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Phong Tessellation and PN Polygons for Polygonal Models
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Figure 1: Rendering a model with 8 triangles and 12 non-planar hexagons. Left to right: input model, original Phong tessellation [BA08],
original PN triangles [VPBM01] (hexagons have been triangulated), extended Phong tessellation, and PN triangles extended to PN polygons.

Abstract
We extend Phong tessellation and point normal (PN) triangles from the original triangular setting to arbitrary polygons by use
of generalised barycentric coordinates and S-patches. In addition, a generalisation of the associated quadratic normal field is
given as well as a simple algorithm for evaluating the polygonal extensions for a polygon with vertex normals on the GPU.

Categories and Subject Descriptors (according to ACM CCS):
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Surface representation; splines I.3.5 [Computer
Graphics]: Methodology and Techniques—Graphics data structures

1. Introduction

The creation of visually smooth geometry has long been a prob-
lem in computer graphics. The use of Phong shading gives a good
enough illusion of a smooth surface by interpreting interpolated
normals as the normal field of some fictional underlying surface.
Although Phong shading produces nicely varying shading on flat
polygons, it lacks in this regard at the edges and contours of the in-
put geometry, where artifacts are clearly visible. This problem has
been solved by generating additional geometry from the existing
geometry, typically by employing Bézier triangles or tensor prod-
uct Bézier patches on quadrilaterals. Bézier surfaces have been ex-
tended to higher order polygons by use of generalised barycentric
coordinates, resulting into S-patches in the case of regular poly-
gons [LD89], and mean value Bézier maps or surfaces defined on
arbitrary polygons [LBS08].

A persisting problem with this approach is the automatic setting
of the control points for the patches. The control points have to be
placed such that patches on a mesh are continuous (C0) and prefer-
ably tangent-plane continuous (G1). Phong tessellation [BA08] and
(curved) PN triangles [VPBM01] give constructions for quadratic

and cubic Bézier triangles, respectively, such that their control
points are determined by vertex positions and vertex normals. Both
techniques are local and suitable for hardware tessellation, and as-
sure at least C0 continuity across edges, and additionally G1 conti-
nuity at vertices in the case of PN triangles.

This paper describes an extension of Phong tessellation and PN
triangles to arbitrary polygons such that the resulting surfaces are
S-patches with control points determined from vertex positions and
normals. This allows for a uniform technique to process meshes
with several face types. This technique can be implemented using
hardware tessellation and is, unlike Phong tessellation and PN tri-
angles, independent of the triangulation of the input polygons.

2. Preliminaries

Generalised barycentric coordinates provide a coordinate system
in which any point on a planar polygon can be expressed as a lin-
ear combination of the polygon’s vertices. Given cyclically ordered
vertices vi, i = 1 . . .n of a polygon P, and a point p∈ P, generalised
barycentric coordinate functions φi, i = 1 . . .n on P are defined by
the following properties:

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/egsh.20171012

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20171012


G.J. Hettinga, J. Kosinka / Phong Tessellation and PN Polygons for Polygonal Models

• Partition of unity: ∑
n
i=1 φi(p) = 1;

• Non-negativity φi(p)≥ 0,∀i;
• Linear reproduction: ∑

n
i=1 φi(p)vi = p.

The coordinate functions linearly interpolate on the boundary of
P and satisfy the Lagrange property: φi(v j) = δi j, where δi j is the
Kronecker delta. There exist various forms of generalised barycen-
tric coordinates such as Wachspress coordinates [Wac75] and many
other types [Flo15].

Phong tessellation [BA08] uses the unique barycentric coordi-
nates on triangles and orthogonal projections to create a quadratic
Bézier triangle. Consider a triangle in 3D with vertices v1,v2, v3,
and corresponding normals n1,n2, n3. A point on the triangle can
be expressed as

p(u,v,w) = (u,v,w)(v1,v2,v3)
ᵀ, (1)

where u,v,w denote barycentric coordinates. Let πi(p) be the or-
thogonal projection of a point p onto the tangent plane at vi given
by ni. Phong tessellation [BA08] is defined as the barycentric com-
bination of the orthogonally projected barycentric combinations:

p2(u,v,w) = (u,v,w)

π1(p(u,v,w))
π2(p(u,v,w))
π3(p(u,v,w))

 . (2)

As proposed in [BA08], linearly interpolated normals are used.

A (curved) PN triangle [VPBM01] is a cubic Bézier triangle also
constructed using barycentric coordinates and orthogonal projec-
tions, and is given in Bernstein-Bézier form

p3(u,v,w) = ∑
i+ j+ k = 3

i, j,k ≥ 0

3!
i! j!k!

bi jkuiv jwk, (3)

where

b300 = v1, b030 = v2, b003 = v3,

b210 =
2
3

v1 +
1
3

π1(v2), b120 =
2
3

v2 +
1
3

π2(v1),

b201 =
2
3

v1 +
1
3

π1(v3), b102 =
2
3

v3 +
1
3

π3(v1),

b021 =
2
3

v2 +
1
3

π2(v3), b012 =
2
3

v3 +
1
3

π3(v2),

e = (b210 +b120 +b201 +b102 +b021 +b012)/6,

c = (v1 +v2 +v3)/3, and b111 = e+(e− c)/2.

Since cubics are capable of representing inflection points, it is a
good choice to use a normal field which supports this. To this end,
a quadratically varying normal field was proposed in [VPBM01]:

n2(u,v,w)= u2n200+v2n020+w2n002+uvn110+uwn101+wvn011

with

n200 = n1, n020 = n2, n002 = n3,

n110 =
h110
||h110||

, h110 = n1 +n2− t12(v2−v1),

n101 =
h101
||h101||

, h101 = n1 +n3− t13(v3−v1),

n011 =
h011
||h011||

, h011 = n2 +n3− t23(v3−v2),

(4)

where

ti j = 2
(v j−vi) · (ni +n j)

(v j−vi) · (v j−vi)
.

We now extend these constructions to arbitrary polygons.

3. Extending Phong tessellation and PN triangles

To parametrise an arbitrary and possibly non-planar polygon P of
valency n with vertices v1 . . . ,vn, we consider a regular polygon P
of the same valency. Other parametrisation options are discussed in
Section 6. This planar domain allows for any point p ∈ P to be ex-
pressed using generalized barycentric coordinates φφφ on P. Having
obtained these coordinates, they are used to parametrise P.

3.1. Extended Phong tessellation

Given some generalised barycentric coordinates φφφ = (φ1 . . .φn)
with respect to P corresponding to P, we have that

p(φφφ) = (φ1,φ2, . . . ,φn)(v1,v2, . . . ,vn)
ᵀ. (5)

Then, extended Phong tessellation, cf. (2), is the barycentric com-
bination of the projections of this point onto the tangent planes de-
fined by the normals at the vertices of P:

p2(φφφ) = (φ1,φ2, . . . ,φn)(π1(p(φφφ)), . . . ,πn(p(φφφ))ᵀ . (6)

3.2. PN polygons

In the case of PN triangles, observe that any Bézier cubic can be
written as a linear combination of Bézier quadratics. It then follows
that we can rewrite the triangular construction in (3) as

p3(u,v,w) = (u,v,w)



(u,v,w)

π1(p(u,v,w))
p(u,v,w)
p(u,v,w)


(u,v,w)

 p(u,v,w)
π2(p(u,v,w))

p(u,v,w)


(u,v,w)

 p(u,v,w)
p(u,v,w)

π3(p(u,v,w))




+θθθ3

with

θθθ3 = 6uvw
(−c123 +∑q∈{1,2,3} πq (c123)

4

)
,

where ci jk = (vi + v j + vk)/3. This extra term θθθ3 is needed to
achieve reproduction of quadratics [Far86] and is derived from the
central coefficient in the original PN triangle definition. Based on
this, we extend this construction to arbitrary polygons by

p3(φφφ) = φφφ

φφφ

π1(p(φφφ))
· · ·

p(φφφ)

 , . . . ,φφφ

 p(φφφ)
· · ·

πn(p(φφφ))

ᵀ

+θθθn (7)

with

θθθn = 6
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k= j+1

φiφ jφk

(−ci jk +∑q∈{i, j,k} πq(ci jk)

4

)
.

(8)
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In (6) and (7) we construct an S-patch of degree two and three,
respectively. For triangles (n= 3), both extended Phong tessellation
and PN polygons yield the exact same result as the known triangu-
lar forms. If bilinear coordinates (or equivalently Wachspress coor-
dinates on rectangles) are used in the case of quads (n = 4), Phong
tessellation for quads is also reproduced [Bou10]. The correction
term θθθn is derived similarly to the triangular case (θθθ3) by degree
elevating a quadratic S-patch [SS15] so as to reproduce quadratics
in φφφ when possible.

Since our extended constructions yield S-patches, they can also
be given in Bernstein-Bézier form using the multi-index notation
α = (α1, . . . ,αn) and degree d defined in [LD89]:

pd(φφφ) = ∑
|α|=d

bαBd
α(φφφ) with Bd

α(φφφ) =
d!
α!

φα, (9)

where the control points in the quadratic case (Phong tessellation)
are defined as

b2
αi,α j =

π j(vi)+πi(v j)

2
, b2

αi = vi,

and in the cubic case (PN polygons) as

b3
αi,α j ,αk =

3ci jk +∑q∈i, j,k 3πq(ci jk)

12
,

b3
αi,α j =

2vi +πi(v j)

3
when αi > α j, and b3

αi = vi.

3.3. Normal interpolation

As in the triangular setting, the extended cubic form should be ac-
companied by a quadratic normal field. The linear normal field is
simply n(φφφ) = (φ1, . . . ,φn)(n1, . . . ,nn)

ᵀ. Defining the reflection of
a normal as

τττi(n,v) =

{
n, if v = vi

n−2 n·(v−vi)
(v−vi)·(v−vi)

(v−vi), otherwise,

the quadratic normal field is then given by

n2(φφφ) = φφφ

φφφ

τττ1(n1,v1)
· · ·

τττ1(nn,vn)

 , . . . ,φφφ

τττn(n1,v1)
· · ·

τττn(nn,vn)

ᵀ

. (10)

This does not exactly reproduce the triangular version of
[VPBM01] in the case n = 3 since the intermediate normalisation
of the edge coefficients, see (4), is lost in this form. Generally, the
quadratic normal fields look the same and differ only slightly as can
be seen in Figure 2.

4. Implementation

The implementation of the extended definitions was done using the
tessellation stage in the OpenGL 4.x pipeline. To render an arbi-
trary (curved) polygon of valency n, we divide the polygon in n−2
triangular patches. These patches correspond to a triangulation of a
regular n-gon. For simplicity, a fanning triangulation was chosen;
see Figure 3 and Section 6.

Figure 2: Reflection lines on a cubic triangle for various normal
interpolation methods. Left to right: linear interpolation, quadratic
interpolation for PN triangles, and the new quadratic interpolation
for arbitrary PN polygons.

By use of vertex indexing, barycentric coordinates u,v,w on tri-
angles, and indexing of sub-triangles, a position p4 on a sub-
triangle 4 with vertices vi,v j and vk of P is found. Then gener-
alized barycentric coordinates φφφ of p4 on P are calculated cor-
responding to u,v,w on 4 produced in the tessellation stage. The
coordinates can then be used to obtain the associated position on
P or to evaluate (6) or (7). This gives a point on the surface of the
Phong tessellation or PN polygon on P, respectively.

Care must be taken on the boundary of P and at vertices. A sim-
ple criterion can be evaluated on the generated barycentric coor-
dinates u,v,w corresponding to vertex indices i, j,k of some sub-
triangle of P in order to determine whether these describe a point
on an edge or vertex. Alternatively, control points of the S-patch
can be pre-computed by following the form described in (9).

5. Results and performance

Immediate improvements over the original triangular methods can
be seen in the case of polygons parametrised using a regular
parametrisation domain. In Figure 3, two different triangulations
are imposed on an octagon. This shows that the extended tech-
niques are indifferent to the underlying triangulation as both result-
ing surfaces are identical. The same can be seen in the context of a
model containing different types of polygons, as shown in Figure 1.

Regarding the performance of the extended algorithms, they are
slower than the original triangular methods. Explicitly calculating
control points drastically increases performance as can be seen in
Figure 4. The measured FPS rates were obtained on a PC with
an Intel Core i3-2310M, 4GB RAM and NVIDIA GeForce GT
520MX 1GB graphics card running OpenGL 4.1 with NVIDIA
drivers for Linux.

6. Discussion, limitations and future work

As mentioned above, the resulting surfaces are independent of the
chosen triangulation of the polygons as the triangulation step is
only used to facilitate the calculation of generalised barycentric
coordinates in the parametrisation domain. This triangulation step
is currently unavoidable due to GPU limitations. Its purpose is to
convert regular barycentric coordinates on a sub-triangle to gener-
alised barycentric coordinates with respect to the whole polygon.
Although this slows down the extended methods compared to the
original versions (cf. Figure 4), it provides much smoother results
on polygonal models (see Figure 1).
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Figure 3: Comparison: Two different triangulations of a non-
planar octagon. Top two rows: Phong tesselation and extended
Phong tessellation, reflection lines of linear normal fields on Phong
tessellation and extended Phong tessellation. Bottom two rows: PN
triangles and PN polygons, reflection lines of the new quadratic
normal fields, see (10), on PN triangles and PN polygons. Note
that extended Phong tessellation and PN polygons are independent
of the triangulation of the input octagon.
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Figure 4: Performance comparison in FPS per method: rendering
a model (right) containing 56 triangles, 634 quads, 40 pentagons,
and 4 hexagons at two tessellation depths. ePN polygons refers to
the explicit calculation of control points, see (9), and PT refers to
Phong tessellation.

Regarding our choice of parametrisation, a regular polygon can
be viewed as the simplest and most efficient choice. Additionally,
the use of regular polygons allows us to utilise Wachspress coordi-
nates, which are only defined on convex polygons, but are arguably
the most efficient (a closed-form rational formula is available) gen-
eralisation of barycentric coordinates to polygons.

Moreover, our tests suggest that this choice allows one to create
very complex surfaces from polygonal boundaries which can self
intersect and twist without introducing other artifacts when com-
pared to other coordinate types.

The use of other types of parametrisation domains has been in-
vestigated, namely a projection of the polygon to the best fitting
plane and a chord length parametrisation variant. These methods
pose restrictions on the type of barycentric coordinates since the

domain may become non-convex. In addition to this, the use of
these techniques requires a uniquely constructed parametrisation
domain for each polygon in a mesh, thus slowing down the method.

In theory, there is no maximum polygonal valency, but increas-
ing the number of vertices adds computational complexity to the
calculation of generalised barycentric coordinates and S-patches.
In the current implementation an individual shader is implemented
for valencies 3 to 8 because of constraints on input vertex numbers.
However, future developments in graphics drivers could lift this
restriction. Still a more efficient means of (pre-)computing gener-
alised barycentric coordinates is sought, e.g., by means of textures,
since it could save valuable computation time.

7. Conclusion

The generalisations of Phong tessellation and curved PN triangles
to arbitrary polygons provide simple ways of creating quadratic
and cubic S-patches in the context of polygonal models. The gen-
eralised quadratic normal fields do not stray far from the original
triangular version when applied to triangles and are equally effec-
tive on arbitrary polygons. The increased complexity of the com-
putation of the control points or evaluation of the patches makes it
slower than the original triangular methods but this does not undo
the power of the techniques in that they are independent of the tri-
angulation of the polygons and can create very complex surfaces.
The continuity properties of the original methods are transferred
to the polygonal extensions and the new methods can also be im-
plemented into the rendering pipeline, requiring only vertices and
normals to be sent to the GPU.
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