a method based on singular value decomposition and a model with
a naive choice of frequencies in the Fourier feature.

2. Related Work

Researchers have tackled the problem of compressing motion se-
quences by leveraging both spatial and temporal redundancy in the
data [LTYF19]. Arikan [Ari06] proposed the parameterization of
a motion as cubic Bézier segments and then reducing the number
of parameters using a PCA. Beaudoin et al. [BPvdP07] presented a
wavelet-based compression method tailored for motion sequences
to exploit their temporal coherence. Gu et al. [GPDO09] introduced a
method for detecting redundant patterns in a motion sequence and
removing them using a hierarchical data structure. However, none
of the previous studies considered the use of neural representations
for motion compression.

With the rise of neural data processing, data compression us-
ing neural representations has gained significant attention. Emerg-
ing neural implicit representations for images and 3D shapes can
reconstruct highly complicated signals with a compact network,
drastically reducing the data size [MLL*21]. To facilitate the learn-
ing of high-frequency signals, several implicit networks period-
ically encode the input data, that is, encoding with Fourier fea-
tures [TSM*20]. We have taken inspiration from these researches
and designed a neural representation of motion sequences to reduce
their data size.

Data-driven character animation controllers are another grow-
ing field of research applying neural networks to synthesize ani-
mation data. Fragkiadaki et al. [FLFM15] presented a model that
extends recurrent neural networks (RNNs) with encoder and de-
coder networks to synthesize character locomotion sequences. In
addition, to model complicated interactions between the character
and its surroundings, Holden et al. [HKS17] changed the network
weights based on the phase of motion. Although these studies at-
tempt to generate an unseen animation from training data, we focus
on obtaining a compact representation of existing motion without a
quality degradation.

3. Method

Given a character motion sequence, we compute its compact repre-
sentation using a neural network. Owing to inertia, character mo-
tion is generally temporally coherent, that is, the pose changes con-
tinuously over the frames. Hence, the neural network approximates

a continuous function that takes the normalized time 7 € [0, 1] as in-
put to output the character pose. This multivariate nonlinear func-
tion is modeled by combining the Fourier feature [TSM*20] and a
multilayer perceptron (MLP).

Pose Parameterization Similar to the typical rigged character
representation, we assume that the pose of the character is de-
scribed with a skeleton comprising a tree of bones, where the trans-
formation of the bone is hierarchically applied from the root bone
to the child bones. The pose of the character in one frame is repre-
sented by m parameters y € R™, which contain the translation and
rotation of the root bone and the relative rotation of the child bones
with respect to their parent bone.

We carefully chose the numerical representation of the rotation
to make it compact while avoiding a discontinuity. We represent ro-
tation of the root bone with a quaternion to continuously parameter-
ize large rotations exceeding 7. Note that the negative of a quater-
nion represent the same rotation as the original quaternion. To avoid
the discontinuity caused by switching between two representations
in the adjacent frames, we choose from quaternion and its negative
the one that is similar to the previous frame in the sense of the L2
norm. The 6D rotation representation [ZBJ*19] can be potentially
used here, but our quarternion representation suffices for the char-
acter’s root bone rotation. The relative rotations of the child bones
are typically small because of joint limits. Hence, in this study, we
parameterize them using an axis-angle representation.

3.1. Fourier Feature-based Motion Representation

Fourier Feature The input of scalar time # is first mapped to the
high-dimensional Fourier feature using trigonometric functions to
facilitate high-frequency pose regression using the MLP. Given a
set of K angular velocities Q = {®;,®,, ..., 0k}, we compute the
Fourier feature x € R2X*1 at time 7 as

x(1;Q) = {¢,sinot,cos 01, ..., sin(oKt,cos(oKt}T . (D

The Fourier feature x(¢) is then passed to the network F that out-
puts the pose of the character. The angular velocities in Q are adap-
tively determined during training using the algorithm described in
Section 3.2.

Although the original Fourier feature [TSM*20] consists only
of sinusoidal components, we add the linear component ¢ to
the Fourier feature. This corresponds to angular velocities small
enough to make sinusoidal functions approximately linear for r €
[0,1] and helps the network learn the part of the function that
change linearly with the input time. Such a linear relationship is
commonly seen in the translation component of the pose represen-
tation when the character walk/run at a constant speed.

Network Architecture We designed our MLP based on the net-
work architecture tailored to represent the pose presented in
[HKS17]. Specifically, we employ a simple three-layer neural net-
work to learn the relationship between the input parameters x €
R?(+! and output pose parameters y € R” as

F(x;0) = WoELU (W{ELU (Wox+bg) +b1) +by,  (2)
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Algorithm 1 Frequency-adaptive Fourier feature compression.

Input: sequence of the pose parameters {yi,...,yn}
Output: network weights o, angular velocities Q

1: Initialize Q = )

2: while True do

3: Construct {x1,Xz,...,Xy} from Q (1).

4: Update o by training network (3).

5: if Joint position error is below threshold then

6: break

7: Compute residual R =Y — F(X).

8: Compute first component p via PCA on residual.

9: Compute DCT on the first component in the residual.
10: Append new frequency to Q.
11: Construct network with bigger size and copy old weights.

12: return o, Q

where o is the set of trainable parameters a = {W, €
R Wi e R W, e R™™ by € R", by € R" by € R},
In this study, we chose the size of the hidden layer to be double the
size of the input 7 = 2(2K + 1). Here, ELU represents the exponen-
tial rectified linear function [CUH16].

Error Metric The goal of the compression is to represent motion
sequence with small number of parameters while keeping the error
small. We measured the error of the motion compression by com-
paring the positions of the joints in the skeleton before and after
compression. Specifically, we report the Loo norm (i.e., maximum
difference) of the position difference over all joints and all frames.
The ratio of the compression is computed by the number of param-
eters in the network o divided by the number of parameters in the
original representation.

Network Training It is extremely difficult to directly optimize the
network weights o for the error defined by the Lo norm. Instead,
we optimize the network weights with a different loss function de-
fined through the L, norm, using the originally defined error metric,
as with the stopping condition of the entire pipeline.

We denote the sequence of N animation frames with con-
tinuously parameterized poses as Y = {yi,y2,...,yn} € RV*m
and the corresponding Fourier features as X = {x;,Xp,...,Xy} €
RV*ZK+1 The loss function used to train the network can be writ-
ten as

N
£(0) = Y. {yi— F (xi)}ow]%, 3)

i=1
where the “o” symbol represents element-wise multiplication (i.e.,
Hadamard product). The vector w € R is the weight of the pose
parameter that encodes the extent to which the change in the pa-
rameter roughly results in a change in the joint positions. In this
study, we set the weights 1 for the translational component and the
distance between the farthest joint position in the child bones in
the initial frame for the joint rotations. Multiplying this weight w
unifies the physical dimensions of the pose parameters, that is, the
mixture of the lengths (root bone translation) and angles (joint ro-
tations).
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3.2. Frequency-adaptive Fourier Feature

Character motion, such as human locomotion, cycles itself and
therefore often has a few dominant frequencies. While the origi-
nal Fourier feature in [TSM*20] chooses a set of frequencies Q
through stochastic sampling, our training pipeline adaptively iden-
tifies such dominant frequencies from the input motion sequence
and uses them for the Fourier feature.

We start training the network using the feature x(¢) = ¢ with
empty Q. After the network training is completed, the dominant
frequency in the residual of the function fitting is added to Q and
the larger network is trained again. This process is iterated until
the error of the joint position difference is under a given thresh-
old. When the size of the network is changed due to addition of the
new frequency, we copy all the weights from the previous smaller
sized network to warm start the training instead of training from
scratch. As a result, the network weights decrease steadily during
entire fitting process even if the network size changes.

The dominant frequency is computed by combining a PCA with
a discrete cosine transformation (DCT). First, we compute a resid-
ual matrix, which is the difference between the target data and the
evaluated function R = {Y — F(X)} € RV*™. Each row of the
residual matrix is then weighted using w. By applying the PCA
to the weighted residual matrix, we obtain the first component
p € R™. We then apply the DCT to the time history of the first
component in the residual and find the dominant frequency as the
peak of the output of the DCT.

In summary, our algorithm used for constructing neural network
while adaptively choosing the Fourier feature frequencies can be
written in a pseudo code as Algorithm 1.
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Figure 2: Neural motion compression of 116 sequences randomly
selected from the CMU motion capture database [cmu]. Data cor-
ruption is seen in the motion of the high compression error. For
example, the character’s toes vibrate and flip for the motion with
highest error (maximum joint coordinate difference is 20.3% of the
character’s height which is about 31.1 cm).
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4. Results

We applied our method to CMU motion capture database [cmu] and
compared to several baseline methods. To evaluate the compression
methods, we used two metrics: the reconstruction error (i.e., max-
imum difference in the joint position) and the compression ratio
(i.e., size of Y divided by the number of neural network parameters
o). The training takes about one minute and a half on average to
train up to K = 10 for motion sequence with 900 frames.

In Figure 2, we present the results of our method for various
motion sequences randomly chosen from CMU motion capture
database [cmu]. We can see that our approach can reduce the stor-
age size 2 to 15 times while maintaining the reconstruction error
below 2%, which is about 3 cm, in most cases.

4.1. Comparison with baseline methods

We compared our method with a baseline approach based on a sin-
gular value decomposition (SVD). We decompose the matrix Y and
compute its low-rank approximation using SVD. Another baseline
approach is naive deterministic choice of Fourier feature frequen-
cies where their angular velocities are consecutive integers (i.e.,
Q ={1,2,...,K}). Note that angular velocity takes value two, for
example, when its feature cycles twice throughout the sequence.

Figure 3 compares compression results of the three methods
(compression using SVD, naive choice of Fourier frequencies, and
ours). The results suggest that our method achieves better perfor-
mance (e.g., lower reconstruction error with higher compression
ratio) than other two methods. This suggests that an appropriate
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Figure 3: Comparison of compression performance between sin-
gular value decomposition (SVD), naive choice of Fourier feature
[frequencies (naive frequency) where the angular velocities are in-
tegers (i.e., Q ={1,2,...,K}) and our adaptively chosen Fourier
frequencies (adaptive frequency). We compress with various num-
bers of nonzero singular values and with various number of Fourier
feature frequency K. Our compression outperforms the other meth-
ods in terms of trade-off between error and compression ratio.

choice of Fourier feature frequencies is of significant importance
for a neural network to faithfully represent the original motion.

5. Conclusion

In this study, we used a neural network with the Fourier feature to
obtain a compact representation of a given character animation se-
quence. We selected Fourier feature frequencies based on the DCT
of the input sequence to capture periodicity in the data. Our method
can compress motion sequences with a low reconstruction error
than other baseline methods based on the SVD or naive frequency
choice of Fourier feature.

One fundamental limitation of our method is that it is difficult to
represent discontinuously changing data, which is often seen in the
corrupt capture. Currently, the training is performed independently
for each motion sequence. In a future study, we are planning to
achieve further compression by encoding common style of motion
(e.g., walking or running) seen across many motion sequences.
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