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Welcome and Introduction 
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Plzen (Pilsen) City 

    

Plzen is an old city [first records of Plzen castle 976] city of culture, 
industry, and brewery. 

City, where today’s beer fermentation process was invented 
that is why today’s beers are called Pilsner - world wide   
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University of West Bohemia 17530 students + 987 PhD students 
 
Faculty of Applied Sciences 
Computer Science and Engineering Mathematics (+ Geomatics)  

Physics     Cybernetics   Mechanics (Computational) 
• Over 50% of income from research and application projects 
•  NTIS project (investment of 64 mil. EUR) 
•  2nd in the ranking of Czech technical / informatics faculties 2009, 2012  
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“Real science” in the XXI century 

 
Courtesy of the Czech Film, Barrandov  
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History of Interpolation, Visualization and Geometric Modeling 
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Parametric non-linear interpolation 

• Lagrange interpolation 
 

• Bezier surfaces – an arbitrary 
degree 1962  

• Third order interpolation by 
Catmull & Rom 1974 

• Radial Basis Function (RBF) 
interpolation – Hardy 1971 

• Splines properties demonstrated 
by Andrews & Hou 1978 
=> B-splines 

• 1999- convolution method 
development -> Splines  

Lagrange,J.L.: “The method of interpolation is, after logarithms, the 
most useful discovery in calculus”, [1792] 

Refs: [Kav11], [Mei02],[Wor96]  
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History of visualization 

• First notices 500-200 BC in Hindu and 
Egypt  
 

• Visualization – offers a “visual” 
processing of complex large data sets 
 

• Interpolation needed to fill gaps in data 
 

Today 

• visualization of complex, dynamic 
scalar, vector or tensor data  
 

• 3D displays and 3D Prints 
 

• Spatio-temporal scattered large data 
sets processing  

 
Babylon map  

(Courtesy:Wikimedia commons) 
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Algorithm complexity 
(Computational geometry issue) 
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Algorithms are mostly evaluated by 
Computational Geometry (CG) terms 
ܱ൫݃ሺ݊ሻ൯, where ݊ is number of primitives 
processed, where ݊ ՜ ∞, which is not the 
real case as our algorithms will be 
processing ݊ א ,଴݊ۃ ݊ଵۄ, even very high.  

Note that many CG approaches do not 
consider: 

• limited speed of the data bus (data 
transfer cost) 

• caching at the processor level 
• parallelization on scalable HW 
• etc. 

So some algorithms can be actually faster even they have no 
optimal computational complexity from the CG view  
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Numerical representation and precision issues 
 

 

 

 

  



Meshless Interpolations 

Eurographics, Zurich, 2015  Vaclav Skala  15 

Numerical systems 

• Binary system is used nearly exclusively 
• Octal & hexadecimal representation is used 
• If we would be direct descendants of tetrapods –  

we would have a great advantage – “simple counting in octal or 
hexadecimal system” 

  

 Name Base Digits[bits] E min E max 
BINARY 

B 16 Half 2 10+1 −14 15 
B 32 Single 2 23+1 −126 127 
B 64 Double 2 52+1 −1022 1023 
B 128 Quad 2 112+1 −16382 16383 

DECIMAL 
D 32 

 
10 7 −95 96 

D 64 
 

10 16 −383 384 
D 128 

 
10 34 −6143 6144 

IEEE 758-2008 standard 
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Mathematically perfect algorithms fail due to limited numerical 
precision 

Main issues 

• stability, robustness of algorithms 
• acceptable speed 
• linear speedup – results depends on HW, CPU …. parameters ! 

 

Numerical stability 

• limited precision of float / double  
• tests  A ? B with floats 

if A = B then ….. else …..   ;   if A = 0 then ….. else …. 
should be forbidden in programming languages 

• division operation should be removed or postponed to the last 
moment if possible - “blue screen”, system reset, …  
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Typical problem (good for students analysis) 

 

double x = -1; double p =  ….; 

while ( x < +1)  

{  if (x == p) Console.Out.WriteLine(” *** ”) 

 x += p; 

} 

/*     if p = 0.1 then no output */ 

/*     if p = 0.25 then expected output */  
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Floating point  

• Not all numbers are represented 
correctly 

• Logarithmic arithmetic 

• Continuous fractions 

• Interval arithmetic 

• etc. 

 

 

 

Use of high precision arithmetic in SW leads to extremely slow 
computations.  

ߨ ൌ
4

1 ൅ 1ଶ

3 ൅ 2ଶ

5 ൅ 3ଶ

…

 

ߨ ൌ ሾ3; 7,15,1,292,1,1,1,2,1,3,1 … ሿ 

x + y = [a + c, b + d]  x = [ a , b ] 

x -  y = [a - d, b - c]  y = [ c , d ] 

x × y = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] 

x / y = [min(a/c, a/d, b/c, b/d),  

max(a/c, a/d, b/c, b/d)]  if y ≠ 0 
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Numerically NOT valid identities due to limited precision 

Typically based on addition of high and small value, so the last bits of 
mantissa of the smaller one has got lost. 

 

Typical examples: 

ߙଶݏ݋ܿ ൅ ߚଶݏ݋ܿ ൌ 1 

xଶ െ yଶ ൌ ሺݔ െ ݔሻሺݕ ൅  ሻݕ

if |ݔ| ا ݔor vice versa - ሺ |ݕ| െ ݔሻሺݕ ൅  .ሻ is to be used insteadݕ

 

Be careful – compiler’s optimization can change the order of 
computation – it mostly optimizes according to the speed not according 
to the precision of computation.  
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Statements like  

if <float> = <float> then ….  or       if <float> ≠ <float> then …. 

should not be allowed in programming languages 

 

Quadratic equation - more reliable results 

ଶݐܽ ൅ ݐܾ ൅ ܿ ൌ 0 usually solved as ݐଵ,ଶ ൌ
െܾ േ √ܾଶ െ 4ܽܿ

2ܽ  

If ܾଶ ب 4ܽܿ then 

ݍ ൌ െሺܾ ൅ ሺܾሻඥܾଶ݊݃݅ݏ െ 4ܽܿ ሻ/2 ݐଵ ൌ ݍ
ܽൗ ଶݐ  ൌ ܿ ܽ⁄  

The discriminate should be computed with a twice precision due to ݔଶ 
and √ݔ operations. 

Vieta’s formula ݐଵ ൅ ଶݐ ൌ െ ܾ ܽൗ ଶݐଵݐ  ൌ ܿ ܽ⁄  
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Function value computation     at  ݔ ൌ ݕ  ,77617 ൌ 33096  

݂ሺݔ, ሻݕ ൌ ଺ݕ333.75 ൅ ଶݕଶݔଶሺ11ݔ െ ଺ݕ െ ସݕ121 െ 2ሻ ൅ ଼ݕ5.5 ൅  ሻݕሺ2/ݔ

݂ ൌ 6.33835 10ଶଽ   single precision 

݂ ൌ 1,1726039400532   double precision 

݂ ൌ 1,1726039400531786318588349045201838    extended precision  

 

The correct result is “somewhere” in the interval of 

ሾെ0,82739605994682136814116509547981629૛૙૙૞, 
 െ0,82739605994682136814116509547981629૚ૢૡ૟ሿ 

Exact solution 

݂ሺݔ, ሻݕ ൌ െ2 ൅
ݔ

ݕ2 ൌ
54767
66192 
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Summation is one of often used computations 

 

෍ 10ିଷ  ൌ 0.999990701675415
ଵ଴య

௜ୀଵ

 ෍ 10ିସ ൌ 1.000053524971008
ଵ଴ర

௜ୀଵ

 

The result should be only one in both cases.  

The correctness in summation is very important in power series 
computations. 

 
!!!! ORDER of summation 

෍
1
݊

 ൌ 14.3૞ૠ૜૞ૠ
ଵ଴ల

௡ୀଵ

 ෍
1
݊ ൌ 14.3ૢ૛૟૞૚

ଵ

௡ୀଵ଴ల
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Recursion 

Towers of Hanoi 

  

  

  

Ackermann function 

 

 

 

The value of the function grows very fast as  

ሺ4,4ሻܣ ൌ 2ଶమలఱఱయల
ൌ 2ଶభబభవళమవల

 

  

MOVE (A, C, n); 
{ MOVE (A, B, n-1); 
 MOVE (A, C, 1); 
 MOVE (B, C, n-1) 
}  # MOVE (from, to, number) # 

,ሺ݉ܣ ݊ሻ

ൌ ቐ
݊ ൅ 1         ݂݅ ݉ ൌ 0     
ሺ݉ܣ െ 1,1ሻ   ݂݅ ܯ ൐ 0 ܽ݊݀ ݊ ൌ 0

൫݉ܣ െ 1, ,ሺ݉ܣ ݊ െ 1ሻ൯ ݂݅ ݉ ൐ 0 ܽ݊݀ ܰ ൐ 0
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Mathematical “forms”   There are several “forms”: 

Implicit ܨሺݔ, ,ݕ ሻݖ ൌ 0  or  ܨሺ࢞ሻ ൌ 0   or ࡲሺ࢞ሻ ൌ ૙ (system of equations) 

There is no orientation, e.g.  

• if ܨሺ࢞ሻ ൌ 0 is a iso-curve there is no hint how to find another point 
of this curve, resp. a line segment approximating the curve => 
tracing algorithms 

• if ܨሺ࢞ሻ ൌ 0 is a iso-surface there is no hint how to find another 
point of this surface => iso-surface extraction algorithms 

Parametrical    ࢞ ൌ ࢞ሺݑሻ                 ࢞ ൌ ࢞ሺݑ,   ሻݒ

Points of a curve are “ORDERED” according to a parameter ݑ,  
resp. ݑ,  ݒ

Explicit  ݖ ൌ ݂ሺݔሻ                   ݖ ൌ ݂ሺݔ,  ሻ  [actually 2 ½ D]ݕ

For the given value ݔ, resp. ݔ,   ݖ we get function value ݕ
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Implicit form 

• can be used for separation - for detection if a point is inside or 
outside, e.g. a half-plane or a circle etc. – reliable, but …. 

• There is always a question how to compute ࢞ of ܨሺ࢞ሻ ൌ 0 as there 
are several solutions in general, i.e. solution of an equation 

• complexity of computations × precision of computation issues 

Compiler optimization is DANGEROUS in general can change the order 
of operations – numerical precision 

ଶݔ െ ଶݕ ൌ ሺݔ ൅ ݔሻሺݕ െ  ሻݕ

ተ
ተ

௫ܣ ௬ܣ ௫ܣ
ଶ ൅ ௬ܣ

ଶ 1
௫ܤ ௬ܤ ௫ܤ

ଶ ൅ ௬ܤ
ଶ 1

௫ܥ ௬ܥ ௫ܥ
ଶ ൅ ௬ܥ

ଶ 1
௫ܦ ௬ܦ ௫ܦ

ଶ ൅ ௬ܦ
ଶ 1

ተ
ተ ൌ ተ

௫ܣ െ ௫ܦ ௬ܣ െ ௬ܦ ሺܣ௫
ଶ െ ௫ܦ

ଶሻ ൅ ሺܣ௬
ଶ െ ௫ܦ

ଶሻ
௫ܤ െ ௫ܦ ௬ܤ െ ௬ܦ ሺܤ௫

ଶ െ ௫ܦ
ଶሻ ൅ ሺܤ௬

ଶ െ ௫ܦ
ଶሻ

௫ܥ െ ௫ܦ ௬ܥ െ ௬ܦ ሺܥ௫
ଶ െ ௫ܦ

ଶሻ ൅ ሺܥ௬
ଶ െ ௫ܦ

ଶሻ
ተ ൐ 0 
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Another example 

݂ሺݔሻ ൌ
1 െ cos ݔ

ଶݔ  
݂ሺ0ሻ ൌ 0,5 - can be shown,  

but how to compute it correctly? 

Computed values are wrong in an interval close to zero!!!!!  
In the interval ሺെߝ,  !!!ሻ the function values are ZERO instead of 0.5ߝ

  

݂ሺݔሻ ൌ
1 െ cos ݔ

ଶݔ  Interval ൏ െ10ି଼ , 10ି଼ ൐ 

  

 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-10 -5  0  5 10

(1
-c

os
(x

))
/x

^
2

x
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0.0000000-0.0000000-0.0000000-0.0000000-0.00000000.00000000.00000000.00000000.00000000.00000000.0000
(1

-c
os

(x
))

/x
^

2
x
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Examples – what happened? 

 

There are famous examples of numerical disasters.  

 

When reading the original reports and followed comments and details 
one must be really surprised how simple errors occur and should be 
worried what could happen in complex problems solution.  

 

Let us shortly explore some “traditional” cases.  
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Courtesy CNN 

Explosion of Ariane 5 

An Ariane 5 rocket was launched by the 
European Space Agency (ESA) on June 4, 
1996. The development cost over 
$7 billion. The rocket exploded after lift-
off in about 40 sec. Destroyed rocket and 
cargo were valued at $500 million. The cause of a failure was a 
software error in the inertial reference system. From the CNN article: 

“The internal SRI [Inertial Reference System] software exception was 
caused during execution of a data conversion from 64-bit floating point 
to 16-bit signed integer value. The floating point number which was 
converted had a value greater than what could be represented by a 16-
bit signed integer.” 

The conversion from the floating point to the integer 
representation is very dangerous as it is not reported by an 
exception and stored value represents an existing number.   
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Courtesy of GAO report 

Patriot Missile Failure 

The system was originally designed in 
mid-1960 for a short and flexible 
operation (the system was actually 
running for more than 100 hours), for 
intercepting cruise missiles running at 
MACH 2 speed. But it was used to 
intercept the Scud missile running at 
MACH 5. The computation of intercepting and hitting was based on 
time counting with 24 bits integers with the clock of 1/10 [s] and 
computation in floats. The clock setting to 1/10 was a critical issue and 
not acceptable even for application in sport activities at that time. 
Unfortunately 1/10 = 1/24+1/25+1/28+1/29+1/212+.... and therefore 
the error on 24 bits is about 0.000000095 and in 100 hours the error is 
0.34. As the Scud flies at MACH 5, the error was actually 687[m] and 
the missile was out of the “range gate” area. 
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As a result of the fault assumptions, incorrect software design and 
irresponsible attitude of the army officials (not updated software even 
already available), 28 Americans were killed and over 100 other people 
injured in the Iraq’s Scud missile attack in Dhahran, Saudi Arabia on 
February 25, 1991 according to the GAO report.  



Meshless Interpolations 

Eurographics, Zurich, 2015  Vaclav Skala  33 

Courtesy of SINTEF 

Sleipner offshore platform sinking 

Another well known example is the 
Sleipner offshore platform sinking. 
The top deck is about 57 000 tons, 
drilling and support equipments 
weight about 40 000 tons and the 
deck provides an accommodation 
for about 200 people. 

The Sleipner platform structure was 
“optimized” using finite element 
system and the shear stresses were 
underestimated nearly by 50%. It led to serious cracks in the structure 
and leakage that the pumps were unable to cope with. The sinking of 
the platform estimated cost is about $700 million. 
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We have presented some basic facts on numerical precision and 
examples of some disasters. Many engineering problems are somehow 
connected with geometry and geometrical computations with 
respecting physical phenomena etc.  

The majority of computations are made in the Euclidean space 
representation and with the Cartesian coordinate system.  

 

In the following we will show how 

• the non-Euclidean representation, actually the projective extension 
of the Euclidean representation, and  

• the principle of duality can be used to solve some problems in a 
simple, robust and elegant ways. 

  



Meshless Interpolations 

Eurographics, Zurich, 2015  Vaclav Skala  35 

 

 

 

Coordinate Systems, Duality and Transformations 
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Vectors and Points in Geometry 

 

• Vectors – movable, no fixed position 
 

• Points – no size, position fixed in the GIVEN coordinate system 
 

 

• Same data structure is used for points and vectors representation 
in a memory  
 

• Geometric transformations of points and lines, resp. planes are 
DIFFERENT in general 
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Projective Space  

 

ࢄ ൌ ሾܺ, ܻሿ்      ࢄ א  ଶܧ

࢞ ൌ ሾݔ, :ݕ ࢞      ሿ்ݓ א ܲଶ 

Conversion: 

ࢄ ൌ ሾݓ/ݔ, ݓ      ሿ்ݓ/ݕ ് 0 

 

If ݓ ൌ 0 then ࢞ represents “an ideal point” [a point in infinity], i.e.  
it is a directional vector.  

The Euclidean space ܧଶ is represented as a plane ݓ ൌ 1.  

Equivalent “mathematical” notation often used: 

࢞ ൌ ሾݓ: ,ݔ ࢞ ሿ்                   generally for ܲ௡ݕ ൌ ሾݔ଴: ,ଵݔ … ,  ௡ሿ்ݔ

i.e. homogeneous coordinate is the first  
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Points and vectors 

• Vectors are “freely movable” – not having a fixed position 

ଵࢇ ൌ ሾݔଵ, :ଵݕ 0ሿ் 
• Points are not “freely movable” – they are fixed to the origin of 

the current coordinate system 

࢞ଵ ൌ ሾݔଵ, :ଵݕ ଵሿ்    and    ࢞ଶݓ ൌ ሾݔଶ, :ଶݕ  ଶሿ்ݓ

usually in textbooks  ݓଵ ൌ ଶݓ ൌ 1  

Why “:” is used? 

,௜ݔ •  ௜ have physical meaning, e.g. distance in meters [m]ݕ
 ௜ is just a scaling factor without a physical unitݓ •

 

A vector ࡭ ൌ ଶࢄ െ  ଵ in the Euclidean coordinate system – CORRECTࢄ

࡭ ൌ ,௫ܣൣ ௬൧்ܣ ൌ ሾܺଶ, ଶܻሿ் െ ሾ ଵܺ, ଵܻሿ்  
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Horrible “construction” !DO NOT USE IT – TOTALLY WRONG! 

ࢇ ൌ ࢞ଶ െ ࢞ଵ ൌ ሾݔଶ െ ,ଵݔ ଶݕ െ :ଵݕ ଶݓ െ  ଵሿ்ݓ
as ݓଵ ൌ ଶݓ ൌ 1 

ࢇ ൌ ሾݔଶ െ ,ଵݔ ଶݕ െ :ଵݕ 1 െ 1ሿ் ൌ ሾݔଶ െ ,ଵݔ ଶݕ െ :ଵݕ 0ሿ் 
 
What happen if  ݓଵ ്  ?ଶ due to a numerical representationݓ

ࢇ ൌ ࢞ଶ െ ࢞ଵ ൌ ሾݔଶ െ ,ଵݔ ଶݕ െ :ଵݕ ଶݓ െ ଵሿ்ݓ ൌ ൣܽ௫, ܽ௬: ൧்ߝ
 

Now ߝ ് 0 
This is considered to be interpreted as a point !!! 

 
This was presented as “How a vector” is constructed in the projective 
space  ܲ௞ in a textbook!! WRONG, WRONG, WRONG 

This construction has been found in SW!! 

Different data types point and vector are needed with relevant 
operations.    
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A Euclidean vector ࡭ given by two points expressed in 

• the Euclidean coordinates ࡭ ൌ ቂ௪భ௫మି௪మ௫భ
௪భ ௪మ

,  ௪భ௬మି௪మ௬భ
௪భ ௪మ

ቃ
்
 

• expressed in the homogeneous coordinates as a vector type 

ࢇ ൌ ࢞ଶ െ ࢞ଵ ൌ ሾݓଵݔଶ െ ,ଵݔଶݓ ଶݕଵݓ െ :ଵݕଶݓ ଶሿ்ݓ ଵݓ

ؠ ൤
ଶݔଵݓ െ ଵݔଶݓ

ଶݓ ଵݓ
,
ଶݕଵݓ െ ଵݕଶݓ

ଶݓ ଵݓ
: 0൨

்
 

So we can see actually two possible representations. 

 

We use the homogeneous coordinate to represent a denominator of a 
fraction – postponing the division operation 

This is the CORRECT SOLUTION, but what is the interpretation? 
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A “difference” of coordinates of two points is a vector in the 
mathematical meaning BUT ࢝૚ ࢝૛ is a “scaling” factor actually 

Actually the division operation is postponed and not performed 
immediately. A vector in the projective notation  

ࢇ ൌ ࢞ଶ െ ࢞ଵ ൌ ሾݓଵݔଶ െ ,ଵݔଶݓ ଶݕଵݓ െ ଵݕଶݓ ׷ ଶሿ்ݓ ଵݓ

؜ ൤
ଶݔଵݓ െ ଵݔଶݓ

ଶݓ ଵݓ
,
ଶݕଵݓ  െ ଵݕଶݓ

ଶݓ ଵݓ
: 0൨

்
 

where: ؜ means projectively equivalent 

 

Thus is just “Euclidean” vector using projective representation 
 
BUT we can define a vector in the projective space as follows 
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A vector in the projective space is given by coordinates ݔ, ,ݕ  as ݓ

ࢇ ൌ ࢞ଶ െ ࢞ଵ ൌ ሾݔଶ െ ,ଵݔ ଶݕ െ :ଵݕ ଶݓ െ  ଵሿ்ݓ 

NOTE the difference also for the homogenous coordinates 

[=>Linear interpolation with a non-linear monotonic parameterization] 

 
We have to strictly distinguish meaning of one dimensional array 
[vector], i.e. if we are working with:  
 
• points, i.e. a data structure represent point coordinates, or  

 
• vectors, i.e. a data structure represent a vector in the mathematical 

meaning 
VECTORS x POINTS  
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Duality (linear) 

For simplicity, let us consider a 
line ݌ defined as: 

ܽܺ ൅ ܾܻ ൅ ܿ ൌ 0 

We can multiply it by ݓ ് 0 and 
we get: 

ܺݓܽ ൅ ܻݓܾ ൅ ݓܿ ൌ 0 

ݓ   ് 0 

As ݔ ൌ ݕ and ܺݓ ൌ  :we can write ܻݓ

ݔܽ ൅ ݕܾ ൅ ݓܿ ൌ 0            i.e.   ்࢞࢖ ൌ 0 

࢖ ൌ ሾܽ, ܾ: ܿሿ்  ࢞ ൌ ሾݔ, :ݕ ሿ்ݓ ൌ ሾܺݓ, :ܻݓ  ሿ்ݓ

A line ݌ א  in the projective space  ܲଶ passing the ߩ ଶ is actually a planeܧ
origin, which is excluded, i.e. the point ࢞ ൌ ሾ0,0: 0ሿ் is excluded  
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Duality 

From the mathematical notation   ࢞ࢀ࢖ ൌ 0 

we cannot distinguish whether ࢖ is a line and ࢞ is a point or vice versa 
in the case of ܲଶ. It means that  

• a point and a line are dual in the case of ܲଶ, and  
• a point and a plane are dual in the case of ܲଷ. 

The principle of duality in ܲଶ states that: 

Any theorem in E2 remains true when we interchange the words “point” 
and “line”, “lie on” and “pass through”, “join” and “intersection”, 
“collinear” and “concurrent” and so on.  

Similarly for the E3 case. 

Once the theorem has been established, the dual theorem is 
obtained as described above. 

This helps a lot to solve some geometrical problems.   
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Examples of dual objects and operators 

 

 Primitive Dual primitive 

ܲଶ Point 

Line 

Line 

Point 

ܲଷ Point 

Plane 

Plane 

Point 

   

 Operator Dual operator 

 Join 

Intersect 

Intersect 

Join 

 

Computational sequence for a problem  
is the same as for the dual problem.  
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Definition 

The cross product of the two vectors 

࢞ଵ ൌ ሾݔଵ, :ଵݕ ଵሿ்      and       ࢞ଶݓ ൌ ሾݔଶ, :ଶݕ  ଶሿ்ݓ

is defined as: 

࢞ଵ ൈ ࢞ଶ ൌ ݐ݁݀ ൥
࢏ ࢐ ࢑

ଵݔ ଵݕ ଵݓ
ଶݔ ଶݕ ଶݓ

൩ 

where: ࢏ ൌ ሾ1,0: 0ሿ்     ࢐ ൌ ሾ0,1: 0ሿ்     ࢑ ൌ ሾ0,0: 1ሿ் 

or as  

࢞ଵ ൈ ࢞ଶ ൌ ൥
0 െݓଵ ଵݕ

ଵݓ 0 െݔଵ
െݕଵ ଵݔ 0

൩ ൥
ଶݔ
ଶݕ
ଶݓ

൩ ൌ  ଶ࢞ࢀ

Please, note that homogeneous coordinates are used.  
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Intersection of two lines 

Let two lines ݌ଵ and ݌ଶ are given by 

ଵ݌ ൌ ሾܽଵ, ܾଵ: ܿଵሿ்       and       ݌ଶ ൌ ሾܽଶ, ܾଶ:  ܿଶሿ் 

We have to solve a system of linear equations  ࢞࡭ ൌ  ࢈

ܽଵݔ ൅ ܾଵݕ ൅ ܿଵ ൌ 0 ܽଶݔ ൅ ܾଶݕ ൅ ܿଶ ൌ 0 

൤ܽଵ ܾଵ
ܽଶ ܾଶ

൨ ቂ
ݔ
ቃݕ ൌ ቂ

ଵݍ
ଶݍ

ቃ             and              ቂ
ଵݍ
ଶݍ

ቃ ൌ ቂ
െܿଵ
െܿଶ

ቃ * 

Then well known formula is used 

ݔ ൌ
௫ݐ݁ܦ

ݐ݁ܦ ൌ
ݐ݁݀ ൤ݍଵ ܾଵ

ଶݍ ܾଶ
൨

ݐ݁݀ ൤ܽଵ ܾଵ
ܽଶ ܾଶ

൨
ݕ  ൌ

௬ݐ݁ܦ

ݐ݁ܦ ൌ
ݐ݁݀ ቂ

ܽଵ ଵݍ
ܽଶ ଶݍ

ቃ

ݐ݁݀ ൤ܽଵ ܾଵ
ܽଶ ܾଶ

൨
 

 
Usually a sequence like ݏܾܽ ࢌ࢏ሺdetሺ. . ሻሻ ൑   .is used ࢔ࢋࢎ࢚ ݏ݌݁

But what if ݐ݁ܦ is small? What is ݁ݏ݌?  That is wrong! 

From where a programmer knows the value of  ?  
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Theorem 
Let two lines ࢖ଵ and ࢖ଶ be given. Then the coordinates of an 
intersection point ࢞, which is defined by those two lines, are 
determined as the cross product of homogeneous coefficients of those 
lines as 

࢞ ൌ ଵ࢖ ൈ ݔ ଶ࢖ ൌ ሾݔ, :ݕ  ሿ்ݓ

Proof 
We are actually looking for a solution to the following equations: 

ଵ࢖்࢞ ൌ ଶ࢖்࢞                  0 ൌ 0 
where: ࢞ ൌ ሾݔ, :ݕ   ሿ்ݓ
 

Note * usually a line is in its implicit form as  ܽݔ ൅ ݕܾ ൌ  instead ݍ
of ܽݔ ൅ ݕܾ ൅ ܿ ൌ 0, or in the explicit form as ൌ ݔ݇ ൅   . ݍ
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A Line given by two points 

Given two points ࢞ଵ and ࢞ଶ and we want to compute a line given by 
those two points, i.e. we need to compute 3 values ܽ, ܾ, ܿ from two 
values ࢞ଵ, ࢞ଶ.  

 One parametric set of solutions 

ଵݔܽ ൅ ଵݕܾ ൅ ܿ ൌ ଶݔܽ 0 ൅ ଶݕܾ ൅ ܿ ൌ 0 
 

In a matrix form 

൤ݔଵ ଵݕ 1
ଶݔ ଶݕ 1൨ ቈ

ܽ
ܾ
ܿ

቉ ൌ ቂ0
0ቃ ࢞࡭ ൌ ૙ 

How to solve it? 

Select ൌ 1 ? What happen if a line passing the origin? 

or ൌ 1 ? or ܾ ൌ 1 or similarly?  NO, NO, NO!   

BUT HOW?  
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൤ݔଵ ଵݕ 1
ଶݔ ଶݕ 1൨ ቈ

ܽ
ܾ
ܿ

቉ ൌ ቂ0
0ቃ ࢞࡭ ൌ ૙ 

Additional condition     ܽ ൅ ܾ ൌ 1? 

൥
ଵݔ ଵݕ 1
ଶݔ ଶݕ 1
1 1 0

൩ ቈ
ܽ
ܾ
ܿ

቉ ൌ ൥
0
0
1

൩ ࢞࡭ ൌ  ࢈

 

 

Another approach 

We know that a line is dual to a point in ܧଶ and vice versa.  

Due to the duality principle in ܧଶ: 

࢞ ൌ ଵ࢖ ൈ ࢖ <= ଶ <= duality࢖ ൌ ࢞ଵ ൈ ࢞ଶ 
࢞࡭ ൌ ࢞࡭ <= ?why different => ࢈ ൌ ૙ 
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Theorem 
Let two points ࢞ଵ and ࢞ଶ be given in the projective space. Then the 
coefficients of the ࢖ line, which is defined by those two points, are 
determined as the cross product of their homogeneous coordinates 

࢖ ൌ ࢞ଵ ൈ ࢞ଶ ൌ ሾܽ, ܾ: ܿሿ்  
Proof 
Let the ݌ line be defined in homogeneous coordinates as  

ݔܽ ൅ ݕܾ ൅ ݓܿ ൌ 0 

We are actually looking for a solution to the following equations: 

ଵ்࢞࢖ ൌ ଶ்࢞࢖                  0 ൌ 0 
where: ࢖ ൌ ሾܽ, ܾ: ܿሿ்  
Note that ܿ represents a “distance” from the origin of the coordinate 
system. 
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It means that any point ࢞ that lies on the ݌ line must satisfy both the 
equation above and the equation ࢞ࢀ࢖ ൌ 0 in other words the ࢖ vector is 
defined as 

࢖ ൌ ࢞ଵ ൈ ࢞ଶ ൌ ݐ݁݀ ൥
࢏ ࢐ ࢑

ଵݔ ଵݕ ଵݓ
ଶݔ ଶݕ ଶݓ

൩ 

We can write  

ሺ࢞ଵ ൈ ࢞ଶሻ࢞ࢀ ൌ ݐ݁݀ 0 ൥
ݔ ݕ ݓ
ଵݔ ଵݕ ଵݓ
ଶݔ ଶݕ ଶݓ

൩ ൌ 0 

 

Note that the cross product and the dot product are the instructions 
in Cg/HLSL on GPU. 
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Evaluating the determinant  ݀݁ݐ ൥
ܽ ܾ ܿ
ଵݔ ଵݕ ଵݓ
ଶݔ ଶݕ ଶݓ

൩ ൌ 0 

we get the line coefficients of the line ݌ as: 

ܽ ൌ ݐ݁݀ ቂ
ଵݕ ଵݓ
ଶݕ ଶݓ

ቃ ܾ ൌ െ݀݁ݐ ቂ
ଵݔ ଵݓ
ଶݔ ଶݓ

ቃ ܿ ൌ ݐ݁݀ ቂ
ଵݔ ଵݕ
ଶݔ ଶݕ

ቃ 
Note:  

1.A line ܽݔ ൅ ݕܾ ൅ ܿ ൌ 0 is a one parametric set of coefficients  
࢖ ൌ ሾܽ, ܾ: ܿሿ் 

From two values ࢞ଵ and ࢞ଶ we have to compute 3 values,  
coefficients ܽ , ܾ and ܿ 
 

2.For ݓ ൌ  1 we get the standard cross product formula and the cross 
product defines the ݌ line, i.e. ࢖ ൌ ࢞ଵ ൈ ࢞ଶ where:  

࢖ ൌ ሾܽ, ܾ: ܿሿ் 
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DUALITY APPLICATION 

 

In the projective space  ܲଶ points and lines are dual. Due to duality we 
can directly intersection of two lines as 

࢞ ൌ ଵ࢖ ൈ ଶ࢖ ൌ ݐ݁݀ ൥
࢏ ࢐ ࢑

ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ

൩ ൌ ሾݔ, :ݕ  ሿ்ݓ

If the lines are parallel or close to parallel, the homogeneous 
coordinate  ݓ ՜ 0 and users have to take a decision – so there is no 
sequence in the code like ݏܾܽ ࢌ࢏ሺdetሺ. . ሻሻ ൑ ࢔ࢋࢎ࢚ ݏ݌݁ …in the procedure. 

 
Generally computation can continue even if ݓ ՜ 0 if projective space is 
used.  
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Computation in Projective Space 

• Extended cross product definition 

• A plane ߩ is determined as a 
cross product of three given 
points 

Due to the duality 

• An intersection point ࢞ of three 
planes is determined as a cross 
product of three given planes. 

Computation of generalized cross product is equivalent to a solution 
of a linear system of equations => no division operation! 
 

Using the cross product we can continue with symbolic operations 
which could not be made if solution of ࢞࡭ ൌ   .is used ࢈

࣋ ൌ ࢞ଵ ൈ ࢞ଶ ൈ ࢞ଷ ൌ ተ

࢏ ࢐ ࢑ ࢒
ଵݔ ଵݕ ଵݖ ଵݓ
ଶݔ ଶݕ ଶݖ ଶݓ
ଷݔ ଷݕ ଷݖ ଷݓ

ተ 

࢞ ൌ ࣋ଵ ൈ ࣋ଶ ൈ ࣋ଷ ൌ ተ

࢏ ࢐ ࢑ ࢒
ܽଵ ܾଵ ܿଵ ݀ଵ
ܽଶ ܾଶ ܿଶ ݀ଶ
ܽଷ ܾଷ ܿଷ ݀ଷ

ተ 
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We have seen that computation of 

• an intersection of two lines is given as  ࢞࡭ ൌ  ࢈

• a line given by two points is given as  ࢞࡭ ൌ ૙ 

 

Different schemes 

 

BUT 

Those problems are DUAL. 

Why algorithms should be different?? 
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Cross product is equivalent to a solution of 
both linear systems of equations, i.e. 

 and  ! 

No division operations! 
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DISTANCE 

Geometry is strongly connected with distances and their measurement. 
Geometry education deals strictly with the Euclidean geometry, where 
the distance is measured as 

݀ ൌ ඥሺ∆ݔሻଶ ൅ ሺ∆ݕሻଶ       , resp.         ݀ ൌ ඥሺ∆ݔሻଶ ൅ ሺ∆ݕሻଶ ൅ ሺ∆ݖሻଶ . 

This concept is convenient for a solution of basic geometric problems, 
but in many cases it results into quite complicated formula.  

There are severe questions of stability and robustness in many cases. 

 

The main objection against the projective representation is that 
there is no metric.  
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The distance of two points can be easily computed as  

ݐݏ݅݀ ൌ ඥߦଶ ൅  ଶሻݓଵݓଶ/ሺߟ

where:  ߦ ൌ ଶݔଵݓ െ ߟ        ଵݔଶݓ ൌ ଶݕଵݓ െ  ଵݕଶݓ

Also a distance of a point ࢞଴ from a line in E2 can be computed as 

ݐݏ݅݀ ൌ
଴்࢞ࢇ

଴√ܽଶݓ ൅ ܾଶ
 

where: ࢞૙ ൌ ሾݔ଴, :଴ݕ ࢇ   ଴ሿ்ݓ ൌ ሾܽ, ܾ: ܿሿ் 

The extension to E3/P3 is simple and the distance of a point ࢞଴ from a 
plane in E3 can be computed as 

ݐݏ݅݀ ൌ
଴்࢞ࢇ

଴√ܽଶݓ ൅ ܾଶ ൅ ܿଶ
 

where: ࢞૙ ൌ ሾݔ଴, ,଴ݕ :଴ݖ ࢇ   ଴ሿ்ݓ ൌ ሾܽ, ܾ, ܿ: ݀ሿ்.  
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In many cases we do not need actually a distance, e.g. for a decision 
which object is closer, and distance2 can be used instead, i.e. for the E2 
case 

ଶݐݏ݅݀ ൌ
ሺ்࢞ࢇ଴ሻଶ

଴ݓ
ଶሺܽଶ ൅ ܾଶሻ ൌ

ሺ்࢞ࢇ଴ሻଶ

଴ݓ
ଶ ࢔்࢔ 

where: ࢇ ൌ ,ܽہ ܾ: ்ۂܿ ൌ :࢔ہ  .is not normalized  ࢔ and the normal vector  ்ۂܿ

If we are comparing distances of points ࢞଴ from the given line p we can 
use “pseudo-distance” for comparisons 

ሺݐݏ݅݀_݋݀ݑ݁ݏ݌ሻଶ ൌ
ሺ்࢞ࢇ଴ሻଶ

଴ݓ
ଶ  

Similarly for a plane  ߩ in the case of E3  

ଶݐݏ݅݀ ൌ
ሺ்࢞ࢇ଴ሻଶ

଴ݓ
ଶሺܽଶ ൅ ܾଶ ൅ ܿଶሻ ൌ

ሺ்࢞ࢇ଴ሻଶ

଴ݓ
ଶ ሻଶݐݏ݅݀_݋݀ݑ݁ݏ݌and ሺ ࢔்࢔ ൌ

ሺ்࢞ࢇ଴ሻଶ

଴ݓ
ଶ  

where: ࢇ ൌ ,ܽہ ܾ, ܿ: ்ۂ݀ ൌ :࢔ہ                         ்ۂ݀
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Transformation of lines and planes 

 E2 E3 
࢖  ൌ ࢞ଵ ൈ ࢞ଶ ࣋ ൌ ࢞ଵ ൈ ࢞ଶ ൈ ࢞ଷ 
Dual problem ࢞ ൌ ଵ࢖ ൈ ࢞ ଶ࢖ ൌ ࣋ଵ ൈ ࣋ଶ ൈ ࣋ଷ 
 

In graphical applications position of points are changed by an 
interaction, i.e. 

࢞ᇱ ൌ  ࢞ࢀ
The question is how coefficients of a line, resp. a plane are changed if 
the points are transformed without a need to be recomputed from the 
definition. 

It can be proved that  

ᇱ࢖ ൌ ሺ࢞ࢀଵሻ ൈ ሺ࢞ࢀଶሻ ൌ ࢖ଵሻ்ିࢀሻሺࢀሺݐ݁݀ ؜ ሺିࢀଵሻ்࢖ 

or 

࣋ᇱ ൌ ሺ࢞ࢀଵሻ ൈ ሺ࢞ࢀଶሻ ൈ ሺ࢞ࢀଷሻ ൌ ଵሻ்࣋ିࢀሻሺࢀሺݐ݁݀ ؜ ሺିࢀଵሻ்࣋  
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Transformation of lines and planes 

 

As the computation is made in the projective space we can write 

ᇱ࢖ ൌ ሺିࢀଵሻ்࢖ ൌ ሾܽᇱ, ܾᇱ: ܿԢሿ்           for lines in E2 

or 

࣋ᇱ ൌ ሺିࢀଵሻ்࣋ ൌ ሾܽᇱ, ܾᇱ, ܿᇱ: ݀Ԣሿ்         for planes in E3 

 

THIS SIMPLIFIES COMPUTATIONS 

 

Transformation matrices for lines, resp. for planes are DIFFERENT 
from transformations for points!  

Note that a normal vector of a line is actually a co-vector, i.e. an 
oriented “surface”.  
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Data Types, Structures and Classification 
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Data types 

Data type Dimensionality Interval of values Interpolation 

Textual ՜ ∞ 
ሽܫܫܥܵܣሼ݄݋݉  

i.e. ሼ0, … ,255ሽכ NO 

Geometrical ݀ ൌ 2 or ݀ ൌ 3 ሺെ∞, ∞ሻ YES 

Images ݀ ൌ 2 or ݀ ൌ 3 ሼ0, … ,255ሽכ YES 

Signals++ ݀ ൌ 2 or ݀ ൌ 3 ሺെ∞, ∞ሻ NO 

Numerical+ ݀ ൌ? ? ሺെ∞, ∞ሻ YES 

ሼ ሽכ usually restricted to 1,2 or 4 Bytes 
+ float, double... x real, complex, quaternion....  
++ signal representations – spectral representation 
 
• Interpolation of geometrical data & image data 
• Data structures   
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Data structures 

• Representation of discrete entities, i.e. images, CT/MRI data etc. 
 

• Representation of continuous entities, i.e. surface of objects 
 

Representation of 

• physical entities – scalar [CT/MRI], vector and tensor fields 
representation of physical or other phenomena 
Large data volume – [GB] – [TB] 
 

• geometrical entities – shapes, volumes etc. 
 

STATIC x DYMAMIC data 

Dynamic data – synchronous x asynchronous data [sea sensors...] 
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ܳଵ ൌ ܳଶ 

ଵܵݒଵ ൌ ܵଶݒଶ 

 

 

ሼ࢞, ሽࢎ ൌ ሼሾݔ, ,ݕ ,ሿ்ݖ ሾࢎଵ, … ,  ௠ሿ்ሽࢎ

  Associated values ࢎ 

  Static Dynamic 

C
o
o
rd

in
at

es
 

࢞ 

Static ષ ൌ ሼ࢞, ሽଵࢎ
௡ ષ ൌ ሼ࢞, ሻሽଵݐሺࢎ

௡ 

Dynamic ષ ൌ ሼ࢞ሺݐሻ, ሽଵࢎ
௡ ષ ൌ ሼ࢞ሺݐሻ, ሻሽଵݐሺࢎ

௡ 
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Data structures - classification 

• unordered – data without any inner “topological” structure 
o scattered – data scattered with or without known distribution 
o clustered – data having some geometric clustering in space 

• ordered 
o un-structured – irregular triangular or tetrahedronal meshes 

[crash tests, mechanical properties computations....] 
o structured – typically orthogonal meshes – exact mapping of 

neighbours vertices, cells etc. 
 irregular – cells have different shapes - rectangles can be of 
different shapes 

 regular – cells have the same shape - all rectangles are same 

Structures 

o plain – no hierarchy etc. 
o hierarchical, adaptive etc., e.g. quad tree, octree, ....,   
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In data visualization data are tessellated to cells and the given values 
(scalar or ݀-dimensional) are associated with cell’s vertices. 

Basic cells 

• line segment 
• triangle 
• quadrilateral – planar or non-planar 
• tetrahedron 
• pyramid 
• parallelpiped, hexahedron 
• prism 
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Let us consider a simple case in E – tetrahedron 

General interpolation formula: (Φ௜ is an interpolation function) 

࢞ ൌ ሺݔ, ,ݕ ሻݖ ൌ ,ݎሺࢀ ,ݏ ሻݐ ൌ ෍ ࢞௜Φ௜

௡

௜ୀଵ

ሺݎ, ,ݏ ࢞  ሻݐ א cell ሺ࢞௜ሻ ෍ Φ௜

௡

௜ୀଵ

ሺݎ, ,ݏ ሻݐ ൌ 1 

Values are given in the vertices. Parametrization 

 

  

  

࢞ଵ ൌ ሺ0,0,0ሻ ࢞ଶ ൌ ሺ1,0,0ሻ ࢞ଷ ൌ ሺ0,1,0ሻ ࢞ସ ൌ ሺ0,0,1ሻ 
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Interpolation functions 

Φଵ ൌ 1 െ ݎ െ ݏ െ Φଶ ݐ ൌ Φଷ ݎ ൌ Φସ ݏ ൌ  ݐ
Inverse transformation 

ሺݎ, ,ݏ ሻݐ ൌ ଵሺ࢞ሻିࢀ ൌ ቆ
ሺ࢞ െ ࢞ଵሻ்ሺ࢞ଶ െ ࢞ଵሻ

ԡ ࢞ଶ െ ࢞ଵԡଶ ,
ሺ࢞ െ ࢞ଵሻ்ሺ࢞ଷ െ ࢞ଵሻ

ԡ ࢞ଷ െ ࢞ଵԡଶ ,
ሺ࢞ െ ࢞ଵሻ்ሺ࢞ସ െ ࢞ଵሻ

ԡ ࢞ସ െ ࢞ଵԡଶ ቇ 

Inverse transformation does not exist in the implicit form for all cell 
types -> numerical (iteration) computation -> stability 

[hexadron – “deformed cube”] 

 

How to interpolate smoothly in triangular meshes? 
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Interpolation of Ordered Data 
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Interpolation 

Parametric Explicit Implicit 
࢞ ൌ ࢞ሺݑሻ 
࢞ ൌ ࢞ሺݑ,  ሻݒ

ݖ ൌ ݂ሺݔሻ 
ݖ ൌ ݂ሺݔ,  ሻݕ

,ݔሺܨ ሻݖ ൌ 0 
,ݔሺܨ ,ݕ ሻݖ ൌ 0 

 

• Linear 
o linear ࢄሺݐሻ ൌ ଴ࢄ ൅ ሺࢄଵ െ ݐ ݐ ଴ሻࢄ א ሺെ∞, ∞ሻ 

 
o barycentric  ࢄሺߣଵ, ଶሻߣ ൌ ଴ࢄଵߣ ൅ ଵߣ     &   ଵࢄଶߣ ൅ ଶߣ ൌ 1 

 

o spherical ݌ݎ݈݁ݏሺࢄ଴, ,ଵࢄ ሻݐ ൌ ୱ୧୬ሾሺଵି௧ሻΩሿ
ୱ୧୬ Ω

଴ࢄ ൅ ୱ୧୬ሾ௧Ωሿ
ୱ୧୬ Ω

 ଵࢄ

 
• Polynomial 

o e.g. ܲሺݔሻ ൌ ܽ௡ݔ௡ ൅ ܽ௡ିଵݔ௡ିଵ ൅ ڮ ൅ ܽଵݔ ൅ ܽ଴      etc.   => ࢞࡭ ൌ  ࢈
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1,90

2,10

2,30

2,50

2,70

2,90

3,10

0,00 2,00 4,00 6,00

X - Y

0,60

1,60

2,60

3,60

4,60

5,60

0,0 0,2 0,4 0,6 0,8 1,0

X(t)
Y(t)

Linear interpolation 

ሻݐሺࢄ ൌ ଴ࢄ ൅ ሺࢄଵ െ ݐ ݐ ଴ሻࢄ א ሺെ∞, ∞ሻ 

Non-linear monotonous parameterization 

࢞ሺݐሻ ൌ ࢞଴ ൅ ሺ࢞ଵ െ ࢞଴ሻ ݐ ݐ א ሺെ∞, ∞ሻ 
ሻݐሺݔ ൌ ଴ݔ ൅ ሺݔଵ െ   ݐ ଴ሻݔ
ሻݐሺݕ ൌ ଴ݕ ൅ ሺݕଵ െ  ݐ ଴ሻݕ
ሻݐሺݖ ൌ ଴ݖ ൅ ሺݖଵ െ   ݐ ଴ሻݖ
ሻݐሺݓ ൌ ଴ݓ ൅ ሺݓଵ െ  ݐ ଴ሻݓ
 
We can interpolate using homogeneous 
coordinates without “normalization”!! 
• homogeneous coordinate ݓ ൒ 0 
 
In many algorithms, we need 
“monotonous” parameterization, only  
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Spherical interpolation 

,଴ࢄሺ݌ݎ݈݁ݏ ,ଵࢄ ሻݐ ൌ
sinሾሺ1 െ ሻΩሿݐ

sin Ω ଴ࢄ ൅
sinሾݐΩሿ

sin Ω  ଵࢄ

Instability occurs if Ω ՜   .ߨ݇

Mathematically formula is correct;  
in practice the code is generally 

incorrect! [ ଴
଴
 ] 

,଴ࢄሺ݌ݎ݈݁ݏ ,ଵࢄ ሻݐ ؜ ,଴ࢄ௣ሺ݌ݎ݈݁ݏ ,ଵࢄ ሻݐ

ൌ ቂsinሾሺ1 െ ଴ࢄሻΩሿݐ ൅ sinሾݐΩሿࢄଵ
sin Ω

ቃ 

ؠ    ሾsinሾሺ1 െ ଴ࢄሻΩሿݐ ൅ sinሾݐΩሿࢄଵ : sin Ωሿ்   projective scalar used 

Homogeneous coordinates  
=> better numerical stability & division operation can be postponed 

  

homogeneous coordinate 

 

 
Courtesy of wikipedia 
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Line – Convex polygon intersection 

procedure CLIP_Line ( xA , xB );  
/* xA=[xA,yA:wA]T xB=[xB,yB:wB]T */ 
begin /* p=[a,b:c]T given - NO STEP 1 */ 
{1} p := xA x xB;     /* p: ax+by+c = 0 */ 
{2} for k:=0 to N-1 do /*xk=[xk,yk,wk]T*/ 
{3}  if pTxk ≥ 0 then ck:=1 else ck:=0; 
{4} if c=[0…0]T or c=[1…1]T then EXIT; 
{5} i:= TAB1[c]; j:= TAB2[c]; 
{6} xA := p x ei ; xB := p x ej ;  
{7} DRAW (xA; xB )    * ei – i-th edge */ 
end /* CLIP_Line */ 
/* c identifies an edge intersected */ 

TOO COMPLEX? 

NO SIMPLE, ROBUST and FAST 
• Skala,V.: A new approach to line and line segment clipping in homogeneous 

coordinates, The Visual Computer, SpringerVol.21, No.11, pp.905-914, 2005   

Line clipping algorithms in E2 

− Cohen-Sutherland 
− Liang-Barsky 
− Hodgman 
− Skala – modification of 

Clip_L for line segments 

x0

xA

x2x3

e3

e0

e1

e2

x1

xB

F(x)<0

F(x)>0

s



Meshless Interpolations 

Eurographics, Zurich, 2015  Vaclav Skala  77 

Rectangular normalized window 

xA := p x ei 

For the edge       ݕ ൌ െ1, i.e.  ݕ ൅ 1 ൌ 0 

࢞஺ ൌ ሾݔ஺, :஺ݕ ஺ሿ்ݓ ൌ อ
࢏ ࢐ ࢑
ܽ ܾ ܿ
0 1 1

อ ൌ ሾܾ െ ܿ, െܽ: ܽሿ

؜ ሾ
ܾ െ ܿ

ܽ ,
െܽ
ܽ : 1ሿ் ൌ ሾ

ܾ െ ܿ
ܽ , െ1: 1ሿ் 

Actually expression for ݕ஺ , resp. for  ݔ஺ is given by the window edge. 

No multiplication or division operations 

A simple modification if a line is given parametrically  
(in the Euclidean or projective space) as       ࢞ሺݐሻ ൌ ࢞஺ ൅  ݐ࢙

Simple modification for non-convex polygon but it requires 
intersections sorting => ܱሺܯ݈݃ ܯሻ, where ܯ is a number of 
intersections.  

x0

xA

x2x3

e3

e0

e1

e2

x1

xB

F(x)<0

F(x)>0

s
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Partition of Unity 
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Shepard’s interpolation 

݂ሺݔሻ ൌ ෍
ሻݔ௞ሺݓ

∑ ሻேݔ௝ሺݓ
௝ୀଵ

݂ሺݔ௞ሻ
ே

௞ୀଵ

 

where ݓ௝ሺݔሻ ൌ ฮݔ െ ௝ฮି௣ݔ
 and ݌ ൐ 0 

  
0 ൏ ݌ ൑ 1 ՜ PEAKS ݌ ൐ 1 smooth, derivative in points is ZERO 

Taken from: Ken Anjyo, J. P. Lewis, Frédéric Pighin Scattered data interpolation for computer graphics, 
SIGGRAPH 2015 
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Shepard’s method - example of the Partition of Unity, which is actually 
a blending of local approximations with ሼ߶௞ሽ with weights so that 
∑ ߶௞௞ ൌ 1 on the data sub-domain (݇-nearest neighbors etc.) 
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Interpolation of Unordered Data 
 

 

Meshless [meshfree] methods 
http://meshfree.zcu.cz  
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Meshless (meshfree) methods 

Meshless interpolations are used for: 

• scattered data interpolation, i.e. for interpolation of data sets 

• ሼ݄௜ ൌ ݂ሺݔଵ, … , ௗሻሽ௜ୀଵݔ
ே  

• ݀ െdimensional space in general 

• time-varying data, i.e. for spatio-temporal problems in general 

• scattered data in time – “not framed” data 

Meshless methods: 
• offer smooth interpolation naturally in the contrary to the methods 

based on tessellations. 

• do not require a tessellation step, which has high computational 

complexity, e.g. Delaunay triangulation is of ܱ ൮݊
ඍௗ

ଶൗ ାଵඑ
൲ 
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Meshless (or meshfree) techniques are primarily based on the idea of 
Radial Basis Function (RBF) interpolation [Buhm03], [Wend10], 
[Wrig03]. 

However RBF based methods are not separable, i.e. interpolation 
cannot be made along selected axis followed by another along the 
second axis etc., but easily extensible for the ݀-dimensional case, in 
general 

Summary 

RBF based techniques: 

• are easily scalable to the ݀-dimensional space,  

• do not require tessellation of the definition domain  

• offers smooth interpolation naturally.  

• lead to a solution of a system of linear equations 
[Duch77], [Hard71] with a full or sparse matrices.  
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Two different types of RBF interpolation problems: 

• explicit (“functional”) representation, i.e. ܨሺ࢞ሻ ൌ ݄, e.g. a height 
map in E2 – 2 1/2D i.e. . ܨሺݔ, ሻݕ ൌ ݄  
 

• implicit (iso-lines, iso-surfaces, e.g. in surface reconstruction), 
i.e. ܨሺ࢞ሻ ൌ 0 
However, there is a severe problem – surface extraction 

where: ࢞ is a point representation generally in ݀-dimensional space and 
݄ is a scalar value or a vector value.  

  



Meshless Interpolations 

Eurographics, Zurich, 2015  Vaclav Skala  85 

RBF Interpolation 

The RBF interpolation is based on computing of the distance of two 
points in the ݀-dimensional space and is defined by a function:  

݂ሺ࢞ሻ ൌ ෍ ௝ߣ ߮൫ฮ࢞ െ ௝࢞ฮ൯
ெ

௝ୀଵ

ൌ ෍ ௝ߣ ߮൫ݎ௝൯
ெ

௝ୀଵ

௝ݎ  ൌ ฮ࢞ െ ௝࢞ฮ 

 

It means that for the given data set  ሼ࢞ۃ௜, ݄௜ۄሽଵ
ெ, where ݄௜ are associated 

values to be interpolated and ࢞௜ are domain coordinates, we obtain a 
linear system of equations: 

݄௜ ൌ ݂ሺ࢞௜ሻ ൌ ෍ ௝ ߮൫ฮ࢞௜ߣ െ ௝࢞ฮ൯
ெ

௝ୀଵ

       ݅ ൌ 1, … ,  ܯ

where: ߣ௝  are weights to be computed and e.g. ߮ሺݎሻ ൌ ଶݎ lg  .etc ݎ
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Due to some stability issues, usually a polynomial ௞ܲሺ࢞ሻ of a degree k is 
added to the formula: 

݄௜ ൌ ݂ሺ࢞௜ሻ ൌ ෍ ௝ߣ ߮൫ฮ࢞௜ െ ௝࢞ฮ൯
ெ

௝ୀଵ

൅ ௞ܲሺ࢞௜ሻ ݅ ൌ 1, … ,  ܯ

For a practical use, the polynomial of the 1st degree is used, i.e. linear 
polynomial ଵܲሺ࢞ሻ ൌ ்࢞ࢇ ൅ ܽ଴, in many applications. So the interpolation 
function has the form: 

݂ሺ࢞௜ሻ ൌ ෍ ௝ ߮൫ฮ࢞௜ߣ െ ௝࢞ฮ൯
ெ

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴ ൌ ෍ ௝ ߮௜,௝ߣ

ெ

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴  

݄௜ ൌ ݂ሺ࢞௜ሻ           ݅ ൌ 1, … ,  ܯ

and additional conditions are applied: 

෍ ௜ߣ ൌ 0
ெ

௝ୀଵ

            ෍ ௜࢞௜ߣ ൌ ૙
ெ

௝ୀଵ
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It can be seen that for ݀-dimensional case a system of ሺܯ ൅ ݀ ൅ 1ሻ 
linear equations has to be solved [ ࢞࡭ ൌ   ,[ ࢈
where ܯ is a number of points in the dataset and ݀ is the 
dimensionality of data.  

 

Surface has “elastic” property 
=> there is not a “circle” on 
the top we would expect 

 

 

 
Taken from: Xin Wei, Yi-Zhong Wu, Li-Ping Chen: A 
new sequential optimal sampling method for radial 
basis functions, Mathematics and Computation, Volume 218, Issue 19, 1 June 2012, Pages 9635-9646  



Meshless Interpolations 

Eurographics, Zurich, 2015  Vaclav Skala  88 

Computational complexity of solution linear system of equations is 

ܱሺܰଷሻ resp. if iterative  ܱሺ݇ܰଶሻ 
but ݇ is high. 

 

Result is a function ݂ሺ࢞ሻ. It means that  

• we can determine interpolated value at any given point without 

tessellation, i.e. without triangulation in ܧଶ or ܧଷ !         ܱሺ ܰ
ඍௗ

ଶൗ ାଵඑ
ሻ 

 
• there is no need to deal with smoothness problems over 

triangulated meshes in ܧଶ or ܧଷ ! 
(contour smooth interpolation on a triangular mesh) 

Question 

“How to decrease number of ࢏ࣅ”  ???  
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For ݀ ൌ 2 vectors ࢞௜ and ࢇ are given as ࢞௜ ൌ ሾݔ௜, ࢇ ௜ሿ் andݕ ൌ ൣܽ௫, ܽ௬൧்
. 

Using a matrix notation we can write for 2-dimensions: 

ۏ
ێ
ێ
ێ
ێ
ۍ

߮ଵ,ଵ . . ߮ଵ,ெ ଵݔ ଵݕ 1
: ڰ : : : :

߮ெ,ଵ . . ߮ெ,ெ ெݔ ெݕ 1
ଵݔ . . ெݔ 0 0 0
ଵݕ . . ெݕ 0 0 0
1 . . 1 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ

ଵߣ
:

ெߣ
ܽ௫
ܽ௬
ܽ଴ ے

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

݄ଵ
:

݄ெ
0
0
0 ے

ۑ
ۑ
ۑ
ۑ
ې

 

ቂ ࡮ ࡼ
்ࡼ ૙ቃ ቂࣅ

ቃࢇ ൌ ቂࢌ
૙ቃ ࢞࡭ ൌ ࢏࢞ ்ࢇ ࢈ ൅ ܽ଴ ൌ ܽ௫ ௜ݔ ൅ ܽ௬ ௜ݕ ൅ ܽ଴ 

It can be seen that for the two-dimensional case and M points given 
a system of ሺܯ ൅ 3ሻ linear equations has to be solved.  

• If “global” functions, e.g. TPS (߮ሺݎሻ ൌ   are used ,( ݎ ଶ݈݃ݎ
the matrix ࡮ is “full”,  

• if “local” functions (Compactly supported RBF – CSRBF) are used, 
the matrix ࡮ can be sparse.  
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The RBF interpolation was originally introduced by Hardy [Hard71] by 
introduction of multiquadric method in 1971, which he called Radial 
Basis Function (RBF) method. Since then many different RFB 
interpolation schemes have been developed with some specific 
properties, e.g. Duchon [Duch71] uses 

߮ሺݎሻ ൌ  ݎ ଶ݈݃ݎ

which is called Thin-Plate Spline (TPS). A function ߮ሺݎሻ ൌ ݁ିሺఢ௥ሻమ
 was 

proposed by Wright [Wrig03]. 

Later Compactly Supported RBF (CSRBF) were introduces as  

߮ሺݎሻ ൌ ቊ
ሺ1 െ ,ሻݎሻ௤ ܲሺݎ     0 ൑ ݎ ൑ 1

 0, ݎ                   ൐ 1
  , 

where: ܲሺݎሻ is a polynomial function and ݍ is a parameter.  

Theoretical problems with stability and solvability were solved by 
Ducon [Duch77].   
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Generally, there are two main groups of the RBFs: 

• “global” – a typical example is TPS function 

• “local” –  Compactly supported RBF (CSRBF)  

If the “global” functions are taken, the matrix ࡭ of the LSE is full and 
for large ܯ is becoming ill conditioned and problems with convergence 
can be expected. On the other hand if the CSRBFs are taken, the 
matrix ࡭ is becoming relatively sparse, i.e. computation of the LSE will 
be faster, but we need to carefully select the scaling factor ߙ and the 
final function might tend to be “blobby” shaped. 

“Global“ functions ߶ሺݎሻ 
Thin-Plate 
Spline (TPS) 

ଶݎ lg Multiquadric (MQ) ඥ1 ݎ ൅  ଶݎߝ

Gauss function ݁ିఌ௥మ
 Inverse Quadric (IQ) 1

√1 ൅ ଶൗݎߝ  

Table 1 Typical example of “global” functions  



Meshless Interpolations 

Eurographics, Zurich, 2015  Vaclav Skala  92 

Examples of compactly supported RBF (CSRBF) 

ID CSRBF ID CSRBF 
1 ሺ1 െ ሻା 6 ሺ1ݎ െ ሻାݎ

଺ ሺ35ݎଶ ൅ ݎ18 ൅ 3ሻ 
2 ሺ1 െ ሻାݎ

ଷ ሺ3ݎ ൅ 1ሻ 7 ሺ1 െ ሻାݎ
଼

ሺ32ݎଷ ൅ ଶݎ25 ൅ ݎ8 ൅ 3ሻ 
3 ሺ1 െ ሻାݎ

ହ  
ሺ8ݎଶ ൅ ݎ5 ൅ 1ሻ 

8 ሺ1 െ ሻାݎ
ଷ  

4 ሺ1 െ ሻାݎ
ଶ  9 ሺ1 െ ሻାݎ

ଷ ሺ5ݎ ൅ 1ሻ 
5 ሺ1 െ ሻାݎ

ସ ሺ4ݎ ൅ 1ሻ 10 ሺ1 െ ሻାݎ
଻ ሺ16ݎଶ ൅ ݎ7 ൅ 1ሻ 

 

 

Table 2 “Local” functions - CSRBF 

Tab.2 presents typical examples of CSRBFs. They are defined for the 
interval 0ۃ ,  but for the practical use a scaling must be used, i.e. the ۄ 1 
value ݎ is multiplied by a scaling factor ߙ, where 0 ൏ ൏ ߙ   1.  
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In the case of surface reconstruction from scattered spatial data results 
is an implicit function ܨሺ࢞ሻ ൌ 0. This situation is a little bit more 
complicated, as the matrix ࡭ is generally symmetric, semi-definite or 
positively definite and the equation ࢞࡭ ൌ ૙ would have only a trivial 
solution ࢞ ൌ ૙. In this case a surface is considered as an oriented one 
and additional off-set points are added expecting that a value in those 
points is ߜ. Usually additional points are given in the normal vector 
direction, i.e. ൅࢔ and –  .and matrix size is increased by factor 9, i.e ࢔
3݊ ൈ 3݊, where ݊ is a number of the given points [Carr01], [PanR12].  

 

Also as number of points might be very 
high subdivision techniques are used 
[Mace11]. 
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Meshless techniques are primarily based on approaches mentioned 
above. The resulting matrix ࡭ tends to be large and ill-conditioned. 
Therefore some specific numerical methods have to be taken to 
increase robustness of a solution, like preconditioning methods or 
parallel computing on GPU [Naka11] etc. Also subdivision or 
hierarchical methods are used to decrease sizes of computations and 
increase robustness [Ohta03], [Suss10].  

Meshless interpolation a techniques are used in engineering problem 
solutions, nowadays, e.g. partial differential equations [Fass07], 
surface modeling [PanR11], surface reconstruction of scanned objects 
[Carr01], [Skal13a], reconstruction of corrupted images [Zapl09], etc. 

 

Generally, meshless object’s representation is based on specific 
interpolation techniques [Adam08], [Skal13b], [Skal12]. Detailed 
description can be found in [Buhm03], [Fass07] and [Wrig03].  
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Spatio-temporal data are usually considered as “framed” or 
“synchronized” in time. The first difficulty is distance computing as 
distance of two points ࢞ଵ ൌ ሺݔଵ, ,ଵݕ ,ଵݖ ଵሻ and ࢞ଶݐ ൌ ሺݔଶ, ,ଶݕ ,ଶݖ  ଶሻ is usuallyݐ
taken as 

݀ ൌ ඥሺݔଶ െ ଵሻଶݔ ൅ ሺݕଶ െ ଶݖଵሻଶ൅ሺݕ െ ଶݐଶሺߛଵሻଶ൅ݖ െ  ଵሻଶݐ

where ߛ ൌ 1 dimensionless. It is incorrect, as we are putting difference 
in [m] and in [s]. Therefore ߛ must be of [m/s].  

 

As the scattered spatio-temporal data are naturally scattered in time as 
well, i.e. they are not “framed”, meshless methods enable to solve 
spatio-temporal not “framed” interpolation, manipulation and 
representation in a consistent way. 
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Approximation – Least Square Error 
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In many applications approximation instead of interpolation is needed, 
typically sampled data approximation with Least Square Error (LSE). 

It is necessary to distinguish cases of the approximation 

• explicit, i.e. ݕ ൌ ݂ሺݔሻ in ܧଶ or ݕ ൌ ݂ሺ࢞ሻ in ܧௗ  ࢞ ൌ ൣ ଵݔ , … , ௗିଵݔ ൧
்
 

• implicit, i.e. ܨሺݔ, ሻݕ ൌ 0 in ܧଶ or ܨሺ࢞ሻ ൌ 0 in ܧௗ 

Explicit case - Regression 

• linear, i.e. ݕ ൌ ܽ ൅ ݕ .resp , ݔܾ ൌ ܽ଴ ൅ ܽଵ ଵݔ ൅ ܽଶ ଶݔ ൅ ڮ ൅ ܽ௥ ௥ݔ  
• quadratic, i.e. ݕ ൌ ܽ ൅ ݔܾ ൅  ଶݔܿ
• polynomial, i.e. ݕ ൌ ܽ଴ ൅ ܽଵݔ ൅ ܽଶݔଶ ൅ ڮ ൅ ܽ௥ݔ௥, e.g. Lagrange 

interpolation etc. 
• hyperbolic, i.e. ݕ ൌ ܽ ൅  ݔ/ܾ

Implicit case, i.e. ܨሺ࢞ሻ ൌ 0 case, the Orthogonal (Total) Least Square 
Error should be used.  
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Explicit case - Given ሼݔ௜, ݅ ௜ሽݕ ൌ 1, … , ݊ , looking for polynomial ݕ ൌ ݂ሺ࢞ሻ 

௜ݕ ൌ ܽ଴ ൅ ܽଵ ௜ݔ
ଵ ൅ ܽଶ ௜ݔ

ଶ ൅ ڮ ൅ ܽ௥ ௜ݔ
௥  ݅ ൌ 1, . . . , ݊, ݊ ൐ ݎ    

this lead to over determined system of linear equations ࢞࡭ ൌ  ࢈

Difference between data a interpolation 

࢘ ൌ ࢈ െ  (!vector)   ࢞࡭

The ERROR ܧ is defined as  

ܧ ൌ ԡ࢘ԡଶ ൌ ்࢘࢘ ൌ ԡ࢈ െ ԡଶ࢞࡭ ൌ ሺ࢈ െ ࢈ሻ்ሺ࢞࡭ െ  ሻ࢞࡭

Minimization 

ܧ߲
߲ܽ௞

ൌ
߲

߲ܽ௞
ሾ࢈்࢈ െ ࢞࡭்࢈ െ ሺ࢞࡭ሻ்࢈ ൅ ሿ࢞࡭்࡭்࢞ ൌ ݇׊ 0 ൌ 0, . . . ,  ݎ

 

If ԡ࢘ԡ ൏ 0.05 then ܧ ൏ 0.0025 => converges fast ՜ 0  
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Usual solution 

࢞࡭்࡭ ൌ ࢞ ࢈்࡭ ൌ ሺ࡭்࡭ሻିଵ࢈்࡭ 
 

!!! => instability – eigenvalues (if ࡭ would be regular) ߣ௞ ՜ ௞ߣ
ଶ     or 

SVD is used. 

A similar approach is taken for other “explicit” LSE 

 

However for large datasets, the problem of numerical instability 
remains. 

 

Note that LSE method is not of the coordinate system origin 
independent – father points have higher weight, so changing more the 
space orientation of the approximating function, e.g. of a plane in the 
case of linear interpolation.  
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Orthogonal (Total) Least Square Errors 
 

,ݔሺܨ ሻݕ ൌ 0  , resp. ܨሺ࢞ሻ ൌ 0    ࢞ ൌ ൣ ଵݔ , … , ௗିଵݔ ൧
்
 

If ࢞࡭்࡭ ൌ ࢞ࡽ would be used we actually get ࢈்࡭ ൌ ૙  as ࢈ ൌ ૙ 

Typical example 

Given points ሼݔ௜, ,௜ݔ௜ሽ, resp. ሼݕ ,௜ݕ ݅  ௜ሽݖ ൌ 1, … , ݊ and we are looking for a 
line ܽݔ ൅ ݕܾ ൅ ܿ ൌ 0 or a plane ܽݔ ൅ ݕܾ ൅ ݖܿ ൅ ݀ ൌ 0 fitting the data with a 
minimal distance (orthogonal) error, i.e. minimizing the distance 
(orthogonal) of all the data from a plane. 

 

More complex solution –> eigenvalues and eigenvectors have to be 
computed in general case.  

A simple solution in ܧଶ is available ->Graphics Gems II  
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Meshless approximation of  
un-ordered multidimensional data sets 
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Approximation of Un-ordered Data and Least Square Error 

Real life data are noisy. Approximation is to be used instead of 
interpolation and Tikhonov regularization known in statistics can be 
applied to RBF.  

Then 

൤ ࡮ ൅ ࡵݍ ࡼ
்ࡼ ૙

൨ ቂࣅ
ቃࢇ ൌ ቂࢌ

૙ቃ 

is used, where ࡵ is identical matrix and ݍ is a parameter. If ݍ value is 
high, function gets smoother, if ݍ is small, the function is closer to pure 
interpolation. 

However the size of the matrix remains and it is large. 
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New reference points  ξ

Given points  x

Let us consider RBF again in the form 

݂ሺ࢞௜ሻ ൌ ෍ ௝ ߮൫ฮ࢞௜ߣ െ ௝ฮ൯ࣈ
ெ

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴  

݄௜ ൌ ݂ሺ࢞௜ሻ           ݅ ൌ 1, … , ܰ 

 

where: ࣈ௝are not given points, but  

points in a pre-defined “virtual mesh”  
as only coordinates are needed  
(there is no tessellation needed).  
This “virtual mesh” can be irregular, 
orthogonal, regular, adaptive etc.  
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New reference points  ξ

Given points  x

For simplicity, let us consider 2-dimensional squared (orthogonal) 
mesh in the following example.  

݂ሺ࢞௜ሻ ൌ ෍ ௝ ߮൫ฮ࢞௜ߣ െ ௝ฮ൯ࣈ
ெ

௝ୀଵ

  

݅ ൌ 1, … , ܰ 

and the ࣈ௝ coordinates are the corners of 

this virtual mesh.  

 

It means that the given scattered data 
will be actually “re-sampled”, e.g. to the 
squared mesh. 

The question is how to decrease ܯ, i.e. 
number of ߣ values and decrease 
computational cost significantly.  
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In many applications the given data sets are heavily over sampled, or 
for the fast previews, e.g. for the WEB applications, we can afford to 
“down sample” the given data set. Therefore the question is how to 
reduce the resulting size of LSE.  

Of course there is a possibility to decrease number of ߣ’s, e.g. by 
picking the smallest one and remove relevant point and recomputed 
all. 

But note that the solution of a system of linear equations is of ܱሺܰଷሻ in 
general and usually ill condition systems is solved. 

 

The above presented approach of specifying position of ࣈ௝ points gives 

us a chance to set “virtual points” at place of our interest with a high 
density, while in the rest of the space their distribution can be sparse. 
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New reference points  ξ

Given points  xLet us consider that for the visualization 
purposes we want to represent the 
final potential field in ݀-dimensional 
space by ܯ values instead of ܰ and ܯ ا
ܰ. The reason is very simple as if we 
need to compute the function ݂ሺ࢞ሻ in 
many points, the formula above 
needs to be evaluated many times. We 
can expect that the number of 
evaluation ܳ can be easily requested 
at 10ଶ ܰ of points (new points) used 
for visualization.  

If we consider that  ܳ ൒ 10ଶ ܰ  and  ܰ ൒ 10ଶ ܯ then the speed up factor 
in RBF function evaluation can be easily about ૚૙૝ !  

This formulation leads to a solution of a linear system of equations 
࢞࡭ ൌ ܰ where number of rows ࢈ ب , ଵߣnumber of unknown ሾ ,ܯ … ,  .ெ ሿ்ߣ



Meshless Interpolations 

Eurographics, Zurich, 2015  Vaclav Skala  107 

 

This approach reduces the size of the linear system of equations ࢞࡭ ൌ  ࢈
significantly and can be solved by the Least Square Method (LSM) as 
࢞࡭்࡭  ൌ  .or Singular Value Decomposition (SVD) can be used ࢈்࡭

 

ۏ
ێ
ێ
ێ
ۍ
߮ଵ,ଵ ڮ ߮ଵ,ெ

ڭ ڰ ڭ
߮௜,ଵ . . ߮௜,ெ

ڭ ڰ ڭ
߮ே,ଵ ڮ ߮ே,ெے

ۑ
ۑ
ۑ
ې

൥
ଵߣ
ڭ

ெߣ

൩ ൌ

ۏ
ێ
ێ
ێ
ۍ
݄ଵ
ڭ
ڭ
ڭ

݄ேے
ۑ
ۑ
ۑ
ې
࢞࡭         ൌ  ࢈
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The high dimensional scattered data can be approximated by RBF 
approximation efficiently with a high flexibility as it is possible to add 
additional points of an area of interest to the virtual mesh and increase 
precision if needed.  

It means that a user can add some points to already given virtual mesh 
and represent easily some details if requested. 

 

Note that a mesh is not generated! 
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However, there are other possibilities, how to decrease computational 
cost. 

If the Compactly Supported RBF (CSRBF) approach is used:  

• the matrix ࡭ is a sparse matrix 
• if data set preprocessed and space subdivision technique is applied, 

then only the data in a cell and its neighboring cells are used for 
computation of ࣅ, which makes the computation much more faster 
and also stability is increased. 
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More general approach 

Let us assume again  

݂ሺ࢞௜ሻ ൌ ෍ ௝ߣ ߮൫ฮ࢞௜ െ ௝࢞ฮ൯
ெ

௝ୀଵ

 ݅ ൌ 1, … , ࣅܣ  ܰ ൌ  ࢌ

where ܯ ൑ ܰ 

We want to determine ࣅ ൌ ሾߣଵ, … ,   ெሿ் minimizing quadratic formߣ
1
2  ࣅࡽ்ࣅ

with a linear constrains ࣅ࡭ െ ࢌ ൌ ૙ , where ࡽ is positive and symmetric 
matrix.  

This can be solved using Lagrange multipliers ࣈ ൌ ሾߦଵ, … ,  .ேሿ், i.eߦ
minimizing 

1
2 ࣅࡽ்ࣅ െ ࣅ࡭ሺࢀࣈ െ  ሻࢌ

i.e ࣅ ൌ? and ࣈ ൌ? 
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So we are getting as the matrix ࡽ is positive 

߲
ࣅ߲ ቆ

1
2 ࣅࡽ்ࣅ െ ࣅ࡭ሺࢀࣈ െ ሻቇࢌ ൌ ࣅࡽ െ ࣈ்࡭ ൌ ૙ 

߲
ࣈ߲ ቆ

1
2 ࣅࡽ்ࣅ െ ࣅ࡭ሺࢀࣈ െ ሻቇࢌ ൌ ࣅ்࡭ െ ࢌ ൌ ૙ 

in more compact matrix form 

൤ࡽ െ்࡭

࡭ ૙
൨ ൤ࣅ

൨ࣈ ൌ ൤૙
 ൨ࢌ

As ࡽ is positive definite, block in matrix operations can be applied and 
we get: 

ࣅ ൌ ࣈ ࢌሻିଵ்࡭ଵିࡽ࡭ሺ்࡭ଵିࡽ ൌ ሺିࡽ࡭ଵ்࡭ሻିଵࢌ 

If ࡭ ൌ    .and invertible, computation can be simplified ்࡭
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Experimental data generation 
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Random distribution of points is usually used 
Halton points – better distribution 
Any non-negative integer ݊,  0 ൑ ܽ௜ ൏ ݇׌ , ݌ ൐  prime – ݌  ,0

݊ ൌ ෍ ܽ௜݌௜
௞

௜ୀ଴

 

Function 

݄௣ሺ݊ሻ ൌ ෍
ܽ௜

௜ାଵ݌

௞

௜ୀ଴

 

maps to the interval 0ۃ, 1ሻ  
Sequence generated 

݄௣,ே ൌ ൛݄௣ሺ݊ሻ: ݊ ൌ 0,1,2, … , ܰൟ 
Example: 

݄ଷሺ10ሻ ൌ 1
3ൗ ൅ 1

3ଷൗ ൌ 10
27ൗ  

݄ଷ,ଵ଴ ൌ ൜0, 1
3ൗ , 2

3ൗ , 1
9ൗ , 4

9ൗ , 7
9ൗ , 2

9ൗ , 5
9ൗ , 8

9ൗ , 1
27ൗ , 10

27ൗ , ൠ 
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Meshless interpolation and approximation – examples 
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Image reconstruction 

  
Original - 60% corrupted pixels Reconstructed image 

  
Original image [Bertalmio2000] Reconstructed [Uhlir&Skala2006] 
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Surface reconstruction from scanned data 

  
Surface reconstruction (438 000 points) [Carr et al. 2001] 
Implicitly defined problems: 

,ݔሺܨ ,ݕ ሻݖ ൌ 0 

Problems: 

• It leads to ࢞࡭ ൌ ૙ - trivial solution, only 

• additional points with “orientation” have to be artificially included 
to get ࢞࡭ ൌ  ࢈
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Surface reconstruction (438 000 points) [Carr et al. 2001] 

There is a severe problem  

• how to set the “offset” points and how to place them 
• what is the minimum of the “offset” points, as the computational 

cost grows significantly 
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Visualization & Meshless representation 

Meshless methods offer natively  

• smoothness of the physical phenomena, i.e. ܨሺ࢞ሻ ൌ ݄, resp. ܨሺ࢞ሻ ൌ  ࢎ
generally in ݀-dimensional space 

• analytical form for derivatives , e.g. ߮ሺԡ࢞ԡሻ ൌ ߮ቀඥݔଶ ൅  ଶቁݕ
߲߮ሺԡ࢞ԡሻ

ݔ߲ ൌ
߲

ݎ߲ ߮ሺݎሻ
߲

ݔ߲
,ݔሺݎ ሻݕ ൌ

߲
ݎ߲ ߮ሺݎሻ

ݔ
ඥݔଶ ൅ ଶݕ

ൌ
ݔ
ݎ

߲
ݎ߲ ߮ሺݎሻ 

߲߮ሺԡ࢞ԡሻ
ݔ߲ ൌ

ݕ
ݎ

߲
ݎ߲ ߮ሺݎሻ 

 

߲
ݔ߲ ݂ሺ࢞௜ሻ ൌ ෍ ௝ߣ  

߲
ݔ߲ ߮൫ฮ࢞௜ െ ௝࢞ฮ൯

ே

௝ୀଵ

ൌ ෍ ௝ߣ  
ݔ

௜௝ݎ

߲
ݔ߲ ߮൫ݎ௜௝൯

ே

௝ୀଵ

 

where ݎ௜௝ ൌ ฮ࢞௜ െ ௝࢞ฮ 

Similarly for the case of approximation  ݎ௜௝ ൌ ฮ࢞௜ െ  ௝ฮࣈ

where ࣈ௝ are virtual points given by a user  
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Visualization & Meshless representation 

 

In data visualization no “high precision” is needed for the visual 
assessment of the behavior of the physical phenomena 

• reduction of weights ߣ௜ => user controlled =>approximation 
• hierarchical approach 

 

In the case of precision required 

• Progressive RBF interpolation – point insertion or point removal of 
computational complexity ܱሺܰଷሻ to ܱሺܰଶሻ - using block matrix 
operations 

J. Süßmuth, Q. Meyer andG. Greiner: Surface Reconstruction Based on Hierarchical Floating 
Radial Basis Functions, Computer Graphics Forum, Vol.29, No.6, pp. 1854–1864, 2010 

Skala,V: Progressive RBF Interpolation, 7th Conference on Computer Graphics, Virtual 
Reality, Visualisation and Interaction in Africa, Afrigraph 2010, pp.17-20, ACM, 2010 
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Summary 

Meshless methods are: 

• Progressively developing methods in many fields ranging from 
computational sciences, e.g. partial differential equations, solving 
economical problems, visualization, computer graphics etc. 

• Offering unique properties 

o natural smoothness 

o applicability in  ݀ െdimensional problems 

• Parallelization – as matrix-vector operations are used, relevant 
specialized libraries available on CPUs and GPUs  
GPUML (GPU fro Machine Learning open SW), GMRES, etc. 

• If CSRBF are used, simple use for wide range of data sets 
space subdivision and parallelization techniques can be applied 
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Parametric curves 
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Hermite curve 

Cubic curve given by two end-points and two tangent vectors 

 
 

 
ሻݐሺݔ ൌ ଷݐܽ ൅ ଶݐܾ ൅ ݐܿ ൅ ሻݐԢሺݔ ݀ ൌ ଶݐ3ܽ ൅ ݐ2ܾ ൅ ܿ 

 

Substituting ݐ ൌ 0 and ݐ ൌ 1 we get 4 equations for unknown values, i.e. 
 ܽ, ܾ, ܿ, ݀ 

ሺ0ሻݔ ൌ Ԣሺ0ሻݔ ݀ ൌ ܿ 
ሺ1ሻݔ ൌ ܽ ൅ ܾ ൅ ܿ ൅ Ԣሺ1ሻݔ ݀ ൌ 3ܽ ൅ 2ܾ ൅ ܿ 

=>solve  ࢞࡭ ൌ    ࢈ 
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࢞࡭ ൌ  Solution ࢈

൦

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

൪ ቎

ܽ
ܾ
ܿ
݀

቏ ൌ

ۏ
ێ
ێ
ۍ

ሺ0ሻݔ
ሺ1ሻݔ
Ԣሺ0ሻݔ
ےԢሺ1ሻݔ

ۑ
ۑ
ې
 

ܽ ൌ  ሺ0ሻݔ
ܾ ൌ  Ԣሺ0ሻݔ

ܿ ൌ െ3ݔሺ0ሻ ൅ ሺ1ሻݔ3 െ Ԣሺ0ሻݔ2 െ  Ԣሺ1ሻݔ
݀ ൌ െ2ݔሺ0ሻ െ ሺ1ሻݔ2 ൅ Ԣሺ0ሻݔ ൅  Ԣሺ1ሻݔ

 

and we can write for the ݔ coordinate 

ሻݐሺݔ ൌ ுࡹ்࢞ ࢚ ࢞ ൌ ሾݔሺ0ሻ, ,ሺ1ሻݔ ,ᇱሺ0ሻݔ ࢚ Ԣሺ1ሻሿ்ݔ ൌ ሾݐଷ, ,ଶݐ ,ݐ 1ሿ் 

ு ൌࡹ ൦

2 െ3 0 1
െ2 3 0 0
1 െ2 1 0
1 െ1 0 0

൪ 
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Usually a notation 

ሻݐሺࡼ ൌ ுࡹ்ࡼ ࡼ ࢚ ൌ ሾ ଴ܲ, ଵܲ, ଴ܲ
ᇱ , ଵܲ

ᇱሿ் ࢚ ൌ ሾݐଷ, ,ଶݐ ,ݐ 1ሿ் 

is used to express that ݕ,ݔ and ݖ coordinated are to be taken. 

 

 ு is a matrix of the Hermite form and blending functions areࡹ

 

ሻݐுሺࢍ ൌ ሾ݃ଵሺݐሻ, ݃ଶሺݐሻ, ݃ଷሺݐሻ, ݃ସሺݐሻሿ்

ൌ ,ଷݐு  ሾࡹ ,ଶݐ ,ݐ 1ሿ்     ݐ ൏א 0,1 ൐ 

i.e. 

݃ଵሺݐሻ ൌ ଷݐ2 െ ଶݐ3 ൅ 1 

݃ଶሺݐሻ ൌ െ2ݐଷ ൅  ଶݐ3

݃ଷሺݐሻ ൌ ଷݐ െ ଶݐ2 ൅  ݐ

݃ସሺݐሻ ൌ ଷݐ െ  ଶݐ
  

.2

0

.2

.4

.6

.8

1

 0  0.2  0.4  0.6  0.8  1
t

2*t^3-3*t^2+13*t^2-2*t^3t^3-2*t^2+tt^3-t^2
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Bézier curve 

Bicubic Bézier curve is given as similarly as: 

ܲሺݐሻ ൌ ሾ ଴ܲ, ଵܲ, ଶܲ, ଷܲሿ ࡹ஻  ሾݐଷ, ,ଶݐ ,ݐ 1ሿ்     ݐ ൏א 0,1 ൐ 

Important property of the Bézier curve is that it is always inside of the 
convex hull of the given control points 

஻ ൌࡹ ൦

െ1 3 3 1
3 െ6 3 0

െ3 3 0 0
1 0 0 0

൪ 

 
General definition 

ܲሺݐሻ ൌ ෍ ௜ܤ
௡ሺݐሻ ௜ܲ

௡

௜ୀ଴
௜ܤ 

௡ሺݐሻ ൌ ቀ݊
݅ ቁ ሺ1 െ  ௜ݐሻ௡ିଵݐ
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Coons curve 

This curve is different – it does not pass the control points but it is 
naturally C2 continuous. 

ሻݐሺࡼ ൌ ሾ ଴ܲ, ଵܲ, ଶܲ, ଷܲሿ ࡹ஼  ሾݐଷ, ,ଶݐ ,ݐ 1ሿ்     ݐ ൏א 0,1 ൐ 

The Coons matrix is given as 

஼ ൌࡹ
1
6 ൦

െ1 3 െ3 1
3 െ6 0 4

െ3 3 3 1
1 0 0 0

൪ 
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General form of cubic parametric curves 

ሻݐሺࡼ ൌ ሾ ଴ܲ, ଵܲ, ଶܲ, ଷܲሿ ࡹி  ሾݐଷ, ,ଶݐ ,ݐ 1ሿ்     ݐ ൏א 0,1 ൐ 

or as  

ሻݐሺݔ ൌ ிࡹ்࢞ ሻݐሺݕ ࢚ ൌ ிࡹ்࢟ ࢚ 
ሻݐሺݖ ൌ ிࡹ்ࢠ ࢚ ࢚ ൌ ሾݐଷ, ,ଶݐ ,ݐ 1ሿ்  ݐ א  ۄ0,1ۃ

 

where ࡹி is a matrix of the form used 

and kernel functions are given as 

ሻݐிሺࢍ ൌ ,ଷݐி  ሾࡹ ,ଶݐ ,ݐ 1ሿ்     ݐ א  ۄ0,1ۃ

However Hermite or Bezier curves have to be smoothly connected  

 

How to make it?   
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Curves joining 

In applications a connection of cubic curves is needed to get a complex 
shape.  

Continuity (parametric) 

• C0 – two segments are connected, i.e. share a common point 
• Ck – a kth derivative of the first segment at the end point is equal to 

a kth derivative of the second segment in the starting point 

Unfortunately the Ck (k>1) continuity does not ensure continuity 
(smoothness) if a curve is rendered in ݕ,ݔ, resp. ݖ,ݕ,ݔ. 

Usually segments are smoothly connected; however each segment 
might be, in principle, of different form. 
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Smooth Hermite curves C2 joining and  ܲଶ ሺݐሻ  

ܲሺݐሻ ൌ ுࡹ்ࡼ ࡼ ࢚ ൌ ሾ ଴ܲ, ଵܲ, ଴ܲ
ᇱ , ଵܲ

ᇱሿ் ࢚ ൌ ሾݐଷ, ,ଶݐ ,ݐ 1ሿ் 

For  

• C0 connection -  ܲଵ ሺ1ሻ ൌ  ܲଶ ሺ0ሻ  - points share the same coordinates 

• C1 connection -  ௗ
ௗ௧

ܲଵ ሺ1ሻ ൌ  ௗ
ௗ௧

ܲଶ ሺ0ሻ simple solution ܲᇱሺ1ሻ௜ିଵ ൌ  ܲᇱሺ0ሻ௜ିଵ  

– speed of a moving object changes continuously 

• C2 connection   ௗమ

ௗ௧మ ܲଵ ሺ1ሻ ൌ ௗమ

ௗ௧మ ܲଶ ሺ0ሻ – acceleration changes 

continuously – How to make it? 
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Let us consider a simple example of ܥଶ connectivity 

ܲሺݐሻ ൌ ଷݐܽ ൅ ଶݐܾ ൅ ݐܿ ൅ ݀ 
݀
ݐ݀ ܲሺݐሻ ൌ ଶݐ3ܽ ൅ ݐ2ܾ ൅ ܿ 

݀ଶ

ଶݐ݀ ܲሺݐሻ ൌ ݐ6ܽ ൅ 2ܽ 

 

ܲᇱᇱሺ1ሻ௜ିଵ ൌ ܲᇱᇱሺ0ሻ௜  leads to a condition 6 ܽ ൅ 2 ܾ௜ିଵ௜ିଵ ൌ 2 ܾ௜  
 

ܽ ൌ ܲሺ0ሻ ܾ ൌ ܲԢሺ0ሻ 

ܿ ൌ െ3ܲሺ0ሻ ൅ 3ܲሺ1ሻ െ 2ܲԢሺ0ሻ െ ܲԢሺ1ሻ ݀ ൌ െ2ܲሺ0ሻ െ 2ܲሺ1ሻ ൅ ܲԢሺ0ሻ ൅ ܲԢሺ1ሻ 
 
Putting together with  ܲଵ ሺ1ሻ ൌ  ܲଶ ሺ0ሻ 

2ൣ3൫ ܲ௜ െ ܲ௜ିଵ ൯ െ 2 ܲᇱ െ ܲᇱ௜௜ିଵ ൧ ൅ 6ൣ2൫ ܲ௜ିଵ െ ܲ௜ ൯ ൅ 2 ܲᇱ ൅ ܲᇱ௜௜ିଵ ൧
ൌ 2ൣ3൫ ܲ௜ାଵ െ ܲ௜ ൯ െ 2 ܲᇱ െ ܲᇱ௜ାଵ௜ ൧ 

Simplifying  
ܲᇱ௜ିଵ ൅ 4 ܲᇱ௜ ൅ ܲᇱ௜ାଵ ൌ 3൫ ܲ െ ܲ௜ିଵ௜ାଵ ൯ 
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In a matrix form 

ۏ
ێ
ێ
ێ
ێ
ۍ 1 0

1 4 1 0
0 1 4 1 0

ڰ
0 1 4 4

0 ے
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ܲᇱ଴

ܲᇱ଴

ڭ
ڭ

ܲᇱ௠ିଶ

ܲᇱ௠ିଵ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ܲᇱ଴

3൫ ܲଶ െ ܲ଴ ൯

3൫ ܲ௠ିଵ െ ܲ௠ିଷ ൯
ܲᇱ௠ିଵ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

If ܲᇱᇱሺ0ሻ଴ ൌ ܲᇱᇱሺ0ሻ௠ ൌ 0 => natural cubic spline 
 
It can be shown, that a relation between Hermite and Bézier forms 
exists as                 ݔ଴

ᇱ ൌ 3ሺݔଵ
஻ െ ଴ݔ

஻ሻ     and       ݔଵ
ᇱ ൌ 3ሺݔଷ

஻ െ ଶݔ
஻ሻ 

଴ݔൣ , ଴ݔ
ᇱ , ଵݔ ଵݔ

ᇱ ൧ ் ൌ ൦

1 0 െ3 0
0 0 3 0
0 0 0 െ3
0 1 0 3

൪

ۏ
ێ
ێ
ێ
଴ݔۍ

஻

ଵݔ
஻

ଶݔ
஻

ଷݔ
஻ے

ۑ
ۑ
ۑ
ې
 

that is actually a transformation from Bézier form to Hermite form. 
Similarly between other forms, see next.  
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As all the above mentioned parametric curves are of the form 

ሻݐሺࡼ ൌ ሾ ଴ܲ, ଵܲ, ଶܲ, ଷܲሿ ࡹி  ሾݐଷ, ,ଶݐ ,ݐ 1ሿ்     ݐ ൏א 0,1 ൐ 

there are mutual transformations possible - ࡹ௙௥௢௠,௧௢ 

 From Hermite Bezier B-Spline 

To 

Hermite Identical ൦

1 0 െ3 0
0 0 3 0
0 0 0 െ3
0 1 0 3

൪ 
1
6 ൦

1 0 െ3 0
4 1 0 െ3
1 4 3 0
0 1 0 3

൪ 

Bezier 
1
3 ൦

3 3 0 0
0 0 3 3
0 1 0 0
0 0 െ1 0

൪ Identical 
1
6 ൦

1 0 0 0
4 4 2 1
1 2 4 4
0 0 0 1

൪ 

B-Spline 
1
3 ൦

െ3 6 െ3 6
6 െ3 6 െ3

െ7 2 െ1 2
െ2 1 െ2 7

൪ ൦

6 0 0 0
െ7 2 െ1 2
2 െ1 2 െ7
0 0 0 6

൪ Identical 
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Rational Bézier curve 

 

Euclidean  ࢄ ൌ ሾܺ, ܻ, ܼሿ் 

ሻݐሺࢄ ൌ
∑ ௜ܤ

௡ሺݐሻݓ௜ݍ௜
௡
௜ୀ଴

∑ ௜ܤ
௡ሺݐሻݓ௜

௡
௜ୀ଴

 0 ൑ ݐ ൑ ௜ܤ 1
௡ሺݐሻ ൌ ቀ݊

݅ ቁ ሺ1 െ  ௜ݐሻ௡ିଵݐ

 

1st derivative ቂ
ܽ
ܾቃ

ᇱ
ൌ

ܽᇱܾ െ ܾܽᇱ

ܾଶ  quite complicated 

 

Projective  ࢞ ൌ ሾݔ, ,ݕ :ݖ  ሿ்ݓ

࢞ሺݐሻ ൌ ෍ ௜ܤ
௡ሺݐሻݍ௜

௡

௜ୀ଴
 ࢞ᇱሺݐሻ ൌ ෍ ሺܤ௜

௡ሺݐሻሻᇱݍ௜

௡

௜ୀ଴
 

How simple ! 
  



Meshless Interpolations 

Eurographics, Zurich, 2015  Vaclav Skala  137 

 

 

 

Parametric surfaces 
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Parametric bicubic surfaces 

A parametric bicubic surface (patch) ܲሺݑ,  ”ሻ is given as a “tensorݒ
product of cubic curves, i.e. curves ܲሺݑሻ and ܲሺݒሻ, ݑ, ݒ א   .ۄ0,1ۃ
Requirement:  is that ܲሺݑ, ݑ ሻ forݒ ൌ ݒ or ݐݏ݊݋ܿ െ  are cubic curves ݐݏ݊݋ܿ
as well. 

 

However, diagonal and 
antidiagonal curves are of the 
degree  !!!! 

Note, that the domain for 
ሺݑ,   .ሻ must be squaredݒ

As the patch is rendered as a 
triangular mesh, at the end, 
due to the non-linear 
parameterization triangles are of a different size!  
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Hermite (Ferguson) bicubic patch 

• 4 corner points 
• 8 tangential vectors 
• 4 twist vectors 

16 control values for ݖ ,ݕ ,ݔ 

 ு - matrix of control valuesࡼ

ுࡹ  - Hermite matrix 
 
 
 
 
 
 
,ݑሺࡼ ሻݒ ൌ ሾݑଷ, ,ଶݑ ,ݑ 1ሿ ࡹு

் ுࡹ ுࡼ   ሾݒଷ, ,ଶݒ ,ݒ 1ሿ்    ݑ, ݒ א  ۄ0,1ۃ
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Hermite bicubic patch 

,ݑሺࡼ ሻݒ ൌ ሾݑଷ, ,ଶݑ ,ݑ 1ሿ ࡹு
் ுࡹ ுࡼ   ሾݒଷ, ,ଶݒ ,ݒ 1ሿ்   ݑ, ݒ א  ۄ0,1ۃ

,ݑሺࡼ ሻݒ ൌ ൣ ௫ܲሺݑ, ,ሻݒ ௬ܲሺݑ, ,ሻݒ ௭ܲሺݑ, ሻ൧்ݒ
 

Hermite control values 

ுࡼ ൌ

ۏ
ێ
ێ
ۍ     ൤ ଴ܲ଴ ଴ଵݔ

ଵܲ଴ ଵଵݔ
൨

߲
ݒ߲ ൤ ଴ܲ଴ ଴ܲଵ

ଵܲ଴ ଵܲଵ
൨

߲
ݑ߲ ൤ ଴ܲ଴ ଴ܲଵ

ଵܲ଴ ଵܲଵ
൨

߲ଶ

ݒ߲ݑ߲ ൤ ଴ܲ଴ ଴ܲଵ
ଵܲ଴ ଵܲଵ

൨ے
ۑ
ۑ
ې
 

Matrix of the Hermite form 

ு ൌࡹ ൦

2 െ3 0 1
െ2 3 0 0
1 െ2 1 0
1 െ1 0 0

൪ 
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Bézier bicubic patch 
 

 

• 4 corner points 
• 8 outer points 
• 4 inner points 

 

16 control values for ݖ ,ݕ ,ݔ 

 ஻ - control pointsࡼ

஻ࡹ  - matrix of the Bézier form 
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,ݑሺࡼ ሻݒ ൌ ሾݑଷ, ,ଶݑ ,ݑ 1ሿ ࡹி
ிࡹ ிࡼ ்  ሾݒଷ, ,ଶݒ ,ݒ 1ሿ்      ݑ, ݒ א  ۄ0,1ۃ

,ݑሺࡼ ሻݒ ൌ ൣ ௫ܲሺݑ, ,ሻݒ ௬ܲሺݑ, ,ሻݒ ௭ܲሺݑ, ሻ൧்ݒ
 

Bézier control points 

஻ࡼ ൌ ൦
଴ܲ଴ ଴ܲଵ ଴ܲଶ ଴ܲଷ
ଵܲ଴ ଵܲଵ ଵܲଶ ଵܲଷ
ଶܲ଴ ଶܲଵ ଶܲଶ ଶܲଷ
ଷܲ଴ ଷܲଵ ଷܲଶ ଷܲଷ

൪ 

Matrix of the Bézier form 

஻ ൌࡹ ൦

െ1 3 3 1
3 െ6 3 0

െ3 3 0 0
1 0 0 0

൪ 

Important 

Surface is inside of the convex hull determined by the control points 
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Parametric space Euclidean space 
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Coons form 

Hermite (Ferguson) and Bézier surfaces passes the “corner” control 
points. Coons surfaces do not pass control points, but they are 
 .ଶ continuous naturallyܥ

,ݑሺࡼ ሻݒ ൌ ሾݑଷ, ,ଶݑ ,ݑ 1ሿ ࡹ஼
஼ࡹ ஼ࡼ ்  ሾݒଷ, ,ଶݒ ,ݒ 1ሿ்      ݑ, ݒ א  ۄ0,1ۃ

,ݑሺࡼ ሻݒ ൌ ൣ ௫ܲሺݑ, ,ሻݒ ௬ܲሺݑ, ,ሻݒ ௭ܲሺݑ, ሻ൧்ݒ
 

Coons control points 
 

Matrix of the Coons form 
 

஼ࡼ ൌ ൦
଴ܲ଴ ଴ܲଵ ଴ܲଶ ଴ܲଷ
ଵܲ଴ ଵܲଵ ଵܲଶ ଵܲଷ
ଶܲ଴ ଶܲଵ ଶܲଶ ଶܲଷ
ଷܲ଴ ଷܲଵ ଷܲଶ ଷܲଷ

൪ ࡹ஼ ൌ
1
6 ൦

െ1 3 െ3 1
3 െ6 0 4

െ3 3 3 1
1 0 0 0

൪ 
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General form and mutual transformations 

So far all bicubic parametric patches are of the form  

ܲሺݑ, ሻݒ ൌ ሾݑଷ, ,ଶݑ ,ݑ 1ሿ ࡹி
ிࡹ ிࡼ ்  ሾݒଷ, ,ଶݒ ,ݒ 1ሿ் 

where ࡹி  is a matrix 4 ൈ 4.  

 

It means that we can describe a smooth surface by 3 ൈ 16 values, i.e. 
by 16 values for each coordinate. 
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r11 

x12 

x21 

x22

x13 

x14

x32 

x41 

x23 

x24 
x42 

x33 

x34 

x43 

x44 

u 

v 

x31 

x12 

x(u,v) 

Transformation from Hermite to Bézier  

 

 

 

For ݔ coordinate 

஻ࢄ ൌ ൦

଴଴ݔ ଴ଵݔ ଴ଶݔ ଴ଷݔ
ଵ଴ݔ ଵଵݔ ଵଶݔ ଵଷݔ
ଶ଴ݔ ଶଵݔ ଶଶݔ ଶଷݔ
ଷ଴ݔ ଷଵݔ ଷଶݔ ଷଷݔ

൪ ൌ 

 

ۏ
ێ
ێ
ێ
ێ
ۍ ଵଵݔ ଵଵݔ ൅ ଵ

ଷ
ଵଷݔ ଵଶݔ െ ଵ

ଷ
ଵସݔ ଵଶݔ

ଵଵݔ ൅ ଵ
ଷ

ଷଵݔ ଵଵݔ ൅ ଵ
ଷ

ሺݔଵଷ ൅ ଷଵሻݔ െ ଵ
ଽ

ଷଷݔ ଵଶݔ ൅ ଵ
ଷ

ሺݔଷଶ െ ଵସሻݔ െ ଵ
ଽ

ଷସݔ ଵଶݔ ൅ ଵ
ଷ

ଷଶݔ

ଶଵݔ െ ଵ
ଷ

ସଵݔ ଶଵݔ ൅ ଵ
ଷ

ሺݔଶଷ െ ସଵሻݔ െ ଵ
ଽ

ସଷݔ ଶଶݔ െ ଵ
ଷ

ሺݔଶସ ൅ ସଶሻݔ െ ଵ
ଽ

ସସݔ ଶଶݔ െ ଵ
ଷ

ସଶݔ

ଶଵݔ ଶଵݔ ൅ ଵ
ଷ

ଶଷݔ ଶଶݔ െ ଵ
ଷ

ଶସݔ ଶଶݔ ے
ۑ
ۑ
ۑ
ۑ
ې
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p00

u 

v

p01 

p10

p20 

p30 

p02

p03

p11

p12

p13 p23

p22
p21

p31 

p32 
p33

Transformation from Bézier to Hermite 

 

 

ுࡼ ൌ

ۏ
ێ
ێ
ۍ ൤ ଴ܲ଴ ଴ଵݔ

ଵܲ଴ ଵଵݔ
൨

ݕ߲
ݒ߲ ൤ ଴ܲ଴ ଴ܲଵ

ଵܲ଴ ଵܲଵ
൨

߲
ݑ߲ ൤ ଴ܲ଴ ଴ܲଵ

ଵܲ଴ ଵܲଵ
൨

߲ଶ

ݒ߲ݑ߲ ൤ ଴ܲ଴ ଴ܲଵ
ଵܲ଴ ଵܲଵ

൨ے
ۑ
ۑ
ې
 

For ݔ coordinate 

ுࢄ ൌ ൦

ଵଵݔ ଵଶݔ ଵଷݔ ଵସݔ
ଶଵݔ ଶଶݔ ଶଷݔ ଶସݔ
ଷଵݔ ଷଶݔ ଷଷݔ ଷସݔ
ସଵݔ ସଶݔ ସଷݔ ସସݔ

൪ ൌ

ۏ
ێ
ێ
ۍ ଴଴ݔ ଴ଷݔ 3ሺݔ଴ଵ െ ଴଴ሻݔ 3ሺݔ଴ଷ െ ଴ଶሻݔ

ଷ଴ݔ ଷଷݔ 3ሺݔଷଵ െ ଷ଴଴ሻݔ 3ሺݔଷଷ െ ଷଶሻݔ
3ሺݔଵ଴ െ ଴଴ሻݔ 3ሺݔଵଷ െ ଴ଷሻݔ 9ሺݔ଴଴ െ ଴ଵݔ െ ଵ଴ݔ ൅ ଵଵሻݔ 9ሺݔ଴ଶ െ ଴ଷݔ െ ଵଶݔ ൅ ଵଷሻݔ
3ሺݔଷ଴ െ ଶ଴ሻݔ 3ሺݔଷଷ െ ଶଷሻݔ 9ሺݔଶ଴ െ ଶଵݔ െ ଷ଴ݔ ൅ ଷଵሻݔ 9ሺݔଶଶ െ ଶଷݔ െ ଷଶݔ ൅ ےଷଷሻݔ

ۑ
ۑ
ې
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There are the following issues to be considered if used as interpolation: 

• if the patch is to be rendered usually is tessellated by a triangular 
mesh 

• the ݖ value is usually taken as value of a function ݖ ൌ ݂ሺݔሺݑሻ,  ,ሻሻݒሺݕ
however this requires regular tessellation (squared), and due to 
the non-linearity of a parameterization, final result might be far 
from being expected 
 

• if a patch tessellated by ∆ݑ ൌ ݒ∆ .resp ,ݐݏ݊݋ܿ ൌ ݔ∆ then ݐݏ݊݋ܿ ്  ,ݐݏ݊݋ܿ
resp. ∆ݔ ്  .ݐݏ݊݋ܿ
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Summary and conclusion 
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Summary and conclusion 

We have got within this course an understanding of: 

• Numerical representation and precision issues 
• Coordinate systems, duality, transformations 
• Data types, structures, classification 
• Meshes 
• Interpolation of ordered data 
• Interpolation of un-ordered data 
• Approximation - Least Square Error 
• Approximation of un-ordered data 
• Examples & experimental results 
• Parametric curves  
• Parametric surfaces 

Acknowledgment – some items included in this presentation were downloaded from the 
Internet open resources and authors are acknowledged if they are known. Thanks belong to 
them.  
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APPENDIX – RBF testing functions 
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RBF testing functions used for testing (used in references) 

Function ݔ  1ܨ, ݕ א ۄ0,1ۃ ൈ  Franke’s function   ۄ0,1ۃ

 
,ݔ1ሺܨ ሻݕ ൌ

3
4

exp ቆ
െ1
4

ሺሺ9ݔ െ 2ሻଶ ൅ ሺ9ݕ െ 2ሻଶሻቇ ൅
3
4

exp ൬
െ1
49

ሺ9ݔ െ 2ሻଶ െ
1

10
ሺ9ݕ െ 2ሻଶ൰

൅
1
2

exp ൬
െ1
4

ሺ9ݔ െ 7ሻଶ െ
1
4

ሺ9ݕ െ 3ሻଶ൰ ൅
1
5

expሺെሺ9ݔ െ 4ሻଶ ൅ ሺ9ݕ െ 7ሻଶሻ 
(1) 

Function ݔ  2ܨ, ݕ א ۄ0,1ۃ ൈ  ۄ0,1ۃ

,ݔ2ሺܨ  ሻݕ ൌ
1
9

ሾtanhሺ9ݕ െ ሻሿݔ9 ൅ 1 (2) 

Function ݔ  3ܨ, ݕ א ۄ0,1ۃ ൈ  ۄ0,1ۃ

3ܨ  ൌ
1.25 ൅ cosሺ5.4ݕሻ
6ሾ1 ൅ ሺ3ݔ െ 1ሻଶሿ (3) 

Function ݔ  4ܨ, ݕ א ۄ0,1ۃ ൈ  ۄ0,1ۃ

,ݔ4ሺܨ  ሻݕ ൌ
1
3

exp ቈെ
81
16

ቆ൬ݔ െ
1
2

൰
ଶ

൅ ൬ݕ െ
1
2

൰
ଶ

ቇ቉ (4) 

Function ݔ  5ܨ, ݕ א ۄ0,1ۃ ൈ  ۄ0,1ۃ

,ݔ5ሺܨ  ሻݕ ൌ
1
3

exp ቈെ
81
4

ቆ൬ݔ െ
1
2

൰
ଶ

൅ ൬ݕ െ
1
2

൰
ଶ

ቇ቉ (5) 

Function ݔ  6ܨ, ݕ א ۄ0,1ۃ ൈ  ۄ0,1ۃ

,ݔ6ሺܨ  ሻݕ ൌ
1
9

ቈ64 െ 81 ቆ൬ݔ െ
1
2

൰
ଶ

൅ ൬ݕ െ
1
2

൰
ଶ

ቇ቉ െ
1
2
 (6) 

Function ݔ  7ܨ, ݕ א ۄെ1,1ۃ ൈ  ۄെ1,1ۃ
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,ݔ7ሺܨ ሻݕ ൌ exp ቈെ15 ቆ൬ݔ െ

1
2

൰
ଶ

൅ ଶቇ቉ݕ ൅
1
2

݌ݔ݁ ቈെ20 ቆ൬ݔ െ
1
2

൰
ଶ

൅ ൬ݕ െ
1
4

൰
ଶ

ቇ቉

െ
3
4

exp ቈെ8 ቆ൬ݔ ൅
1
2

൰
ଶ

൅ ൬ݕ ൅
1
2

൰
ଶ

ቇ቉ 
(7) 

Function ݔ  8ܨ, ݕ א ۄെ2,2ۃ ൈ  ۄെ2,2ۃ
,ݔ8ሺܨ  ሻݕ ൌ sinሺ3ݔሻ cosሺ3ݕሻ (8) 
Function ݔ    9ܨ, ݕ א ۄ0,1ۃ ൈ  ۄ0,1ۃ
,ݔ9ሺܨ  ሻݕ ൌ ݔ expሺെݔଶ െ  ଶሻ (9)ݕ
Function 10ܨ Peak ݔ, ݕ א ۄെ3,3ۃ ൈ  ۄെ3,3ۃ

 
,ݔ10ሺܨ ሻݕ ൌ 3ሺ1 െ ଶݔሻଶexpሺെݔ െ ሺݕ ൅ 1ሻଶሻ െ 10 ቀ

ݔ
5

െ ଷݔ െ ଷቁݕ expሺെݔଶ െ ଶሻݕ

െ
1
3

expሺെሺݔ ൅ 1ሻଶ െ  ଶሻݕ
(10) 
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Marschner-Lobb grid 511 ൈ 511 ൈ 511 

,ݔ1ሺܨ  ,ݕ ሻݖ ൌ
1 ൅ ߙ ቀ1 ൅ cosሺ2 ௠݂ሻ ߨ cos ቀ1

2 ଶݔඥߨ ൅ ଶቁቁݕ െ sin ቀݖߨ
2 ቁ

2ሺ1 ൅ ሻߙ  (11) 

Peaks   grid 353 ൈ 353 ൈ 1069 

 
,ݔ2ሺܨ ,ݕ ሻݖ ൌ ൫√3 ൅ ൯ݔ3√

ଶ
expሺെݔଶ െ ሺݕ ൅ 1ሻଶሻ െ 10 ቀ

ݔ
5

െ ଷݔ െ ହቁݕ expሺെݔଶ െ ଶሻݕ

െ
1
3

expሺെሺݔ ൅ 1ሻଶ െ ଶሻݕ െ  ݖ
(12) 

Genus3   grid 511 ൈ 511 ൈ 511 

,ݔ3ሺܨ  ,ݕ ሻݖ ൌ ൤1 െ ቀ
ݔ
6

ቁ
ଶ

െ ቀ
ݕ

3.5
ቁ

ଶ
൨ ሾሺݔ െ 3.9ሻଶ ൅ ଶݕ െ 1.44ሿሺݔଶ ൅ ଶݕ െ 1.44ሻሾሺݔ ൅ 3.9ሻଶ ൅ ଶݕ

െ 1.44ሿ െ  ଶݖ256
(13) 

Six peaks  grid 5595 ൈ 595 ൈ 373 

,ݔ4ሺܨ  ,ݕ ሻݖ ൌ ሺ3ݔଶ െ ଶݕଶሻଶݕ െ ሺݔଶ ൅ ଷݖଶሻସെݕ െ  (14) ݖ0.001
Flower  grid 511 ൈ 511 ൈ 511 

,ݔ5ሺܨ  ,ݕ ሻݖ ൌ sinሺ3Θሻ sinሺ4߶ሻ െ  (15) ݎ
where: ߶ azimuth coordinate, Θ zenith coordinate, ݎ maximum distance from a surface 
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Join our research activities in meshless methods at 

Meshfree methods workshop 

to be held as a part of the:  

23rd WSCG International Conference on Computer Graphics, 
Visualization and Computer Vision  

(http://www.wscg.cz or http://www.wscg.eu) 

 

Abstract submission: by May 12, 2015  
upto 2 pages of the WSCG format sent via @mail 
(accepted will appear in the WSCG 2015 abstracts proceedings) 

Final paper submission by July 30, 2015 – accepted and presented 
papers will be published in proceedings with ISBN  
Will be sent for indexing to Scopus, ISI and other; 
Selected papers will be published in the Journal of WSCG  
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Contact 
 

Vaclav Skala 
c/o University of West Bohemia 

Plzen, Czech Republic 
 

http://www.VaclavSkala.eu 
or 

skala@kiv.zcu.cz  subject: “meshless” 
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