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Abstract

Existing graphics hardware parallelizes view generation poorly, placing many multi-view effects – such as soft shadows, defocus
blur, and reflections – out of reach for real-time applications. We present emerging solutions that address this problem using a
high density point set tailored per frame to the current multi-view configuration, coupled with relatively simple reconstruction
kernels. Points are a more flexible rendering primitive, which we leverage to render many high resolution views in parallel.
Preliminary results show our approach accelerates point generation and the rendering of multi-view soft shadows up to 9×.

1. Introduction

Highly dynamic real-time applications, such as interactive games,
now demand image quality exceeding that which direct illumina-
tion approaches and precomputation strategies are capable of deliv-
ering. Accurate light simulation accounts for photons arriving not
only from direct sources, but also indirect sources, which requires
the evaluation of complex multi-dimensional integrals [Kaj86]. To-
day, due to decades of investment in graphics hardware designed
primarily to simulate direct illumination, sampling techniques that
serially rasterize multiple views are still commonly employed to
approximate these integrals [Gre86, HA90, Hak01]. Although ex-
isting fixed function rasterization hardware is highly optimized, the
bias towards creating a single view in a single graphics pipeline
execution severely limits performance in multi-view rendering sce-
narios. Existing graphics hardware parallelizes view generation
poorly, making multi-view effects such as soft shadows, defocus
blur, and reflections especially challenging to render efficiently.

The use of points as the primary rendering primitive has been
demonstrated in offline systems as a viable strategy to accelerate
the rendering of complex multi-view effects including ambient oc-
clusion and diffuse global illumination [GP07]. To avoid visible
“holes” in rendered geometry, these techniques use dense sampling
and/or complex splatting and reconstruction methods. Point-based
rendering is rarely used for real-time multi-view effects since 1)
dense point sets appropriate for all views cannot be regenerated in
real-time for animation, nor be rendered to many views within real
time frame budgets; while 2) sparse point sets require elaborate
splatting and reconstruction algorithms that do not parallelize ef-
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fectively on existing GPUs, and ultimately suffer from low quality
approximations of the original geometry.

In this short paper, we present emerging solutions that tackle
these problems. Modern graphics hardware solves direct illumi-
nation by coupling dense sampling tailored to the current view
with extremely simple reconstruction that parallelizes well, fully
exploiting the GPU’s raw power. Inspired by this approach, we
propose solving indirect illumination using a high density point
set tailored per frame to the current multi-view configuration, cou-
pled with relatively simple reconstruction kernels. Preliminary re-
sults show that our approach can transform two million polygons
into a high density point cloud – specialized for up to 128 views –
in real time. Additionally, by restructuring the rendering computa-
tion using these points, we are able to render many high resolution
views in parallel. In the modern GPU, points are a much more flex-
ible primitive than triangles, allowing projection into many buffers
in one pass. We demonstrate this by accelerating the rendering of
depth maps used to compute multi-view soft shadows. We conclude
with a discussion of the significant remaining challenges.

2. Related Work

Point-Based Rendering is based on the insight that the efficiency
gained from a polygonal surface representation is no longer advan-
tageous when a polygon covers only a single pixel (or less) of the
output image [LW85]. In recent years, the number of pixels covered
by the average polygon has decreased dramatically and the connec-
tivity information of polygonal representations is less important to
real-time efficiency than ever before [GP07].

Acquiring points has traditionally been performed offline by
laser scanners [RL00]. For many real-time applications, points
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Figure 1: Left: the view plane is uniformly sampled and the plane
of a polygon in the view frustum receives variable sampling under
perspective projection. Right: a special case, where the view plane
and all parts of the polygon have uniform sampling rates when par-
allel, differing only by a ratio proportional to distance.

must be generated at runtime from animated polygonal models.
Early work produced points in real time by rendering many orthog-
onal views of each object [GD98]. Later, Bærentzen used depth
peeling in three axis-aligned directions to capture multiple depth
layers in each view using the GPU [Bær05]. More recently, an ex-
tension of Imperfect Shadow Mapping (ISM) used the GPU’s tes-
sellation unit [BBH13]. While faster than depth peeling, the tessel-
lation pipeline is less efficient than the fixed function rasterization
hardware utilized by our solution.

Managing sampling density (level of detail) is a challenging
problem for all point-based approaches. Blending between poly-
gons and points [DVS03] and constructing hierarchical acceler-
ation structures [HREB11] have all been proposed. Complicated
splatting, hole-filling, and interpolation techniques are used when
points are sparse [MKC07,GP07]. Most of these solutions were de-
signed for GPUs from a prior decade and are ill-suited to modern
game engines.

3. View Independent Rasterization

The fixed function rasterization hardware of modern GPUs are
highly-optimized point generation machines. By design, these
hardware units produce view-dependent samples of input geome-
try by transforming all polygons of a single view using a single
view-projection plane. The result is uniform sampling across the
view plane and variable sampling across each projected polygon.
See the left side of Figure 1 for an illustration.

A special case exists when the view plane and the plane of a
transformed polygon are parallel. Shown on the right of Figure 1,
the sampling rate is uniform across both planes, and only differs by
a ratio proportional to the distance between the planes. In this situ-
ation, the rasterizer can be utilized as a powerful view-independent
point generator by ensuring the convex hull of a parallel polygon
fits within the view volume before rasterization. Increasing the pro-
jected area uniformly increases sampling density, while decreasing
projected area uniformly decreases sampling.

We leverage this insight to generate a high density point cloud
useful for many views in real time. We refer to this novel point
generation approach as View Independent Rasterization (VIR). By
computing a view-projection plane unique to each polygon in the
geometry stage of the graphics pipeline, VIR achieves its real-time
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Figure 2: View Independent Rasterization as implemented in the
graphics pipeline.

performance by traversing the source geometry only once and sam-
pling with fast, fixed-function rasterization hardware.

3.1. View Independent Transformation

To perform view independent rasterization of arbitrary polygons,
we compute and apply a unique transformation matrix, Tvir, to each
polygon in the Geometry Shader. Alternatively, Tvir can be com-
puted and applied in the Hull Shader; however this requires tes-
sellation support, prevents surfaces from being tessellated by the
hardware, and incurs unnecessary overhead by activating the tessel-
lation pipeline for all polygons. The transform centers each poly-
gon about the z-axis, aligns the polygon’s plane parallel to the X-Y
plane, and is written as the 4×4 matrix:

Tvir =

 ûx ûy ûz −(û · c)
v̂x v̂y v̂z −(v̂ · c)
n̂x n̂y n̂z −(n̂ · c)+d
0 0 0 1

 (1)

where n̂, û, and v̂ are mutually orthogonal unit vectors forming the
polygon’s basis frame. n̂ is the polygon’s unit length geometric nor-
mal and the vector c is the translation of the polygon’s centroid to
the world origin. d is the desired distance from the polygon to the
near plane, which uniformly affects sampling density. We discuss
this further at the end of this section.

Next, we apply a default view-projection transformation to each
polygon that positions the camera at the world origin looking down
the positive z-axis. We store points generated by the rasterizer us-
ing the Pixel Shader stage. In this step, culling of point samples
occurs to further tailor the point set to the current frame’s multi-
view requirements. This can be accomplished using view-frustum
and/or back-face comparisons before point storage. For simplic-
ity, we store points in an unstructured, linear (D3D11 Append/-
Consume) buffer; however, an arbitrary data structure may be used.
These steps are illustrated in Figure 2.

Our preliminary implementation uses a conservative sampling
density that varies per-polygon. Shown in Figure 3, the sampling
density of a polygon processed by VIR is represented by a single
distance value. To ensure a polygon is sampled sufficiently – plac-
ing at least one sample in each pixel in all relevant views – we
compute the shortest distance, d, from the polygon’s surface to the
set of relevant view centers. This problem can be efficiently solved
with a two dimensional projection [Jon95].
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Figure 3: Conservative multi-view sampling density is computed
using the shortest distance from the polygon to all relevant views.
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Figure 4: Multi-view rendering using VIR restructures computa-
tion to improve point reuse and parallelization on existing GPUs.

4. Parallel View Rendering

After point generation, we render multiple views in parallel using
the point representation. We perform point rendering by either a)
streaming points directly to the Pixel Shader stage of VIR, or b)
storing points to a separate buffer and dispatching GPU compute
threads (shown in Figure 4). Our simple point rendering kernels
read a point’s world-space location, and then for each view, ap-
ply the corresponding view-projection matrix, snap the projected
location to the nearest neighbor pixel in the view’s buffer, and per-
form z-buffering. Atomic functions resolve race conditions caused
by multiple points projecting to the same texel.

5. Preliminary Results

Table 1 shows initial point generation performance results for
polygonal models of varying complexity. Our experimental envi-
ronment uses Windows 8.1 and Direct3D 11.1 running on an Intel
i7-4790k @ 4.0 GHz with a NVIDIA Maxwell Titan X GPU. GPU
times are averaged from 1,000 frames of execution.

VIR processes two million polygons, generating nearly 600,000
points tailored to 128 depth map views in only 5.48 milliseconds.
Since each depth map view is 10242 resolution (averaging two in-
put polygons per pixel), VIR dynamically adjusts the total number
of points lower than the number of input polygons. The rendering
of depth maps (including point generation) is accelerated up to 9×
compared to traditional multi-pass rasterization. Points parallelize
multi-view rendering more effectively than polygons, since they
avoid the slow instancing or amplification operations required to
parallelize polygon rendering across dozens of views. Further, we
observe notable performance improvements using the GPU com-
pute approach, which warrants further analysis. Shown in Figure 5,
the visual quality of the soft shadows produced by our approach is

VIR Point Generation and Depth Map Rendering
(compared to Multi-Pass Rasterization) for 128 Views

Model Triangles VIR Points
Depth Map ×
Rendering Faster

Lucy

53,715 0.46 83,989 2.10 (2.21) 1.05

106,973 0.62 125,136 2.69 (4.10) 1.52

256,621 1.03 229,840 4.57 (15.91) 3.48

502,667 1.95 369,328 7.51 (32.73) 4.36

1,023,609 3.31 563,878 11.63 (65.86) 5.66

2,005,071 5.48 599,916 13.03 (120.1) 9.22

Buddah 1,087,476 2.93 164,831 5.43 (52.80) 9.72

Trees 1,597,951 3.77 121,768 5.67 (37.00) 6.53

Table 1: VIR point generation times (orange) for up to 2M poly-
gons and 128 views. Depth Map rendering using points (including
VIR point generation time) is compared to multi-pass rasterization
of polygons (in parentheses). All times measured in milliseconds.
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Figure 5: Multi-view soft shadows rendered using traditional
multi-pass rasterization of polygons (top) compared to VIR paired
with our parallel view rendering approach (bottom). Both methods
produce 128 high resolution depth maps and similar high quality
shadow penumbra, but VIR takes only a fraction of the time.

excellent. A minor “bloating” of shadows occurs compared to ras-
terization, caused by our nearest neighbor reconstruction writing
to texels that traditional polygonal rasterization ignores when the
central sample of a texel is not covered (see magnified inlays).
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6. Remaining Challenges and Conclusion

Our remaining challenges center around improving control of sam-
pling density, enabling the maintenance of high image quality and
speed, especially as multiple views differ significantly:

Sub-pixel projected polygons might not cover a pixel center in
the VIR raster sampling grid. In this scenario, VIR generates no
samples for the polygon, even though in one or more of the ren-
dered views, it does cover a pixel center. Important surface poly-
gons might not be rendered. A conservative solution to this prob-
lem generates at least one sample for all polygons regardless of
projected area. This transforms an undersampling problem into an
oversampling problem. We implement this by enabling conserva-
tive rasterization (if available) during VIR or by storing the poly-
gon’s centroid instead of rasterizing.

Large and skewed projected polygons span a wide range of depth
within a view. As a result, different areas on the polygon’s surface
may require very different sampling densities to maintain render-
ing efficiency. We might procedurally subdivide the polygon be-
fore VIR, reducing oversampling at the cost of additional subdivi-
sion logic. While VIR is flexible enough to address a few of these
polygons, traditional view-dependent rasterization is purpose-built
to render large projected polygons, and will be faster when they are
common.

Polygons that vary greatly in projected size across many views
require greatly varying sampling densities. We might address this
problem by creating discrete point cloud LoDs of varying sampling
density. This process replicates the input polygon a limited number
of times (five replications or fewer performs well), and executes
VIR using various distance values. This is illustrated in Figure 6.
During rendering, the distance from the current view’s eyepoint to
a bounding volume containing the polygon is computed and used
to determine the appropriate discrete point cloud to be used.
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Figure 6: Multiple discrete point-based LoDs computed using VIR.

An alternative strategy with the potential to address all of these
problems might adjust polygonal sampling density “just in time”
during point generation, point rendering, or both. Inspired by
[KV05], we might use a comparison of the point region’s projected
area to the area covered by a pixel, and use this to stochastically
discard or generate polygon samples.

In conclusion, preliminary results show that View Independent
Rasterization for multi-view rendering is a viable research direc-
tion warranting further investigation. Our future plans include test-
ing this approach for more challenging multi-view effects including
reflections, defocus blur, and diffuse global illumination using ge-
ometry representative of cutting-edge real-time game titles.
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