
EUROGRAPHICS 2024/ P. Charalambous and R. Hu Short Paper

Real-time Seamless Object Space Shading

Tianyu Li1† and Xiaoxin Guo1†

1TiMi L1 Studio, Tencent Games, China

Figure 1: A table full of food is entirely illuminated by indirect lighting. The images in the second row are rendered with different methods

in 3 ms on an NVIDIA RTX 4090 GPU, from left to right: screen space ReSTIR GI estimator, object space ReSTIR GI estimator based on

Baker et al. [BJ22]’s method, object space ReSTIR GI estimator based on our method. The right side column shows object parameterization

visualization of different methods.

Abstract

Object space shading remains a challenging problem in real-time rendering due to runtime overhead and object parameteri-

zation limitations. While the recently developed algorithm by Baker et al. [BJ22] enables high-performance real-time object

space shading, it still suffers from seam artifacts. In this paper, we introduce an innovative object space shading system lever-

aging a virtualized per-halfedge texturing schema to obviate excessive shading and preclude texture seam artifacts. Moreover,

we implement ReSTIR GI on our system (see Figure 1), removing the necessity of temporally reprojecting shading samples and

improving the convergence of areas of disocclusion. Our system yields superior results in terms of both efficiency and visual

fidelity.

CCS Concepts

• Computing methodologies → Rendering;

1. Introduction

Real-time rendering demands high performance to achieve frame
rates of 60 frames per second or greater. With the increasing
adoption of ray tracing techniques, meeting these performance re-
quirements has become more challenging. Temporal anti-aliasing

† Equal contributions

[TDD*22] amortizes computations across multiple frames to im-
prove efficiency but suffers from ghosting artifacts. Object space
shading decouples visibility calculations from shading, enabling in-
dependent per-object shading frequency and superior anti-aliasing.
However, the technique often requires greater memory consump-
tion, limiting real-time rendering applications. Virtual texture based
object space shading system, as introduced by Baker et al. [BJ22],
avoids over-shading and does not require excessive memory de-

© 2024 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.

This is an open access article under the terms of the Creative Commons Attribution License, which

permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

DOI: 10.2312/egs.20241026 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-8775-8137
https://orcid.org/0009-0009-7911-6631
https://doi.org/10.2312/egs.20241026


2 of 4 Tianyu Li & Xiaoxin Guo / Real-time Seamless Object Space Shading

mands. However, being a UV-map-based solution, it inherently suf-
fers from well-known seam problems [TYL17], limiting its appli-
cation to spatiotemporal kernels. Our paper presents a virtualiza-
tion approach for Htex [BD22] that eliminates seam artifacts. Fur-
thermore, a ReSTIR global illumination solution is implemented
within our object space pipeline, demonstrating improved stability
because of obviating the need for re-projecting samples. Addition-
ally, we have implemented persistent layers in our system to get
a fallback reservoir from persistent layers during disocclusion sce-
narios. This innovation increases convergence with minimal impact
on performance.

2. Related Work

Pixar [CCC87] proposed the original object shading framework,
which subdivides visible polygons into micro polygons and then
shades micro polygons.

In the domain of real-time object space shading, there are many
ideas relying on UV maps [AHTA14; BJ22]. Andersson et al.
[AHTA14] used a per-triangle culling method to determine the
primitives to finally shading. Baker et al. [BJ22] developed a
fine-grained ’virtual shadel allocation’ strategy, whereby 8x8 texel
blocks within the texture space—referred to as shadels—are dy-
namically flagged in a pre-Z pass, with memory subsequently allo-
cated to these identified shadels. This approach avoids over-shading
and introduces negligible runtime overhead. However, all these ap-
proaches rely on UV maps, which cannot ensure geometry locality
during shading. As a result, spatial filtering is not practical.

To deploy spatiotemporal rendering algorithms in object space
shading systems, seamless mesh parameterization methods are nec-
essary. PTex [BL08], Mesh Colors [YKH10], and Htex [BD22] are
all face-intrinsic implicit parameterization methods, among which
Htex is the most GPU-friendly in implementation. PTex is designed
for quad meshes and requires reading data from neighbor primi-
tives for texture filtering, restricting its GPU adaption. Mesh Colors
needs hardware extension for hardware-accelerated filtering. Htex
can fit into any triangular mesh topology and works on common
GPUs.

When it comes to ray tracing, reservoir-based resampled impor-
tance sampling emerges as a paramount focus in real-time ray trac-
ing literature [BWP*20; OLK*21; LKB*22]. Its constant complex-
ity and exponentially growing resampled samples perfectly fit into
real-time usage. However, such methods need to efficiently accu-
mulate temporal samples, resulting in inevitable ghosting and blur-
ring. To solve this problem, Boksansky et al. [BJW21] employ a
grid-based structure for reservoir resampling. However, the grid
can only offer limited resolution under practical storage constraints,
which consequently impairs the precision of the technique.

3. Algorithm Overview

The algorithm is summarized in Figure 2. Initially, our method in-
volves preparing the layout information for packing all render tex-
tures of meshes into a single atlas texture. This step only needs to
be evaluated once. Subsequently, the unique bits of visible shadels
are marked in an occupancy map through a pre-Z pass. After shadel

Figure 2: Pipeline overview of our shading system.

LOD 0

LOD 1

LOD 2

LOD 3

LOD 4

4

Object 0

Object 1

Quad 0 Quad 1 Quad 2 Quad 3 Quad 4

Quad 5 Quad 6 Quad 7 Quad 8 Quad 9

Quad 

10

Quad 

11

Quad 

12

Quad 

13

Quad 

14

Quad 

15

Quad 

16

Quad 

17

Quad 

18

Quad 

19

Figure 3: Visualization of the atlas layout. All texture layers are

packed into the same virtual texture. Higher levels are put on the

bottom-left side of the remaining space.

marking, the memory of shadels can be allocated via a sparse mem-
ory allocator based on occupancy information. Thereafter, a dedi-
cated shading kernel operates on a per-shadel basis.

3.1. Htex Atlas Layout

The layout of our atlas can be seen in Figure 3. The textures asso-
ciated with the intrinsic faces of all meshes across different levels
are compactly packed into a single virtual texture. For each object,
per-halfedge quad textures will form a rectangular texture depend-
ing on the number of faces and the texture quad size of each face.
Quads are packed in a scan-line order. Hence we can compute the
primitive index via atlas location. Subsequently, these individual
rectangular textures, varying in size, are efficiently organized into
a single texture using a 2D rectangular packing algorithm.

Ideally, quad textures should be sized differently based on the
size of the quad. Using textures of the same size for all quads
can lead to under-shading. We address this issue by allocating the
largest possible quad atlas, ensuring that even the largest quads re-
ceive sufficient resolution in virtual texture space. In the subsequent
pre-Z step, the mipmap levels for each shadel are calculated based
on screen-space derivatives, thus preventing both over-shading and
under-shading.

© 2024 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.



Tianyu Li & Xiaoxin Guo / Real-time Seamless Object Space Shading 3 of 4

Figure 4: A flowchart showing the process of preparing the shading

context.

3.2. Pre-Z and Shadel Marking

Similarly to the method of Baker et al. [BJ22], we mark visible
shadels by set occupancy buffer during the pre-Z pass. For mipmap-
ping, we need to compute gradients of Htex quad UV during this
step so that we can derive correct mipmap levels and mark corre-
sponding shadels.

3.3. Htex Virtualization

After successfully marking visible shadels, the subsequent step in-
volves resolving the physical memory allocation for shadels. An
allocation unit is a shadel group consisting of 8x8 shadel clusters
arranged in a square grid. To efficiently allocate memory blocks for
shadel groups, we employ a binned chunk allocator. If the memory
pool runs out, an optional second memory allocation pass will be
dispatched to add mipmap bias to shadel groups in mipmap layer
0.

3.4. Shading Pass

To dispatch the shading pass, we examine the occupancy map. If
the corresponding occupancy bit is marked, the relevant shading
task is enqueued into the task buffer.

For shading computation, we need to have the barycentric co-
ordinate of the current triangle for vertex data reconstruction. We
also need the current halfedge and the quad information for spatial
neighbor searching. The process of the shading context preparation
is summarized in Figure 4. We map an 8x8 thread group to a shadel
to maximize data coherency.

After the shading pass, final gathering can be done at any time
as long as users can provide primitive index and barycentric coor-
dinate, which are necessary to construct the Htex sampling context.

4. Implementation and Results

We have implemented ReSTIR GI in our GPU-driven object space
rendering system using Unity Engine [Haa14]. We did not imple-
ment bias correction for ReSTIR, so our results are biased.

(a) Baker et al. [BJ22]
Render time: 1.9 ms
1 sample per pixel

(b) Ours
Render time: 2.0 ms
1 sample per pixel

Figure 5: Comparison of doing spatial resampling based on UV

map (Baker et al. [BJ22]’s method) and adjacency information

(our method). Notice that seam artifacts are inevitable when us-

ing a UV-based spatial kernel.

All methods we compare against are also implemented within
the same rendering framework, using the same functions and data
structures when possible. The performance results are obtained on
a computer with a 13900K CPU with 24 cores and 32 GB RAM,
and an NVIDIA RTX 4090 GPU.

4.1. Spatial Searching

Spatial searching is essential for accessing broader reservoir sam-
ples from neighboring geometry. Baker et al. [BJ22]’s solution uses
random walks on the UV map for this purpose. However, it is chal-
lenging for the UV map to be continuous in all areas, and this dis-
continuity in sample domains will cause discontinuity of bias and
convergence, resulting in visible seams in rendering results. Our
method leverages face-specific adjacency data to enable accurate
spatial search, as illustrated in Figure 5, eliminating seam artifacts
present in the method from Baker et al. [BJ22]

4.2. Elimination of Shading Sample Re-projection

By indexing samples with object space information, each shading
sample at the same object space location uses a unique address.
This eliminates the necessity for re-projecting spatiotemporal shad-
ing samples using motion vectors. As illustrated in Figure 6, in
contrast to our solution, screen space methods often result in under-
sampling effects due to the unsuccessful re-projection of samples.

4.3. Persistent Layers

We implemented the finest level of mipmaps as a persistent layer,
which is always present in physical memory. When spatial resam-
pling fails to find a valid neighbor reservoir due to disocclusion, we
fetch a reservoir from the persistent layer as a fallback reservoir.
Figure 7 shows that employing fallback reservoirs is beneficial in
enhancing the visual quality of disoccluded regions.

© 2024 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 4 Tianyu Li & Xiaoxin Guo / Real-time Seamless Object Space Shading

(a) Screen Space
Render time: 2.0 ms
1 sample per pixel

(b) Ours
Render time: 2.2 ms
1 sample per pixel

Figure 6: Comparison of doing spatial resampling in screen space

and texture space. We can find that for screen space solutions, the

convergence is poorer at the rim of the cup and the crimped pie

crust.

(a) Without Persistent Layers
Render time: 2.1 ms
1 sample per pixel

(b) With Persistent Layers
Render time: 2.2 ms
1 sample per pixel

Figure 7: Comparative impact of employing persistent layers on

fallback reservoirs. An apple moves quickly along a circular path.

The activation of persistent layers leads to a significant improve-

ment in convergence efficiency in areas of disocclusion.

5. Conclusion

We present a novel technique for using Htex texture mapping as
shading space so that spatial kernels can be evaluated in a seam-
free way. To minimize over-shading, we introduce virtualization to
Htex. To validate our object space shading system, we implement
ReSTIR GI on it. Our ReSTIR GI implementation does not require
motion vector based screen space history reprojection so that sam-
ples can be streamed or accumulated stably. On top of that, com-
bining fallback reservoirs from persistent layers helps us get better
convergence in disoccluded regions.

6. Acknowledgments

We would like to thank our colleagues from TiMi L1 Studio, Jun
Deng and Fei Ling, for their project support.

References

[AHTA14] ANDERSSON, M., HASSELGREN, J., TOTH, R., and
AKENINE-MÖILER, T. “Adaptive Texture Space Shading for Stochastic
Rendering”. Comput. Graph. Forum 33.2 (May 2014), 341–350.
ISSN: 0167-7055. DOI: 10 . 1111 / cgf . 12303. URL: https :
//doi.org/10.1111/cgf.12303 2.

[BD22] BARBIER, WILHEM and DUPUY, JONATHAN. “Htex: Per-
Halfedge Texturing for Arbitrary Mesh Topologies”. Proc. ACM Com-

put. Graph. Interact. Tech. 5.3 (July 2022). DOI: 10.1145/3543868.
URL: https://doi.org/10.1145/3543868 2.

[BJ22] BAKER, DANIEL and JARZYNSKI, MARK. “Generalized Decou-
pled and Object Space Shading System”. Eurographics Symposium on

Rendering. Ed. by GHOSH, ABHIJEET and WEI, LI-YI. The Eurograph-
ics Association, 2022. ISBN: 978-3-03868-187-8. DOI: 10.2312/sr.
20221163 1–3.

[BJW21] BOKSANSKY, JAKUB, JUKARAINEN, PAULA, and WYMAN,
CHRIS. “Rendering Many Lights with Grid-Based Reservoirs”. Ray

Tracing Gems II. Ed. by MARRS, ADAM, SHIRLEY, PETER, and WALD,
INGO. APress, Aug. 2021, 351–365. DOI: 10.1007/978-1-4842-
7185-8_23 2.

[BL08] BURLEY, BRENT and LACEWELL, DYLAN. “Ptex: Per-Face Tex-
ture Mapping for Production Rendering”. Eurographics Symposium on

Rendering 2008. 2008, 1155–1164 2.

[BWP*20] BITTERLI, BENEDIKT, WYMAN, CHRIS, PHARR, MATT, et
al. “Spatiotemporal reservoir resampling for real-time ray tracing with
dynamic direct lighting”. ACM Transactions on Graphics (Proceedings

of SIGGRAPH) 39.4 (July 2020). DOI: 10/gg8xc7 2.

[CCC87] COOK, ROBERT L., CARPENTER, LOREN, and CATMULL, ED-
WIN. “The Reyes Image Rendering Architecture”. Proceedings of the

14th Annual Conference on Computer Graphics and Interactive Tech-

niques. SIGGRAPH ’87. New York, NY, USA: Association for Com-
puting Machinery, 1987, 95–102. ISBN: 0897912276. DOI: 10.1145/
37401.37414. URL: https://doi.org/10.1145/37401.
37414 2.

[Haa14] HAAS, JOHN K. “A history of the unity game engine”. (2014) 3.

[LKB*22] LIN, DAQI, KETTUNEN, MARKUS, BITTERLI, BENEDIKT, et
al. “Generalized Resampled Importance Sampling: Foundations of Re-
STIR”. ACM Transactions on Graphics (Proceedings of SIGGRAPH

2022) 41.4 (July 2022), 75:1–75:23. ISSN: 0730-0301. DOI: 10.1145/
3528223 . 3530158. URL: https : / / doi . org / 10 . 1145 /
3528223.3530158 2.

[OLK*21] OUYANG, Y., LIU, S., KETTUNEN, M., et al. “ReSTIR GI:
Path Resampling for Real-Time Path Tracing”. Computer Graphics Fo-

rum 40.8 (2021), 17–29. DOI: https://doi.org/10.1111/cgf.
14378. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1111/cgf.14378. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.14378 2.

[TDD*22] TATARCHUK, NATALYA, DUPUY, JONATHAN, DELIOT,
THOMAS, et al. “Advances in Real-Time Rendering in Games: Part I”.
ACM SIGGRAPH 2022 Courses. SIGGRAPH ’22. Vancouver, British
Columbia, Canada: Association for Computing Machinery, 2022.
ISBN: 9781450393621. DOI: 10.1145/3532720.3546895. URL:
https://doi.org/10.1145/3532720.3546895 1.

[TYL17] TARINI, MARCO, YUKSEL, CEM, and LEFEBVRE, SYLVAIN.
“Rethinking Texture Mapping”. ACM SIGGRAPH 2017 Courses. SIG-
GRAPH ’17. Los Angeles, California: Association for Computing Ma-
chinery, 2017. ISBN: 9781450350143. DOI: 10 .1145 / 3084873.
3084911. URL: https : / / doi . org / 10 . 1145 / 3084873 .
3084911 2.

[YKH10] YUKSEL, CEM, KEYSER, JOHN, and HOUSE, DONALD H.
“Mesh colors”. ACM Transactions on Graphics 29.2 (2010), 15:1–15:11.
ISSN: 0730-0301. DOI: 10.1145/1731047.1731053. URL: http:
//doi.acm.org/10.1145/1731047.1731053 2.

© 2024 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1111/cgf.12303
https://doi.org/10.1111/cgf.12303
https://doi.org/10.1111/cgf.12303
https://doi.org/10.1145/3543868
https://doi.org/10.1145/3543868
https://doi.org/10.2312/sr.20221163
https://doi.org/10.2312/sr.20221163
https://doi.org/10.1007/978-1-4842-7185-8_23
https://doi.org/10.1007/978-1-4842-7185-8_23
https://doi.org/10/gg8xc7
https://doi.org/10.1145/37401.37414
https://doi.org/10.1145/37401.37414
https://doi.org/10.1145/37401.37414
https://doi.org/10.1145/37401.37414
https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1145/3528223.3530158
https://doi.org/https://doi.org/10.1111/cgf.14378
https://doi.org/https://doi.org/10.1111/cgf.14378
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14378
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14378
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14378
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14378
https://doi.org/10.1145/3532720.3546895
https://doi.org/10.1145/3532720.3546895
https://doi.org/10.1145/3084873.3084911
https://doi.org/10.1145/3084873.3084911
https://doi.org/10.1145/3084873.3084911
https://doi.org/10.1145/3084873.3084911
https://doi.org/10.1145/1731047.1731053
http://doi.acm.org/10.1145/1731047.1731053
http://doi.acm.org/10.1145/1731047.1731053

