
EUROGRAPHICS 2015/ B. Bickel and T. Ritschel Short Paper

Adaptive LightSlice for Virtual Ray Lights

R. Frederickx†, P. Bartels, and Ph. Dutré‡

Department of Computer Science, KU Leuven, Belgium

5×107 VRLs 5×108 VRLs 1×108 VRLs 1×109 VRLs 1×109 VRLs 1×1010 VRLs

ou
r

ap
pr

oa
ch

un
cl

us
te

re
d

Figure 1: Comparison of Virtual Ray Light (VRL) rendering with our clustering (above) and without (below) for three scenes.

Each column of images is rendered with the same total number of evaluated VRLs, including preprocessing. The top right image

of each scene is rendered till near convergence, the left images of each set are rendered with 1/10th the number of VRLs.

Abstract

We speed up the rendering of participating media with Virtual Ray Lights (VRLs) by clustering them in a pre-

processing step. A subset of representative VRLs is then sampled from the clustering, which is used for the final

rendering. By performing a full variance analysis, we can explicitly estimate the convergence rate of the render-

ing process and automatically find the locally ideal number of clusters to maximize efficiency. Overall, we report

speed-up factors ranging from 13 to 16 compared to unclustered rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Rendering multiple scattering in participating media is an
inherently difficult sampling problem due to the combinato-
rial explosion of light paths. The Virtual Ray Light (VRL)
method [NNDJ12] solves the problem of volumetric light
transport by storing virtual emitting line segments that act as

† roald.frederickx@cs.kuleuven.be
‡ phil.dutre@cs.kuleuven.be

secondary light sources. We show how the LightSlice algo-
rithm [OP11] can be be adapted to efficiently cluster these
VRLs. Moreover, by estimating the resulting convergence
rate, we can automatically determine the locally ideal num-
ber of clusters to maximize efficiency.

2. Background and Related Work

The most general techniques to render participating media
typically rely on a form of Monte Carlo integration over the
scattered light paths in the volume. Methods that are based

c© The Eurographics Association 2015.

DOI: 10.2312/egsh.20151015

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20151015


R. Frederickx & P. Bartels & Ph. Dutré / Adaptive LightSlice for Virtual Ray Lights

on density estimation have been shown to robustly solve the
scattering problem, albeit by introducing some bias in the
result [JNSJ11, KGH∗14]. Unbiased methods include bidi-
rectional path tracing [LW96, GKH∗13], Metropolis light
transport [PKK00] and the Virtual Ray Light (VRL) algo-
rithm [NNDJ12]. This last algorithm employs many virtual
light (VL) sources in order to capture indirect volumetric
lighting. A drawback of such many-light algorithms is that
they can spend a lot of work calculating the contributions of
VLs that either only add an insignificant contribution (e.g.
lights that are very far away or occluded) or a highly sim-
ilar contribution (e.g. lights emanating from a similar po-
sition in the scene) to the final result. To circumvent this,
methods have been proposed that cluster similar VLs into
roughly equally important sets and only use a single rep-
resentative VL to capture the aggregate effect of the clus-
ter [WABG06,HPB07,OP11]. As of yet, these methods have
only been used for Virtual Point Lights (VPLs). We will
adapt the most recent method, LightSlice [OP11], to handle
VRLs. Additionally, we automatically determine the locally
ideal number of clusters in order to maximize convergence.

3. Overview of our Approach

The LightSlice algorithm [OP11] computes a single Virtual
Light (VL) clustering for each slice (a set of ‘geometrically
similar’ pixels) by assessing the contributions of the full set
of VLs in nearby pixels. Because LightSlice operates on
pixel values, it is agnostic to the type of VL used, and hence
ideally suited to adapt to VRLs [NNDJ12] (in contrast, the
Lightcuts algorithm [WABG06] requires tight analytical er-
ror bounds on the VL contributions, which is much harder
to come by for VRLs than for VPLs). Moreover, we extend
the LightSlice algorithm to adaptively determine the ideal
number of representative VLs per slice.

We start by formalizing the ‘ideal’ number of represen-
tatives for a given set of VRLs. We can define the con-
vergence constant c of a Monte Carlo rendering process
through the relation V = c/n, with V the variance of the re-
sulting estimator and n the number of samples. In a slice
with P pixels we aim to minimize the convergence constant,
c = (Nprep +Nrend)∑

P
i Vi, with Vi the variance of pixel i, and

Nprep and Nrend the number of evaluated VRLs during pre-
processing and rendering, respectively.

We further formalize the VRL tracer as a stochastic pro-
cess X̃ from which N samples (VRLs) X1, . . .XN are taken.
Let C(Xj, i) denote the (exact) contribution of a VRL Xj to
a pixel i. Then, each VRL sample Xj itself induces a set of
stochastic processes X̃i j: the Monte Carlo integration to com-
pute the contribution of Xj to the eye ray associated with
pixel i. We model these processes as X̃i j =C(Xj, i)/N + ξ̃i j,
where ξ̃i j is stochastic noise with expectation value 〈ξ̃i j〉= 0
and the 1/N factor is to keep with the conventions of [OP11].
Lastly, locally similar VRLs are combined in a cluster from
which an additional discrete stochastic process selects one

representative. Let j1, . . . , jn be the indices of the VRLs in a
cluster under consideration, then sampling from ∑l X̃i jl is re-
placed by sampling from X̃i jm/pm with some probability pm.
These three types of stochastic processes (the VRL tracer X̃ ,
the VRL integration X̃i j and the selection of the representa-
tives) give rise to the final pixel variance Vi.

We now find an estimate of the variance Vi (see the sup-
plementary material for a detailed derivation and assump-
tions). Let Ai j be the transfer matrix element which is a
sample from X̃i j, making ∑

N
j Ai j an estimate of the true

pixel value
〈

C(X̃ , i)
〉

. The variance introduced by the VRL
tracer X̃ on the observed pixel value ∑ j Ai j is given by
Var(C(X̃ , i))/N, which is estimated by V trace

i = N/(N −
1)∑ j(Ai j − ∑k Aik/N)2 − ∑ j ξ2

i j. Here, ξ2
i j estimates the

variance 〈ξ̃2
i j〉, which can be readily obtained during the

VRL – eye ray integration. Intuitively, to estimate the bare
VRL tracer variance, the observed variance in ∑ j Ai j is cor-

rected for the VRL integration variance ξ2
i j in the Ai j sam-

ples. Moreover, the undersampling from the clustering in-
duces extra variance, which combines with the VRL inte-
gration variance in the form V und

i = ∑l(A
2
i jl

+ ξ2
i jl
)/pl −

(∑l Ai jl )
2, where j1, . . . , jn are the indices of VRLs in the

cluster under consideration. This variance V und
i is minimized

over the P pixels of the slice by choosing the probabilities as

pl ∝
√

∑P
i (A

2
i jl
+ξ2

i jl
). Hence, highly contributing VRLs or

VRLs with a high integration variance have a high probabil-
ity of getting exactly resolved by being chosen as representa-
tives. We further split the combined effect of the cluster un-
dersampling variance contributions V und

i in V clust
i and V int

i ,
where the first is the sum of ∑l A2

i jl
/pl − (∑l Ai jl )

2 over all
clusters, which gauges the local variability in the VRL con-
tributions within a slice, and the latter is the sum of ∑l ξ2

i jl
/pl

over the clusters, which accounts for the inherent variance
of the VRL integration. The final variance estimate Vi is thus
Vi =V trace

i +V clust
i +V int

i .

Of course, all of this this assumes knowledge of the full
matrix A, which is exactly what we want to calculate. There-
fore, the average over all P pixels in the definition of c above
is replaced with a sparse average over a random subset of
Prepr representative pixels of the slice

c = (Nprep +N
rend)(P/P

repr)
Prepr

∑
i

Vi. (1)

We set Prepr = max(2,P/α), where α > 1 denotes the target
pixel undersampling factor and the lower bound of two is
needed for the variance estimators. Note that this parameter
replaces the number of neighbours of the original LightSlice
algorithm. In this case, Nprep = NPrepr and Nrend = NreprP,
with Nrepr the number of representative VRLs sampled from
the clustering, i.e. the number of clusters.

For each slice, we progressively refine an initial cluster
that contains all VRLs. The cluster with the highest contri-
bution to ∑

Prepr

i Vi is split, thereby increasing Nrepr by one

c© The Eurographics Association 2015.

62



R. Frederickx & P. Bartels & Ph. Dutré / Adaptive LightSlice for Virtual Ray Lights

and decreasing the V clust and V int components. We follow
the splitting procedure of [OP11] by projecting the VRLs on
a Prepr-dimensional line; ∑i Vi can be calculated in an on-line
manner and the best split can be found in linear time in the
cluster size. Splitting continues until the minimum of the es-
timated convergence constant c is found: initially, c behaves
as 1/Nrepr as the effect of the ∑i Vi factor dominates, even-
tually Vi converges to V trace

i +∑ j ξ2
i j and we have c ∼ Nrepr,

the optimum is found in between the two regimes.

Compared to the original LightSlice algorithm, we need
an extra term containing ξ2

i j in the cluster cost and in the
probabilities pl to account for the variance of the VRL in-
tegral samples. Furthermore, we also take into account the
variance due to tracing, V trace, allowing us to estimate and
optimize the convergence constant c. To this end, we need
accurate estimates of the variance in a slice, achieved by
changing from the number of neighbours parameter to the
pixel undersampling α and sampling only within the slice.

4. Scenes and Parameter Selection

Implementation We implemented Virtual Ray Lights and
our adaptive LightSlice variant in the Mitsuba [Jak10] CPU
ray tracer. All reported results are generated with isotropi-
cally scattering media. We did not implement the anisotropic
importance sampling routines of [NNDJ12], but we verified
that anisotropic media give similar results with our isotropic
sampling combined with a higher sample rate to make up for
the imperfect sampling.

Scenes We test the algorithm on the three different scenes
shown in Fig. 1. The first scene is a typical unit-length
Cornell box containing a reflecting sphere and a white
diffuse box. The space is filled with a thin fog with
scattering coefficient σs = 2 and absorption coefficient
σa = 0.2. The second scene is a glass of grapefruit
juice with RGB parameters taken from [NNDJ12]: σs =
(0.45,0.32,0.23)cm−1 and σa = (0.41,0.95,4.73)cm−1.
Lastly, we have a unit-diameter model of a brain with a
marble-like high albedo material of σs = (10.1,13.1,15.0)
and σa = (10.5,20.5,35.5)× 10−3 with index of refraction
1.5. All media are isotropically scattering and the image res-
olutions are 256 × 256 for the box and brain scenes and
240×360 for the glass.

Number of slices The number of slices is chosen such that
the local lighting within a slice is similar and can be cap-
tured with a single, compact clustering. Nonetheless, slices
should be big enough to allow a sufficient pixel under-
sampling factor α without degenerating to the Prepr = 2
lower bound. Moreover, unlike the original LightSlice set-
ting, there should now be sufficient variation in the local
lighting to overcome the VRL integration noise, or no in-
formed clustering decision can be made. The V clust and V int

values can be used as a guide. We found that for for all three
scenes, choosing 100 slices satisfied these criteria.

Pixel undersampling The pixel undersampling factor is a
critical parameter that should be chosen as high as possible,
but not so high that the sparse sampling starts to miss im-
portant VRLs: this would introduce isolated areas where the
VRLs are only resolved near the representative pixels. The
other pixels would be substantially darker and occasionally
receive a very bright contribution when an important VRL
that was not properly detected does get selected. Visual in-
spection or monitoring the variance while gradually increas-
ing α can detect these cases. For the glass and brain scenes,
an undersampling factor of α = 50 was found to be a good
balance between efficiency and safety. The thinner medium
in the box scene has a higher transmission coefficient, caus-
ing VRLs to have a bigger volume of influence. This allows
the pixel undersampling to safely go up to α = 100.

Number of VRLs We progressively trace batches of VRLs
which are clustered and rendered. How many VRLs should
we trace per batch? In contrast to the original LightSlice, we
now have to take into account the extra variance on the VRL
integral samples; more is not always better. We found the
optimal values to lie in the range of 100 to 1000 VRLs for
our scenes. Within this range, for a cluster that has been split
to minimize the estimated c, V clust is of the order of V int. In-
deed, if V int is much larger than V clust after splitting, then the
noise on the representative samples was too high to discover
any structure and the cluster was essentially split without
guided information. If, on the other hand, V int is much lower
than V clust, then we are better off with more VRLs so we can
split further to exploit more structure. For our shown results,
we chose a batch size of 300 VRLs for all scenes.

5. Results and Discussion

We record the convergence constant as the product of the to-
tal number of integrated VRLs with the mean squared pixel
deviations compared to a reference image. The overhead of
our adaptive clustering algorithm is on the order of 5% of the
total CPU time, hence the total number of integrated VRLs
is a good indicator of the total rendering time. We compare
our convergence constants with those obtained for rendering
the full set of VRLs and report the corresponding speed-up.

Compared to no clustering Fig. 1 shows equal-time ren-
ders with and without our adaptive clustering. The speed-ups
are 16.45± 0.06, 13.42± 0.03 and 15.0± 0.1 for the box,
glass and brain scenes, respectively. For each scene, the clus-
tered result in the top left has roughly the same (or slightly
higher) visual quality as the unclustered result in the bottom
right after a factor 10 less work, which is consistent with our
reported speed-up. The results in the top right are rendered
with 980, 1210 and 7000 passes for the respective scenes.

Compared to nonadaptive clustering Fig. 2 compares our
adaptive method to a fixed VRL undersampling factor, i.e.
always choosing Nrepr = N/β for some global β like the

c© The Eurographics Association 2015.

63



R. Frederickx & P. Bartels & Ph. Dutré / Adaptive LightSlice for Virtual Ray Lights

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

sp
ee

d
-u

p
fa

ct
o
r

20 40 60 80 100

VRL undersampling factor

14.0

14.5

15.0

15.5

16.0

16.5

17.0
Box

20 40 60 80 100

VRL undersampling factor

11.5

12.0

12.5

13.0

13.5

14.0
Glass

20 40 60 80 100 120 140 160

VRL undersampling factor

11

12

13

14

15

16
Brain

Figure 2: Speed-ups compared to unclustered rendering for the scenes of Fig. 1. Individual data points correspond to fixed,

global VRL undersampling factors β. The horizontal line indicates the speed-up and its error bar of our adaptive algorithm.

original LightSlice algorithm. For the glass scene, we do
slightly worse than the optimal undersampling. This is not
surprising, as we are trying to determine the optimum from
a noisy and sparse sampling. Nonetheless, we reach a speed-
up that is within 3% of the optimum for fixed β. More in-
terestingly, we are on par for the brain scene and even out-
perform a global fixed VRL undersampling factor in the box
scene. Indeed, our undersampling factor is chosen for each
slice separately, which allows us to adapt to the local light-
ing context, allocating VRLs only where needed. We refer
to the supplementary material for false color images and a
more in-depth discussion.

6. Conclusion and Future Work

We have adapted the LightSlice algorithm to work with
Virtual Ray Lights. Such VRLs inherently introduce extra
variance, which needs to be taken into account during the
clustering and when selecting the parameters of the algo-
rithm. By extending LightSlice to adaptively find the opti-
mum number of clusters, we effectively remove one of these
parameters and moreover allow for potential higher conver-
gence rates by adapting to local lighting conditions. This ex-
tension is orthogonal to the use of VRLs and can also be ap-
plied for VPLs. Overall, we report speed-up factors ranging
from 13 to 16 compared to unclustered rendering of VRLs.

Nonetheless, even though we have eliminated one param-
eter, there are still three left that need to be chosen. Failure
cases arise when the pixel undersampling is chosen too high
such that important VRLs don’t get sampled, leading to high
variance. Choosing it too low hampers efficiency. The num-
ber of initial virtual lights is also more important in the VRL
case. We report how monitoring V clust and V int can help in
finding the sweet spot of these parameters. It remains for fu-
ture work to do this automatically in the hopes of eliminating
another parameter altogether.

7. Acknowledgements

Roald Frederickx is a predoctoral fellow of the Fund for Sci-
entific Research (FWO) of Flanders.

References

[GKH∗13] GEORGIEV I., KŘIVÁNEK J., HACHISUKA T.,
NOWROUZEZAHRAI D., JAROSZ W.: Joint importance sampling
of low-order volumetric scattering. ACM Transactions on Graph-

ics (TOG) 32, 6 (2013), 164. 2

[HPB07] HAŠAN M., PELLACINI F., BALA K.: Matrix row-
column sampling for the many-light problem. In ACM SIG-

GRAPH 2007 Papers (New York, NY, USA, 2007), SIGGRAPH
’07, ACM. doi:10.1145/1275808.1276410. 2

[Jak10] JAKOB W.: Mitsuba renderer, 2010. URL:
http://www.mitsuba-renderer.org. 3

[JNSJ11] JAROSZ W., NOWROUZEZAHRAI D., SADEGHI I.,
JENSEN H. W.: A comprehensive theory of volumetric radiance
estimation using photon points and beams. ACM Transactions on

Graphics (TOG) 30, 1 (2011), 5. 2

[KGH∗14] KŘIVÁNEK J., GEORGIEV I., HACHISUKA T.,
VÃČÂL’VODA P., IK M. Ã., NOWROUZEZAHRAI D., JAROSZ

W.: Unifying points, beams, and paths in volumet-
ric light transport simulation. ACM Transactions on

Graphics (Proceedings of SIGGRAPH) 33, 4 (July 2014).
doi:10.1145/2601097.2601219. 2

[LW96] LAFORTUNE E. P., WILLEMS Y. D.: Rendering partic-
ipating media with bidirectional path tracing. In Proceedings of

the eurographics workshop on Rendering techniques’ 96 (1996),
Springer-Verlag, pp. 91–100. 2

[NNDJ12] NOVÁK J., NOWROUZEZAHRAI D., DACHSBACHER

C., JAROSZ W.: Virtual ray lights for rendering scenes
with participating media. ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH 2012) 31, 4 (July 2012).
doi:10.1145/2185520.2185556. 1, 2, 3

[OP11] OU J., PELLACINI F.: Lightslice: Matrix slice
sampling for the many-lights problem. In Proceed-

ings of the 2011 SIGGRAPH Asia Conference (New
York, NY, USA, 2011), SA ’11, ACM, pp. 179:1–179:8.
doi:10.1145/2024156.2024213. 1, 2, 3

[PKK00] PAULY M., KOLLIG T., KELLER A.: Metropolis light
transport for participating media. In Proceedings of the Eu-

rographics Workshop on Rendering Techniques 2000 (2000),
Springer-Verlag, pp. 11–22. 2

[WABG06] WALTER B., ARBREE A., BALA K.,
GREENBERG D. P.: Multidimensional lightcuts.
ACM Trans. Graph. 25, 3 (July 2006), 1081–1088.
doi:10.1145/1141911.1141997. 2

c© The Eurographics Association 2015.

64

http://dx.doi.org/10.1145/1275808.1276410
http://www.mitsuba-renderer.org
http://dx.doi.org/10.1145/2601097.2601219
http://dx.doi.org/10.1145/2185520.2185556
http://dx.doi.org/10.1145/2024156.2024213
http://dx.doi.org/10.1145/1141911.1141997

