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Abstract
The performance of Markov Chain Monte Carlo (MCMC) rendering methods depends heavily on the mutation strategies and
their parameters. We treat the underlying mutation strategies as black-boxes and focus on their parameters. This avoids the
need for tedious manual parameter tuning and enables automatic adaptation to the actual scene. We propose a framework for
out-of-the-loop autotuning of these parameters. As a pilot example, we demonstrate our tuning strategy for small-step mutations
in Primary Sample Space Metropolis Light Transport. Our σ-binning strategy introduces a set of mutation parameters chosen
by a heuristic: the inverse probability of the local direction sampling, which captures some characteristics of the local sampling.
We show that our approach can successfully control the parameters and achieve better performance compared to non-adaptive
mutation strategies.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Markov chain Monte Carlo (MCMC) rendering methods have been
an active area of research in recent years. MCMC rendering uses
a correlated sequence of samples: transport paths representing the
state of the Markov chain, where the next state is iteratively gen-
erated based on the current one. Rendering efficiency depends on
how well the path space is explored, and MCMC methods differ in
how new paths are obtained using mutation strategies. Each strat-
egy has one or more parameters which control the perturbation of
the samples. A poor choice of parameter values results in unfavor-
able exploration and higher variance, e.g. due to highly-correlated
Markov chains.

In this paper, we propose a framework for out-of-the-loop auto-
tuning of the mutation kernel parameter, which is agnostic to the
underlying mutation strategy. Our framework decouples the tun-
ing process from rendering, allowing us to also tune strategies with
complex parameterizations, and to use generic optimization tech-
niques.

We showcase our novel σ-binning strategy for parameter tuning
using small-step mutations of Primary Sample Space Metropolis
Light Transport [KSAC02]. Instead of only tuning a single (global)
scaling parameter, our σ-binning maintains a set of scaling param-
eters for mutations which are chosen depending on the probability
density function (pdf) of local direction sampling. The intuition
is that the scaling parameter should depend on surface properties.
Note that this pdf can be evaluated independently of the actual mu-

tation strategy, i.e. the latter can still be considered as a black-box.
Our experiments confirm that autotuning can successfully control
the parameters of the σ-binning strategy.

2. Background and Related Work

Path Integral. The path integral [Vea98] determines the intensity
of a pixel: I =

∫
P f (x̄)dµ(x̄), where P is the path space, the set of

all transport paths of all possible lengths. An individual path x̄ ∈ P
is defined by a sequence of (surface) points; dµ is the product area
measure. The measurement contribution function f is the contri-
bution of a single path. For brevity, we omit the pixel index and
assume the reconstruction filter being integrated into f .

Primary Sample Space. We present our approach for Primary
Sample Space MLT (PSSMLT) [KSAC02]. Here each path x̄ is de-
fined by a vector of random numbers ū ∈ U = [0,1)n. A path sam-
pling strategy, e.g. path tracing, maps elements ū of the primary
sample space U to actual paths, and consequently n is the number
of required random numbers. Using U as the state space simplifies
MCMC rendering compared to the original MLT [Vea98] where the
path space serves as the state space.

Let S : U →P be the path sampling function mapping a primary
sample ū to a path x̄. By the change of variable, the path integral
can be written as

I =
∫
U

f (S(ū))
∣∣∣∣dS(ū)

dū

∣∣∣∣dū =
∫
U

f (S(ū))
p(S(ū))

dū =
∫
U

C̃(ū)dū, (1)
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where p(x̄) is the pdf (with respect to dµ) of the path x̄ generated

by the function S. Here,
∣∣∣ dS(ū)

dū

∣∣∣= 1
p(S(ū)) and C̃(ū) = f (S(ū))

p(S(ū)) .

MH Update. PSSMLT uses the Metropolis-Hastings (MH) algo-
rithm with the scalar contribution function C̃∗(ū) as target density;
typically using the luminance of C(ū). It iteratively updates the cur-
rent sample to the next. Given the current ū, the algorithm first pro-
poses a tentative sample v̄, which is obtained using the transition
kernel T (· | ū). The proposed sample v̄ is either accepted or rejected
according to the acceptance probability

a(v̄ | ū) = min
(

1,
C̃∗(v̄)T (ū | v̄)
C̃∗(ū)T (v̄ | ū)

)
. (2)

If accepted, v̄ becomes the next state; otherwise, ū is also kept as the
next state. The N-sample estimate of the path integral then becomes
Î = b

N ∑
N
i=1

C̃(ūi)

C̃∗(ūi)
, where b :=

∫
U C̃∗(ū)dū is the normalization con-

stant. The constant b is typically estimated once using ordinary MC
techniques.

Mutation Techniques. PSSMLT uses two mutation strategies:
large-step and small-step mutations. The large-step mutation reini-
tializes the state with uniform random numbers for global explo-
ration. The small-step mutation explores locally by perturbing each
random number of the current state ū independently with N (ui,σ).

Adaptive Mutations. Several approaches strive to control the per-
turbation (parameters) for MCMC rendering. Zsolnai et al. [ZS13]
propose to control the selection probability for the large-step
mutations based on gathered statistics. The approach by Li et
al. [LLR∗15] adapt to the local structure of the state space by us-
ing the derivatives of the integrand. Hachisuka et al. [HJ11] ap-
plied adaptive MCMC in the context of photon tracing. Otsu et
al. [OHHD18] adapted the mutation to the surrounding geometry
around a path. These approaches rely on domain knowledge ob-
tained from either the target function or the generated samples,
thus they are tightly coupled to the specific mutation strategy. In
contrast, we aim at not being dependent on the mutation strategy.

Autotuning and Optimization Autotuning and machine learn-
ing have proven to be useful for various applications in computer
graphics. Currently, optimizing program parameters is often done
ahead of time with tools such as OpenTuner [AKV∗14], which uses
a variety of methods, including Nelder-Mead [NM65], of which we
use a more recent variation [Cha12] in our work.

3. Method Overview

Motivation. In this section we present our method which treats
the rendering process as a black-box whose performance depends
on a set of input parameters, i.e. our method is independent of the
underlying technique. The autotuning process only modifies these
inputs and assesses the output without using domain knowledge of
the rendering process. Since the optimization takes place outside of
this black-box, we name it out-of-the-loop autotuning.

To go beyond demonstrating our framework for a single, global
parameter, we introduce more fine-grained tuning capabilities with
our novel σ-binning (Section 4). This increased granularity (more
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Figure 1: Bin landscapes with two identical scenes except for one
of the boxes having a plastic material. The bump corresponding to
the different materials is visible at 0.45 on the x-axis.

tuning parameters) would be more difficult for a user to control and
thus can be considered a good application for autotuning.

Top-Level Optimization Loop. Starting from an initial set of pa-
rameters, out-of-the-loop autotuning executes the rendering pro-
cess with a fixed number of samples. Next, the metric to be op-
timized (e.g., a perceptual metric, variance, rendering time, accep-
tance ratio, etc.) is computed from the outputs of the rendering pro-
cess. Based on the history of input parameters and the outputs, the
autotuner determines the next set of candidate parameter values.
The convergence time in our experiments was below 50 iterations,
as motivated by the leftmost Figure 2, after which we continue ren-
dering using the best configuration found.

4. Parameterization and Autotuning with σ-binning

Variable Scaling for Local Direction Sampling. The original
PSSMLT employs the single global parameter for the perturbation,
which specifies the standard deviation of the per-dimensional nor-
mal distributions. When mapped through the path sampler, the per-
turbation of an element of the primary sample corresponds to the
perturbation of the sampled local directions. Thus the directional
perturbation occurs irrespective of the surface properties. Our idea
for the new mutation technique is based on the observation that the
scaling parameter should depend on the surface properties.

Parameterization. The pdf for BSDF sampling obtained during
path creation will also depend on the different incoming directions
and materials. Based on this insight, we classify the scaling param-
eters according to the reciprocal pdf of the local direction sam-
pling. Figure 1 illustrates the influence of surface properties on the
reciprocal of the pdf Let u be the element of the primary sam-
ple corresponding to the direction sampling. We define a function
Θ(u) = 1

α·pσ(ω(u))
, where ω(u) is the mapped direction using the

path sampler and pσ(ω(u)) is the pdf of the local direction sam-
pling with respect to the solid angle measure. Here, the parameter
α controls the spread of the reciprocal pdf. Let M be the size of
bins. We split the interval [0,1) into partitions A1,A2, . . . ,AM−1,
where 0 < A1 < · · · < AM−1 < 1. For convenience, A0 := 0 and
AM := 1. Here, the interval [Ai−1,Ai) corresponds to the i-th bin.
We define the scaling parameters σ1,σ2, . . . ,σM for each bin. Then
the scaling parameter corresponding to the current state u is defined
by σ(u) = σi if Θ(u) ∈ [Ai−1,Ai).

We use the same mapping Θ for all local direction samplings,
regardless of the number of bounces. The partition A1, . . . ,AM−1
and the scaling parameters σ1,σ2, . . . ,σM are exposed as a set of
parameters for the mutation strategy. To evaluate how impactful the
bins will be, we used M = 200 equally spaced bins and counted how
many samples fell in each to produce histograms (see Figure 1).
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Figure 2: Left: Convergence during tuning. Red line is a non-
tuning run (always same configuration) to show the variance be-
tween iterations. Right: Different bin positions and σ-values have
been optimized. Bins locate features and the values are in a sensibe
range.

The number of different prominent features is usually low in all the
scenes we have tested, i.e. there are not many small, sharp peaks.
The effect of tuning smaller features (those having a small area on
the histogram) is easily drowned in the rendering noise, so having
only a few bins is sufficient for our optimization. Higher bin count
usually do not converge on more difficult scenes. The parameter
α is configured to capture the spread of the reciprocal pdf in the
predefined range [0,1) (values outside are clamped). We found that
this parametrization is consistent and stable accross scenes, so we
use α = 4π for all scenes.

Bin Positions as Parameters. Including the bin positions into the
optimization is critical for satisfactory results. Using between 5
and 10 bins produces similar results and tuning their number only
makes convergence longer. We therefore decided to not include
the number of bins as a parameter. We report a run with 8 dif-
ferent bins in Figure 2. This figure shows the bins correctly en-
circling interesting features. The first and second bin separate the
leftmost sharp feature from the flat portion preceding the next sharp
peak. The large (resp. small) σ values show where the samples in
this remapped space require larger (resp. smaller) mutation size.
Note that each bin has an effect proportional to the area of the
histogram they contain. It is clear from this distribution that less
bins could have been employed as the tail of the distribution seems
to prefer uniformly higher values of σ. Separating the features is
not our primary goal, it is a by-product of the autotuning process
which informs us that using different σs for different features of
this remapped space does improve the error metric.

Handling Constraints in Autotuning. The autotuner can only
tune parameters between fixed bounds and cannot handle con-
straints between parameters. In order to impose the constraint
0 < A1 < · · ·< AM−1 < 1, we introduce a mapping of the partition
A1,A2, . . . ,AM by a sequence of numbers a1, . . . ,aM+1 in [0,1),
defined by Ai = (∑i

j=1 a j)/S for i ∈ {1, . . . ,M − 1}, where S =

∑
M+1
i=1 ai. This mapping guarantees that the numbers A1, . . . ,AM−1

satisfy the desired constraint. Eventually, the autotuner optimizes
the parameters a1, . . . ,aM+1 and σ1, . . . ,σM . This corresponds to
two tables of values. These values are optimized within predefined
bounds: [0,1) for each number of a1, . . . ,aM+1 and [0.0001,0.3] for
the σ-values.

Optimization Criteria. The optimization criteria can be a variety
of measurable quantities, such as rendering time, (r)RMSE, accep-
tance ratio etc. We choose to optimize with respect to the accep-

tance ratio. Indeed, there is an optimal value of the acceptance ratio,
0.234, that can be derived mathematically under certain assump-
tions [AT08]. We found it to be satisfactory in our case. Optimizing
for rendering time yielded similar results.

5. Small-Step Mutation with σ-binning

Non-Symmetric Proposal. The original PSSMLT uses the fixed
parameter as the standard deviation. Thus the transition probability
between the current state ū and the proposed state v̄ can be consid-
ered symmetric, that is, T (v̄ | ū) = T (ū | v̄). This simplifies the com-
putation of the acceptance probability since the terms cancel out:
a(v̄ | ū) = min

(
1,C̃∗(v̄)/C̃∗(ū)

)
. Our method uses state dependent

mutation parameters, thus the symmetric property no longer holds,
which necessitates the evaluation of the transition probabilities.

Truncated Normal Distribution. In the original PSSMLT, if the
perturbed value is outside of the interval [0,1), the value is wrapped
to [0,1). Thus the normal distribution on the domain is technically
a wrapped normal distribution. The pdf of the wrapped normal dis-
tribution involves an infinite sum since the normal distribution has
an infinite support. In order to avoid the complication with respect
to the wrapping, our approach uses the truncated normal distribu-
tion. We configure the truncation interval to be [−1/2,1/2), so that
for all proposal in [0,1), there is only one way to perturb the current
state to the proposal.

Let ū and v̄ be the current and proposed states, where the ele-
ments of each state are indexed by i. Since the mutation happens in-
dependently per dimension of the primary sample, we can write the
acceptance probability as a(v̄ | ū) = min

(
1, C̃∗(v̄)

C̃∗(ū)
·∏i R(ui,vi)

)
,

where R(ui,vi) := T (ui | vi)/T (vi | ui) denotes the ratio of the tran-
sition probabilities for the i-th element. Let σu and σv be the stan-
dard deviations associated to the states u and v. We can derive the
R term for u and v:

R(u,v) =
σu

σv
· exp

(
(v−u)2

2
·
(

1
σ2

u
− 1

σ2
v

))
·

erf
(√

2
2σu

)
erf
(√

2
2σv

) . (3)

Since the number of bins is predefined, we can optimize the com-
putation of the acceptance probability by caching the terms related
to the function erf, which drastically reduces the number of costly
operations down to a simple read.

Sampling Proposal. Let u be an element of the current primary
sample. We use the standard inverse transform method to generate
a sample from the truncated normal distribution. Let ξ be a random
number uniformly distributed in [0,1). Then the random variable
δ := F−1 (F(−1/2)+ξ · (F(1/2)−F(−1/2))) is distributed ac-
cording to the truncated normal distribution on [−1/2,1/2). Here,

F(x) = 1
2

(
1+ erf

(
x√
2σu

))
is the cumulative distribution function

(cdf) of the standard normal distribution. Then the proposed state
v can be obtained by taking the fractional part of u + δ, that is,
v = (u+δ)−⌊u+δ⌋.

6. Evaluation

We have implemented our method in pbrt version 3 [pha17]. We
compared our method (ours) against the original small-step muta-
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Figure 3: The distribution of the quality difference between ours
and original on different scenes (lower is better). We observe that
more complex scenes benefit more from our method.
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Figure 4: Equal-sample (100 mpp) rendering of pavilion-day. Our
method achieves 1.3 seconds (4%) faster rendering time. The water
surface has much fewer fireflies, the windows on the right are cor-
rectly resolved as well. This behavior is consistent with Figure 3.

tion (original), which uses the fixed scaling parameter σ = 0.01.
We treat the large-step probability as a hyperparameter, and chose
a value that produces better results for each technique; ours: 0.1,
original: 0.3. All experiments are conducted on a machine with 8x
Intel Xeon E7-8867 CPUs with 4TB RAM with 256 threads. For
the experiments, we chose scenes with diverse characteristics: san-
miguel, contemporary-bathroom, pavilion-day and cornell-box.

For comparisons, we use relative root mean square error
(rRMSE). We optimize for acceptance ratio and error values are
computed with respect to reference images, computed with 16384
spp with bidirectional path tracing. We repeated the measurements
between 5 and 10 times to display the error spread. For tuning,
we perform 50 tuning iterations, each with 5 mutations per pixel
(mpp). We select the best configuration explored. The tuning step
is a Nelder-Mead update. This update is extremely fast for our num-
ber of parameters (<1ms) and is negligible compared to rendering
time. The rendering outputs generated during the entire tuning pro-
cess are still useful. We created several variations of the cornell-
box to highlight that different materials produce a different binning
landscape (Figure 1), by changing the materials of the two boxes;
specular-plastic: specular and plastic (0.9 roughness), box-plastic:
diffuse and plastic, and specular-box: specular and diffuse.

We compare two approaches using the same number of samples:
100 mpp or 200 mpp depending on the scenes. Figure 3 summarizes
the relative differences of rRMSE between the two approaches.
Our method performs well on the scenes with more specular paths,
as shown in pavilion-day (Figure 4) and contemporary-bathroom
(Figure 5). We observe faster rendering for the former, and far
fewer artifacts for the latter.

OURSOURS rRMSE
1.57

rRMSE
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ORIGINALORIGINAL rRMSE
2.49

rRMSE
2.49

Figure 5: Equal-sample (200 mpp) rendering of contemporary-
bathroom. The original implementation produces sharp features
that are notoriously difficult to denoise whereas our approach
presents far fewer of these artifacts, and a better rRMSE.

7. Conclusion

We have presented a framework for automatically tuning muta-
tion kernel parameters for MCMC rendering. We propose an adap-
tive small-step mutation parameterization for PSSMLT called σ-
binning, based on a heuristic to categorize the mutation size pa-
rameter according to the reciprocal pdf of the local sampling. We
demonstrated that the approach can result better rendering perfor-
mance, showing the potential benefit of using autotuning in the con-
text of MCMC rendering.
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