
EUROGRAPHICS 2024/ P. Charalambous and R. Hu Short Paper

Utilizing Motion Matching with Deep Reinforcement Learning for
Target Location Tasks

Jeongmin Lee1,2 , Taesoo Kwon2 , Hyunju Shin1 and Yoonsang Lee2

1Samsung Electronics Co., Seoul R&D Campus, South Korea
2Hanyang University, Department of Computer Science, South Korea

Abstract
We present an approach using deep reinforcement learning (DRL) to directly generate motion matching queries for long-
term tasks, particularly targeting the reaching of specific locations. By integrating motion matching and DRL, our method
demonstrates the rapid learning of policies for target location tasks within minutes on a standard desktop, employing a simple
reward design. Additionally, we propose a unique hit reward and obstacle curriculum scheme to enhance policy learning in
environments with moving obstacles.

CCS Concepts
• Computing methodologies → Motion processing; Motion path planning;

1. Introduction

Generating character animation in virtual environments has been
a long challenge in the computer graphics society. Among vari-
ous approaches, motion matching [Cla16] is a widely known kine-
matic method, popular in game industry for its simplicity while still
achieving a relatively high quality of motion. The method extracts
low-dimensional features from each posture and regularly searches
for the next best fitting posture. This greedy search aims to satisfy
both smooth transitions and user goals simultaneously.

Utilizing interactive input devices like a gamepad or joy-
stick, motion matching effectively provides immediate control and
generates full-body character motion. However, in cases where
handling larger datasets or performing more extended planning
tasks is necessary, simple motion matching alone is not suffi-
cient. To address this, recent studies propose various methods
that integrate the motion matching algorithm with deep learn-
ing, whether by replacing the processing steps of motion match-
ing with neural networks [HKPP20], adopting complex structures
that demand relatively long periods of training for achieving long-
term tasks [CKP∗21], or utilizing a teacher-student framework to
achieve various levels of responsiveness [LMLL21]. However, few
methods have been proposed that allow for learning the target loca-
tion task in just a few minutes with a simple structure.

In this paper, we present an approach to train a policy using deep
reinforcement learning (DRL), enabling direct generation of mo-
tion matching queries for long-term tasks, particularly those related
to reaching target locations. By combining motion matching and
DRL, we demonstrate that a policy for performing target location
tasks can be quickly learned within a short timeframe (as little as

a few minutes on a standard desktop) using a simple reward de-
sign. Additionally, we propose a novel reward term and curriculum
design to facilitate the learning of target location task policies in
environments with moving obstacles.

2. Related Work

Researchers have proposed various methods to enhance and diver-
sify motion matching. [HKPP20] proposed a method of improving
the speed of the motion matching process and reducing memory
usage by applying supervised learning to the internal processes of
motion matching. [SMK22] presented the PAE (periodic autoen-
coder) for learning a low-dimensional phase manifold and demon-
strated the generation of high-quality motions by using the phase
vector in this manifold as the motion matching feature. [LKL23]
introduced a long-horizon motion matching (LHMM), which in-
volves selecting the motion matching query capable of generating
optimal motions when considering a time range longer than the typ-
ical future interval length used in motion matching queries.

DRL has been utilized for enabling character actions in sim-
ulations, performing tasks like dribbling with simple motion
data [PBYvdP17], replicating motions for goals [PALvdP18],
or moving without motion data [YTL18]. Various approaches
use or adapt motion data for actions across contexts [WGH22,
YYVDPY21], with studies on efficient learning for adaptable poli-
cies in multiple scenarios [KGAL23].

Among various studies, our work is most closely related to the
following two studies. [CKP∗21] involves clustering discrete state
and action spaces using VQ-VAE to generate character motions
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based on motion matching. Policies are trained using Q-learning in
the clustered space and various structures such as a passive action
table and action candidate table are maintained for this. In contrast,
we propose a simpler structure and efficiently train the policy with
PPO in a continuous space to achieve similar results. [LMLL21]
employs the RL step with motion matching for state transition in
training the teacher policy. However, their objective is not to learn
the teacher policy itself, but rather to utilize it to train a student pol-
icy capable of achieving goals with higher-quality motions within
shorter response time limits. In contrast, our method involves train-
ing a policy based on motion matching with a simple structure to
achieve long-term goals and a dedicated reward design and curricu-
lum learning scheme to better learn policies in obstacle avoidance
environments.

3. RL Formulation for Plane Environmnet

Our policy network inputs state and goal, outputs an action that
serves as a query for the motion matching stage, outputting the next
motion frame every 6 frames. We employ the following two envi-
ronments for the task of guiding the character to reach the target
location. In this section, we will describe the RL formulation for
Plane environment, where the objective is for the character to reach
the target location without any obstacles.

Motion Matching. Our method is based on motion matching
[Cla16] with typical matching features for human locomotion. A
feature at frame i, fi = {ci, ti} ∈R27, is composed of the character’s
current pose feature ci and its future trajectory feature ti for the
next one second. We extract ci = {plfoot

i ,prfoot
i ,vlfoot

i ,vrfoot
i ,vroot

i } ∈
R15, where p and vs are the positions and velocities of the left and
right foot, and the root (pelvis), with respect to the character frame
consisting of the root forward vector, global up vector, and their
cross product and originating at the horizontal root position. We
extract ti = {τi+10,di+10,τi+20,di+20,τi+30,di+30} ∈ R12, where
τ and d are the horizontal position and heading direction of the
root, respectively.

Motion matching regularly seeks for the next motion frame j that
is closest to the query q ( j = argmink∥q− fk∥2) and the character’s
motion is then updated by playing the frames that follow frame j
up to the next matching time point. In our formulation, this process
of one matching and playback corresponds to one RL step.

State st is described as follows:

st = {ct ,gt}, (1)

where ct is the current pose feature at the RL step t and gt ∈ R2

is the given horizontal target location with respect to the character
frame.

Action at is described as follows:

at = {tt}, (2)

where tt is the future trajectory feature at t. Note that at is a part of
the motion matching query qt . At each step t, the qt is constructed
by combining ct in st and tt in at and then the motion matching
algorithm searches for the next closest frame.

Reward rt is described as follows:

rt = exp(−dist(st)), where dist(st) = ∥gt∥. (3)

Figure 1: Examples of the hit reward. Left: The action (red arrows)
results in a hit reward of exp(0) with no future positions in the
obstacle. Right: The action leads to a hit reward of exp(−1) due to
one future position inside the obstacle.

Note that dist(·) represents a Euclidean distance between the hori-
zontal root position and the target location because gt is described
with respect to the character frame. Additionally, the agent is
awarded one thousand rewards upon the successful completion of
a episode (reaching the target).

4. Extensions for Moving Obstacles Environment

In this, we will explain the extensions for Moving Obstacle envi-
ronment, where the character is required to reach the target location
despite the presence of moving obstacles.

Hit Reward. For Moving Obstacles environment, we introduce
the additional reward term hit reward that leverages the characteris-
tics of our action design. The total reward rt is described as follows:

rt = exp(−dist(st))+ exp(−hits(at)), (4)

where

hits(at) =
2

∑
k=0

{
1 if τ[k] is inside any obstacle
0 else.

(5)

The hit reward, the second term in Equation 4, imposes a penalty
on the count of future trajectory positions in an action that intersect
with any obstacle (Figure 1). τ[k] is the k-th future horizontal root
position in the action at . This term facilitates the effective learning
of obstacle avoidance policies, by penalizing actions that would
lead to collisions with obstacles within the next 1 second without
actual execution of the future RL steps. Additionally, the agent re-
ceives 10 rewards upon successfully completing an episode in this
environment.

Obstacle Curriculum. To enhance the learning of policies in en-
vironments with moving obstacles, we propose a curriculum learn-
ing scheme that gradually increases the sampling area for the target
locations and the speed of the moving obstacles.

Specifically, in the initial stage of the curriculum, all obstacle
speeds are set to 0 and the target locations are sampled within a
5m×5m rectangular area around the character’s initial position. In
the last stage, the speeds are set to 0.5 m/s and the sampling area
expands to a 10m × 10m rectangular area. We incrementally in-
crease the speeds of the obstacles and expand the sampling area for
the target location as the stages progress in our 10-level curriculum
scheme. If the mean ratio of successful episodes (where the char-
acter reaches the target) for a policy exceeds 40%, the curriculum
advances to the next stage.
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Figure 2: Example of the obstacle map.

Figure 3: Our policy networks for Plain Environment (left) and
Moving Obstacles Environment (right).

Additional Sensory Input. In this environment, the agent takes
an additional sensory input to detect nearby obstacles. The state st
is described as follows:

st = {ct ,gt ,ot}, (6)

where ot ∈R16×16×2 is composed of two obstacle maps at the cur-
rent and previous RL steps, similar to those used in [PBYvdP17],
each covering 6m×6m area (Figure 2). Each map is generated from
the readings of 16×16 binary sensors. We collect two consecutive
obstacle maps to capture the movement of obstacles.

5. Training

Plane Environment. When learning policies in this setting, the tar-
get location gt is sampled in a 10m×10m rectangular area around
the character’s position at the beginning of each episode. Each
episode starts with a character posture at the random frame in the
motion dataset, which helps the agent to reduce redundant explo-
rations. An episode ends when the character comes within a 0.5 m
radius of the target location or surpasses the maximum step limit.

Our policy network for this environment consists of 32×32 FC
layers (Figure 3). The value network follows the same structure,
with the exception of having a single linear output unit.

Moving Obstacles Environment. In this environments, 100 ob-
stacles move in a maximum of 0.5 m/s. The obstacle sizes vary ran-
domly, with a maximum dimension of 3m× 3m. At the beginning
of each episode, their initial positions are sampled in a 20m×20m
rectangular area around the character. An episode terminates when-
ever the character collides with an obstacle. Unlike Plane environ-
ment, we do not impose a maximum step limit for an episode, and
there are no extra rewards for successful completion.

Figure 3 illustrates the structure of our policy network for this
environment. The convolutional part uses 16 and 32 filters of 4×4
and 3×3 sizes with the stride of 1. The output from the convolution
layers is processed by a 128 FC layer, and then concatenated with ct
and gt and processed by 256× 128 FC layers. Similarly, the value
network follows the same structure, except the output unit.

(a) (b)

(c)

(d) (e)

Figure 4: Learning curves for the plain environment. The blue, red,
green, and purple vertical dashed lines in (a) and (b) correspond to
the policy’s performance at approximately 20k, 100k, 533k, and 1M
steps, corresponding to 30, 150, 800, and 1500 seconds of train-
ing time. The character’s trajectory for each policy is illustrated in
(c) using the corresponding color. (d) and (e) depict the movement
styles of policies trained for 100k and 1M steps, respectively.

6. Experimental Results

In all experiments, we performed motion matching and policy
learning based on it using the locomotion dataset from [LKL23]
which is approximately 39 minutes long and comprises motions
excluding jumps and t-poses from the dataset utilized in [HKS17].
One RL step corresponds to a motion progression of 0.2 seconds
(equivalent to 6 motion frames in our 30 Hz dataset), represent-
ing the interval between each motion matching query. The motion
matching process is followed by simple motion stitching to en-
sure smooth transitions, and analytic two-joint inverse kinematics
to prevent foot sliding artifacts.

All the policies and experiments were trained and conducted on
a i7-12700 processor with 12 cores and GeForce GTX 1650 GPU.
The policies were trained using the PPO implementation of RL-
Lib [LLM∗18], with 11 rollout workers and a single trainer. The
animation results can be best observed in the accompanying video.

Performance in Plane Environment. Our policy achieves the
goal of reaching the target location with only a small number of
samples and short training periods as the generation of full-body
motion is based on motion matching, obviating the necessity for
the policy to learn full-body motion generation.

Even with a training time as short as 30 seconds, a policy that
reaches the target location can be achieved. However, in such cases,
the character tends to experience significant delays when changing
direction towards a different target. Interestingly, as can be seen in
Figure 4, with the progression of training, the character exhibits a
quicker change of direction and starts moving in a running motion
to reach the target location more swiftly.
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(a) (b)

Figure 5: Learning curves for the moving obstacles environment
in the early stages (before 3M steps). The dashed lines signify the
points at which the curriculum stage transitions to the next stage.

(a) (b)

Figure 6: Learning curves for the ablation study for the moving
obstacles environment. Blue: ours. Green: without hit reward. Or-
ange: without obstacle curriculum.

Performance in Moving Obstacles Environment. As depicted
in Figure 5, our policy successfully traversed through all the 10
stages of the obstacle curriculum. The most recent progress oc-
curred after the 492nd policy update, approximately at the 2.4 mil-
lionth step. The final policy was obtained after training for a total
of 14M steps over 8 hours.

Ablation Study for Moving Obstacles Environment. We con-
ducted an ablation study on each component of our extensions for
Moving Obstacles environment. Initially, we attempted to learn ob-
stacle avoidance without the hit reward. Subsequently, we explored
learning without the obstacle curriculum. In this scenario, the en-
vironment is set to the most challenging stage from the start.

Figure 6 illustrates the learning curves. Our method demon-
strates stable episode lengths and records the highest mean suc-
cess ratio. The ablation of the obstacle curriculum converges to a
lower success ratio and episode returns. Notably, the ablation of the
hit reward results in highly unstable learning and significantly low
success ratio.

7. Discussion

In this paper, we introduce an approach employing DRL to directly
generate motion matching queries for long-term tasks, with a spe-
cific focus on reaching target locations. We observed a notable im-
provement in learning target location tasks in environments with
moving obstacles through the proposed hit reward and obstacle
curriculum scheme.

Our method, being based on motion matching, has limitations
of high runtime memory usage and slow exploration speed. These
constraints could potentially be addressed by applying the meth-
ods proposed in [HKPP20]. Additionally, the utilization of au-
toencoders, as demonstrated in studies such as [SMK22], for fea-
ture compositions holds the potential to enable various applications
across diverse datasets and tasks.
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