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Meshless Interpolations

Welcome and Introduction
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Meshless Interpolations

Plzen (Pilsen) City

Plzen is an old city [first records of Plzen castle 976] city of culture,
industry, and brewery.

City, where today’s beer fermentation process was invented
that is why today’s beers are called Pilsner - world wide

Eurographics, Zurich, 2015 Vaclav Skala



Meshless Interpolations

University of West Bohemia 17530 students + 987 PhD students

Faculty of Applied Sciences
Computer Science and Engineering Mathematics (+ Geomatics)
Physics Cybernetics Mechanics (Computational)
« Over 5090 of income from research and application projects
e NTIS project (investment of 64 mil. EUR)
- 2" in the ranking of Czech technical / informatics faculties 2009, 2012
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“"Real science” in the XXI century

- o —

Courtésy of the Czech Film, Barrandov
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Meshless Interpolations

History of Interpolation, Visualization and Geometric Modeling
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Meshless Interpolations

History of interpolation

e Interpolation is related to
astronomical data
processing - finding
unknown values, filling gaps
in tables

e Dated to Babylon,
Mesopotamia- 300 BC
Linear interpolation used to
predict sun’s position,
planting crops

e Greece - 150 BC -
Hipparchus of Rhodes —used

“Chord function”, similar sin(x), for celestial bodies positions
e Chinese Liu Zhuo - interpolation formula close to Gregory-
Newton’s second order interpolation used for “Imperial Standard

Calendar”

Erik Meijering: A Chronology of Interpolation — From Ancient Astronomy to Modern Signal and Image
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Proceesing, Proc.IEEE, Vol.90, No.3, pp.319-342, March 2002
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Meshless Interpolations

Parametric non-linear interpolation

e Lagrange interpolation

e Bezier surfaces — an arbitrary
degree 1962

e Third order interpolation by
Catmull & Rom 1974

e Radial Basis Function (RBF)
interpolation — Hardy 1971

e Splines properties demonstrated

by Andrews & Hou 1978
=> B-splines
e 1999- convolution method

development -> Splines

Lagrange,].L.: "The method of interpolation is, after logarithms, the
most useful discovery in calculus”, [1792]

Refs: [Kavll], [Mei02],[Wor96]
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Meshless Interpolations

History of visualization
e First notices 500-200 BC in Hindu and
Egypt

e Visualization - offers a “visual”
processing of complex large data sets

D e P AT P i

Babylon map
(Courtesy:Wikimedia commons)

e Interpolation needed to fill gaps in data

Today

e visualization of complex, dynamic
scalar, vector or tensor data

e 3D displays and 3D Prints

e Spatio-temporal scattered large data
sets processing

Eurographics, Zurich, 2015 Vaclav Skala



Meshless Interpolations

History of geometric modeling

e Geometric modeling = computational
geometry + applied mathematics ->
Shape description

e Developed especially in CAD/CAM
industries — airplanes, rockets,
automotive industry

e Pioneering work:

(Courtesy:Wikimedia commons)

o Ivan Sutherland - Sketchpad: A Man-machine Graphical
Communications System, MIT PhD thesis, early 1960s
o Pierre Bezier - The Mathematical Basis of the UNISURF CAD

System, Butterworths (Renault)

o Paul de Casteljau - de Casteljau algorithm (Citroen)

Today - sophisticated CAD/CAM, GIS etc. systems

BUT do we fully understand ALL of that?

Eurographics, Zurich, 2015 Vaclav Skala
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Meshless Interpolations

Algorithm complexity
(Computational geometry issue)

Eurographics, Zurich, 2015 Vaclav Skala
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Meshless Interpolations

Algorithms are mostly evaluated by
Computational Geometry (CG) terms cgln)
0(g(n)), where n is number of primitives
processed, wheren —» o, which is not the
real case as our algorithms will be
processingn € (ny,n,), even very high.

f(n)

Note that many CG approaches do not
consider: (

- . S W e

e limited speed of the data bus (data ' ‘
' n
trans_.fer cost) g 4 F(n) = O(g(n)
e caching at the processor level
e parallelization on scalable HW
o efc.

n

So some algorithms can be actually faster even they have no
optimal computational complexity from the CG view

Eurographics, Zurich, 2015 Vaclav Skala 13
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Numerical representation and precision issues

Eurographics, Zurich, 2015 Vaclav Skala
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Numerical systems

e Binary system is used nearly exclusively

e Octal & hexadecimal representation is used

e If we would be direct descendants of tetrapods -
we would have a great advantage - “simple counting in octal or
hexadecimal system”

Name | Base | Digits[bits] | E min E max
BINARY
B 16 Half 2 10+1 —-14 15
B 32 Single 2 23+1 —-126 127
B 64 Double 2 52+1 —-1022 1023
B 128 Quad 2 112+1 —16382 16383
DECIMAL
D 32 10 7 -95 96
D 64 10 16 —383 384
D 128 10 34 —-6143 6144

IEEE 758-2008 standard

Eurographics, Zurich, 2015

Vaclav Skala
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Meshless Interpolations

Mathematically perfect algorithms fail due to limited numerical
precision

Main issues

e stability, robustness of algorithms
e acceptable speed
e linear speedup - results depends on HW, CPU .... parameters !

Numerical stability

e limited precision of float / double
e tests A ? B with floats

iIf A =B then ..... else ..... ;o IFA =0 then .... else ...
should be forbidden in programming languages

e division operation should be removed or postponed to the last
moment if possible - “"blue screen”, system reset, ...

Eurographics, Zurich, 2015 Vaclav Skala
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Meshless Interpolations

Typical examples of instability (non-sense tests in principal)

intersection of 2 lines in E3
point lies on a line in E2 or a on a plane in E3
Ax + By + C =0 or Ax + By + Cz+ D =0

k-sided polygon inE3, k > 4
it is not on a plane in general / —
¥

detection if a line
o intersects a polygon or
o touches a vertex or
0 passes a vertex through it

Intersection of a line with a non-convex polygon is more complicated if
is to be solved robustly; 3 value logic is to be used.

Skala,V.: Algorithms for 2D Line Clipping, in EUROGRAPHICS'89 Proceedings
(Ed.W.Hansmann, F.R.A.Hopgood, W.Strasser), North Holland, ISBN 0-444-8813-5,
pp.355-366, 1989

Eurographics, Zurich, 2015 Vaclav Skala 17
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Typical problem (good for students analysis)

double x = -1; double p = ....;

while ( x < +1)

{ if (x == p) Console.Out.WriteLine(” *** )
X +=p;

b

/* if p = 0.1 then no output */

/* if p = 0.25 then expected output */

Eurographics, Zurich, 2015 Vaclav Skala
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Delaunay triangulation & Voronoi diagram

Point inside of a circle given by three points - problems with meshing
points in a regular rectangular (squared) grid.

OR?

If a vertex is
It can be seen that the DT & moved by ¢
VD is very sensitive to a -
point position change ,
?? ROBUSTNESS ?? ' Voronoi cell

Why DT is popular? it has mathematically well defined properties

Eurographics, Zurich, 2015 Vaclav Skala 19



Meshless Interpolations

Floating point

4
e Not all numbers are represented = 14 12
correctly 34 2232
e Logarithmic arithmetic >+
e Continuous fractions m=[3;7,151,292111213]1..]
e Interval arithmetic xty=[atcbtd x=[a. b]
o efc. x-y=[a-d,b-c] y=[c,d]

x X y = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]
x /'y = [min(a/c, a/d, b/c, b/d),
max(a/c, a/d, b/c, b/d)] ify =0

Use of high precision arithmetic in SW leads to extremely slow
computations.

Eurographics, Zurich, 2015 Vaclav Skala 20
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Numerically NOT valid identities due to limited precision

Typically based on addition of high and small value, so the last bits of
mantissa of the smaller one has got lost.

Typical examples:
cos?a + cos?f =1
x?—y?=(x—y)(x+y)

if [x|] «< |y| or vice versa - (x —y)(x + y) is to be used instead.

Be careful — compiler’s optimization can change the order of
computation - it mostly optimizes according to the speed not according

to the precision of computation.

Eurographics, Zurich, 2015 Vaclav Skala 21
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Statements like

<float> then .... or if <float> # <float> then ....

if <float>

should not be allowed in programming languages

Quadratic equation - more reliable results

— A/ h2 —
at>+bt+c=0 usually solved as ty, = b+ Zb dac
a
If b%2 > 4ac then
_q —C
q = —(b + sign(b)\/b? — 4ac)/2 t; = 1/a t; =/a

The discriminate should be computed with a twice precision due to x?
and +/x operations.

. —C
Vieta’s formula b1+t = —b/a tit, = “/a

Eurographics, Zurich, 2015 Vaclav Skala
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Function value computation at x =77617, y = 33096
f(x,y) = 333.75y° + x2(11x?%y? — y® — 121y* — 2) + 5.5y% + x/(2y)

f = 6.3383510%° single precision

f =1,1726039400532 double precision

f =1,1726039400531786318588349045201838 extended precision

The correct result is "“somewhere” in the interval of

[—0,827396059946821368141165095479816292005,
—0,827396059946821368141165095479816291986]

Exact solution

(x.y) = 2_I_x_54767
fey) = 2y 66192

Eurographics, Zurich, 2015 Vaclav Skala



Meshless Interpolations

Summation is one of often used computations

103 104
1073 =0.999990701675415 10% = 1.000053524971008

=1 =1
The result should be only one in both cases.

The correctness in summation is very important in power series
computations.

1111 ORDER of summation

10° 1 1
21 _ 14.357357 Z ~ = 14392651
n:]_n n=106

Eurographics, Zurich, 2015 Vaclav Skala 24
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Recursion
MOVE (A, C, n);

Towers of Hanoi { MOVE (A, B, n-1);
MOVE (A, C, 1);
MOVE (B, C, n-1)
+ # MOVE (from, to, number) #

Ackermann function A(m,n)
n+1 ifm=0
- Alm—-1,1) if M>0andn =20
A(m —1,A(m,n — 1)) ifm>0and N > 0

The value of the function grows very fast as

510197296

A(4,4) _ 22265536 _ 5

Eurographics, Zurich, 2015 Vaclav Skala 25



Meshless Interpolations

Mathematical “forms”’ There are several “forms”:
Implicit F(x,y,z) =0 or F(x) =0 or F(x) =0 (system of equations)
There is no orientation, e.q.

e if F(x) =0 is a iso-curve there is no hint how to find another point
of this curve, resp. a line segment approximating the curve =>
tracing algorithms

« if F(x) =0 is a iso-surface there is no hint how to find another
point of this surface => iso-surface extraction algorithms

Parametrical x = x(u) x = x(u,v)

Points of a curve are "ORDERED"” according to a parameter u,
resp. u,v

Explicit z=f(x) z = f(x,y) [actually 2 V2 D]

For the given value x, resp. x,y we get function value z

Eurographics, Zurich, 2015 Vaclav Skala 26
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Implicit form

e can be used for separation - for detection if a point is inside or
outside, e.g. a half-plane or a circle etc. - reliable, but ....

e There is always a question how to compute x of F(x) = 0 as there
are several solutions in general, i.e. solution of an equation

e complexity of computations x precision of computation issues

Compiler optimization is DANGEROUS in general can change the order
of operations — numerical precision

x2—yr=(x+y)(x-y)

A, A, A2+ 42 1
x Ay Axt+4y Ay—Dy A,—D, (A:-D2) +(A%-D2)
B, B, Bi{+B; 1 2 _ 2 2 _ p2

5 , = Bx—Dx By_Dy (Bx_DX)_I_(By_Dx) >O
D, D, DZ+Di 1 x = Dx Gy =Dy (Cx=Dy)+(Cy = Dx)

Eurographics, Zurich, 2015 Vaclav Skala 27
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Another example

(x) = 1—cosx £(0) = 0,5 - can be shown,
f=—2z but how to compute it correctly?

In the interval (—¢,¢) the function values are ZERO instead of 0.5!!!

0.5 1

).45 0.9

w 2
[$) D
C o
~ [e2)

w
o

)
'S

(Beosfx))/x22
a1
o (bcosx)/x&2 o

=
a1
P

o
[EEN
o
o

).05 0.1

. -

0 5 1C  0.0800060.0000060.0000060.0000060.0000000,0000000.0000000.0000000.000000@.0000000.0000
X X

)
o
a

1—cosx Interval < —1078,1078 >

f(x)=7
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Examples — what happened?
There are famous examples of nhumerical disasters.

When reading the original reports and followed comments and details
one must be really surprised how simple errors occur and should be
worried what could happen in complex problems solution.

III

Let us shortly explore some “traditional” cases.

Eurographics, Zurich, 2015 Vaclav Skala 29
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Explosion of Ariane 5

An Ariane 5 rocket was launched by the
European Space Agency (ESA) on June 4,
1996. The development cost over

$7 billion. The rocket exploded after lift-

Courtes# CNN

off in about 40 sec. Destroyed rocket and
cargo were valued at $500 million. The cause of a failure was a
software error in the inertial reference system. From the CNN article:

“The internal SRI [Inertial Reference System] software exception was
caused during execution of a data conversion from 64-bit floating point
to 16-bit signed integer value. The floating point number which was
converted had a value greater than what could be represented by a 16-
bit signed integer.”

The conversion from the floating point to the integer
representation is very dangerous as it is not reported by an
exception and stored value represents an existing number.

Eurographics, Zurich, 2015 Vaclav Skala 30
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3. Track Action - Only Range Gated

Patriot Missile Failure Pordon o oo Frocavsed

The system was originally designed in
mid-1960 for a short and flexible
operation (the system was actually
running for more than 100 hours), for
intercepting cruise missiles running at
MACH 2 speed. But it was used to
intercept the Scud missile running at

Courtesy of GAO report

MACH 5. The computation of intercepting and hitting was based on
time counting with 24 bits integers with the clock of 1/10 [s] and
computation in floats. The clock setting to 1/10 was a critical issue and
not acceptable even for application in sport activities at that time.
Unfortunately 1/10 = 1/2*+1/2°+1/2%+1/2°+1/2'°+.... and therefore
the error on 24 bits is about 0.000000095 and in 100 hours the error is
0.34. As the Scud flies at MACH 5, the error was actually 687[m] and
the missile was out of the “range gate” area.

Eurographics, Zurich, 2015 Vaclav Skala 31
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As a result of the fault assumptions, incorrect software design and
irresponsible attitude of the army officials (not updated software even
already available), 28 Americans were killed and over 100 other people

injured in the Iraq’s Scud missile attack in Dhahran, Saudi Arabia on
February 25, 1991 according to the GAO report.

Eurographics, Zurich, 2015 Vaclav Skala 32
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Sleipner offshore platform sinking

Another well known example is the
Sleipner offshore platform sinking.
The top deck is about 57 000 tons,
drilling and support equipments
weight about 40 000 tons and the
deck provides an accommodation
for about 200 people.

The Sleipner platform structure was
“optimized” using finite element

Courtesy of SINTEF

system and the shear stresses were
underestimated nearly by 50%. It led to serious cracks in the structure
and leakage that the pumps were unable to cope with. The sinking of
the platform estimated cost is about $700 million.

Eurographics, Zurich, 2015 Vaclav Skala 33



Meshless Interpolations

We have presented some basic facts on numerical precision and
examples of some disasters. Many engineering problems are somehow
connected with geometry and geometrical computations with
respecting physical phenomena etc.

The majority of computations are made in the Euclidean space
representation and with the Cartesian coordinate system.

In the following we will show how

e the non-Euclidean representation, actually the projective extension
of the Euclidean representation, and

e the principle of duality can be used to solve some problems in a
simple, robust and elegant ways.

Eurographics, Zurich, 2015 Vaclav Skala 34
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Coordinate Systems, Duality and Transformations

Eurographics, Zurich, 2015 Vaclav Skala
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Meshless Interpolations

Coordinate systems:

« Cartesian - left / right handed
the right handed system is used usually
e Polar

. . . Y
e Spherical, Cylindrical
- many others, e.g. Confocal Ellipsoidal r a
. -
Coordinates ®
http://mathworld.wolfram.com/ConfocalEllipsoidalCoordinates.html 6 — r,(

—
-

J z

‘- ,f/"

Courtesy of http://mathworld.wolfram.com/ ¥ A
ConfocalEllipsoidalCoordinates.html ¥

Eurographics, Zurich, 2015 Vaclav Skala 36
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Vectors and Points in Geometry

e Vectors — movable, no fixed position

e Points - no size, position fixed in the GIVEN coordinate system

e Same data structure is used for points and vectors representation
in @ memory

e Geometric transformations of points and lines, resp. planes are
DIFFERENT in general

Eurographics, Zurich, 2015 Vaclav Skala 37



Meshless Interpolations

Projective Space

X=[xY]"T X€E?

x = [x,y:w]" x € P? «
Conversion:
X=[x/w,y/w]"  w=#0 " 4 a b

(a) (b)

If w = 0 then x represents “an ideal point” [a point in infinity], i.e.
it is a directional vector.

The Euclidean space E? is represented as a planew = 1.
Equivalent "mathematical” notation often used:
x = [w:x,y]" generally for P™ x = [xg: x4, ..., X, ]"

i.e. homogeneous coordinate is the first

Eurographics, Zurich, 2015 Vaclav Skala 38



Meshless Interpolations

Points and vecto

e \Vectors are

e Points are no

rs

“freely movable” - not having a fixed position

a; = [x;,y1:0]"
t “freely movable” - they are fixed to the origin of

the current coordinate system

x1=

[x1, y1:wy]" and  x; =[x, y5:w,]"

usually in textbooks w; =w, =1

Why ™:” is used?

e x;,v¥; have physical meaning, e.g. distance in meters [m]
e w; is just a scaling factor without a physical unit

A vector A =X,

Eurographics, Zurich, 2015

— X; in the Euclidean coordinate system — CORRECT

= [4x 4] = X2, V17 — [Xy, Y317
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Meshless Interpolations

Horrible “construction” 'DO NOT USE IT — TOTALLY WRONG!

_ _ . T
a=x;—x; =[x =X,y — Y1: Wy — W]

aSW]_ - WZ = 1
a=|[x;—x,y, —y:1— 1]T = |x; —x1, V> _)’1:0]T

What happen if w; # w, due to a numerical repre
T
a=x,— X1 =[x =X,V —Y1: W > " = [ax»ay:g]
Now & # 0
This is considered tge interpreted as a point !!!
ow a vector” is constructed in the projective

ook!! WRONG, WRONG, WRONG

This was presented
This construction has been found in SW!!

Different data types point and vector are needed with relevant
operations.

Eurographics, Zurich, 2015 Vaclav Skala 40



Meshless Interpolations

A Euclidean vector A given by two points expressed in

T
X2—WaXq W1J/2—W23’1]
W1 Wy ’ Wi Wy

e the Euclidean coordinates 4 = [Wl
e expressed in the homogeneous coordinates as a vector type

_ _ . T
a =X, — X1 = [WyXy — WXy, WiV, — Wo Yy Wy Wyl
_ _ T
_ [WaiX2 = WaXy Wi)o W23’1_0]
w1 Wy ’ Wi Wy '

So we can see actually two possible representations.

We use the homogeneous coordinate to represent a denominator of a
fraction — postponing the division operation

This is the CORRECT SOLUTION, but what is the interpretation?

Eurographics, Zurich, 2015 Vaclav Skala 41



Meshless Interpolations

A “difference” of coordinates of two points is a vector in the
mathematical meaning BUT w; w, is a “scaling” factor actually

Actually the division operation is postponed and not performed
immediately. A vector in the projective notation

_ _ ) T

a =X, — X1 = [WiXy — WyXq, WYy — WYy : Wy Wy]
T

A [W1X2 = WaXq1 Wiy — WY1 O]

w1 Wy ’ w1 Wy

where: 2 means projectively equivalent

Thus is just “Euclidean” vector using projective representation

BUT we can define a vector in the projective space as follows
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Meshless Interpolations

A vector in the projective space is given by coordinates x,y,w as
a=2x,—x; =[x =%,y —y1:w, — wy]"
NOTE the difference also for the homogenous coordinates

[=>Linear interpolation with a non-linear monotonic parameterization]

We have to strictly distinguish meaning of one dimensional array
[vector], i.e. if we are working with:

e points, i.e. a data structure represent point coordinates, or
e vectors, i.e. a data structure represent a vector in the mathematical

meaning
VECTORS x POINTS
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Meshless Interpolations

Duality (linear) W

For simplicity, let us consider a

line p defined as: w=1

aX+bY +c=0

We can multiply it by w # 0 and
we get: X y a

awX + bwY +cw =0 @ (b)

w* 0
As x = wX and y = wY we can write:
ax + by +cw =0 i.e. pTx=0
p =[a b:c]’ x = [x,y:w]"T = [wX,wY:w]"

A line p € E? is actually a plane p in the projective space P? passing the
origin, which is excluded, i.e. the point x = [0,0: 0]” is excluded
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Meshless Interpolations

Duality

T

From the mathematical notation p'x=0

we cannot distinguish whether p is a line and x is a point or vice versa
in the case of P?. It means that

e a point and a line are dual in the case of P?, and
e a point and a plane are dual in the case of P3.

The principle of duality in P? states that:

Any theorem in E? remains true when we interchange the words “point”
and “line”, “lie on” and “pass through”, “join” and “intersection”,

4 4
“collinear” and “concurrent” and so on.

Similarly for the E° case.

Once the theorem has been established, the dual theorem is
obtained as described above.

This helps a lot to solve some geometrical problems.
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Meshless Interpolations

Examples of dual objects and operators

Primitive Dual primitive
P? Point Line
Line Point
p3 Point Plane
Plane Point
Operator Dual operator
Join Intersect
Intersect Join

Computational sequence for a problem
Is the same as for the dual problem.
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Meshless Interpolations
Definition

The cross product of the two vectors

x; =[x, y1:wq]" and Xy =[x, y2: wo]"
is defined as:
i k
X1 XX, =det|xy Y1 Wl]
X2 Y2 Wp

where: i =[1,0:0]T j=1[01:0]T k=/[0,0:1]"

0 _W1
xl X xz - l W1 —xll l ] sz

or as

Please, note that homogeneous coordinates are used.
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Meshless Interpolations

Intersection of two lines
Let two lines p; and p, are given by
p1 = [ay, byicq]” and p; = [ay, byt c,]"

We have to solve a system of linear equations Ax=b

a1 x+byy+c, =0 a,x + b,y +c, =0
a; bi]X1 1% 1] _ [~C1] =
[a bz] [y] B [CIZI and [Qz] - [—Czl
Then well known formula is used

q1 D] a1 417
_ Det, det g, b, )= Det, _ det a; G2
= Det N d ¢ —al bl_ Det det a1 bl
€ %) bz_ 2% b2_

Usually a sequence like if abs(det(..)) < eps then is used.
But what if Det is small? What is eps? That is wrong!

From where a programmer knows the value of ?
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Meshless Interpolations

Theorem

Let two lines p; and p, be given. Then the coordinates of an
intersection point x, which is defined by those two lines, are
determined as the cross product of homogeneous coefficients of those
lines as

X =P1XDP2 x = [x,y:w]"

Proof
We are actually looking for a solution to the following equations:

x'p; =0 x'p, =0
where: x = [x,y: w]?

Note * usually a line is in its implicit form as ax + by = q instead
of ax + by + ¢ = 0, or in the explicit form as = kx + q .
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Meshless Interpolations
A Line given by two points

Given two points x; and x, and we want to compute a line given by
those two points, i.e. we need to compute 3 values a, b, ¢ from two
values x,, x,.

= One parametric set of solutions
axy +by; +c=0 ax, + by, +c=0

In a matrix form
a
IR
How to solve it?
Select =1 ? What happen if a line passing the origin?
or =17?orb=1orsimilarly? NO, NO, NO!
BUT HOW?
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Meshless Interpolations

o ][0

Additional condition a+b=17
x1 yl 1 a

5 -
1 1 O0ltc

Another approach

0
0 Ax=D>b
1

We know that a line is dual to a point in E? and vice versa.
Due to the duality principle in E?:

X =p1 XD, <= duality => P=Xx1 XXy
Ax=0Db <= why different? => Ax =0
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Meshless Interpolations

Theorem

Let two points x; and x, be given in the projective space. Then the
coefficients of the p line, which is defined by those two points, are
determined as the cross product of their homogeneous coordinates

p=2x; Xx, =[ab:c]’
Proof
Let the p line be defined in homogeneous coordinates as

ax +by+cw =0
We are actually looking for a solution to the following equations:
pix; =0 pix, =0
where: p = [a,b: c]”

Note that ¢ represents a “distance” from the origin of the coordinate
system.
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Meshless Interpolations

It means that any point x that lies on the p line must satisfy both the
equation above and the equation pTx = 0 in other words the p vector is
defined as

i j k
X1 Y1 Wi
X2 Y2 W3

X y w
X1 V1 W1]=O

X2 Y2 Wy

p=Xx4 XXx, =det

We can write

(x; Xxx)Tx=0 det

Note that the cross product and the dot product are the instructions
in Cg/HLSL on GPU.
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Meshless Interpolations

a b ¢
Evaluating the determinant det lxl Y1 wll =0
X2 Y2 W3

we get the line coefficients of the line p as:
_ yi W1 _ X1 Wi _
a =det lyz Wzl b = —det [xz Wzl c = det[
Note:

v

1.A line ax + by + ¢ = 0 is a one parametric set of coefficients
p =|a,b:c]"
From two values x; and x, we have to compute 3 values,
coefficients a , b and ¢

2.For w = 1 we get the standard cross product formula and the cross
product defines the p ling, i.e. p = x; X x, where:
p =lab:c]"
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Meshless Interpolations

DUALITY APPLICATION

In the projective space P? points and lines are dual. Due to duality we

can directly intersection of two lines as
i j k
X =p; Xp, =det la1 b, C1] = [x,y:w]"
a, by ¢

If the lines are parallel or close to parallel, the homogeneous
coordinate w — 0 and users have to take a decision - so there is no

sequence in the code like if abs(det(..)) < eps then ...in the procedure.

Generally computation can continue even if w - 0 if projective space is

used.
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Meshless Interpolations

Computation in Projective Space

 Extended cross product definition

« A plane p is determined as a P =Xy XXz X X3 =

cross product of three given
points

Due to the duality

* An intersection point x of three
planes is determined as a cross
product of three given planes.

X=pP1 XPz2XP3=

Computation of generalized cross product is equivalent to a solution

of a linear system of equations == no division operation!

Y1
Y2
Y3

Using the cross product we can continue with symbolic operations

which could not be made if solution of Ax = b is used.
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Meshless Interpolations

We have seen that computation of
e an intersection of two lines is given as Ax=b

e a line given by two points is given as Ax =0
Different schemes
BUT

Those problems are DUAL.
Why algorithms should be different??
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Meshless Interpolations

Cross product is equivalent to a solution of
both linear systems of equations, Ii.e.

Ax=b and Ax =0

No division operations!
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Meshless Interpolations

DISTANCE

Geometry is strongly connected with distances and their measurement.
Geometry education deals strictly with the Euclidean geometry, where
the distance is measured as

d = /(Ax)? + (Ay)? , resp. d = /(Ax)? + (Ay)? + (Az)? .

This concept is convenient for a solution of basic geometric problems,
but in many cases it results into quite complicated formula.

There are severe questions of stability and robustness in many cases.

The main objection against the projective representation is that
there is no metric.
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Meshless Interpolations

The distance of two points can be easily computed as
dist = /&% +n?/(wiwy)
where: & =wx; — wyxg n=WwiY, = Wy)1

Also a distance of a point x, from a line in E? can be computed as

. a’x,
dist =
Wo\/az + b2
where: x, = [xg, Vo: Wo]” a = [a,b:c]"

The extension to E*/P°? is simple and the distance of a point x, from a
plane in E° can be computed as

T

. a Xy
dist =
wova? + b? + ¢?
Where: Xog — [xo,yo,ZO:Wo]T a = [a, b, C. d]T.
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Meshless Interpolations

In many cases we do not need actually a distance, e.g. for a decision
which object is closer, and distance? can be used instead, i.e. for the E?
case

(a’x,)? _ (a’x,)?

Woz(az + bz) B W02 n'n

dist? =

where: a = |a, b:c|T = |n:c|T and the normal vector n is not normalized.

If we are comparing distances of points x, from the given line p we can
use “pseudo-distance” for comparisons

a’x,)?
(pseudo_dist)? = ( g)
Wo
Similarly for a plane p in the case of E?
(a"xp)? (a"xp)? (a"xp)?
ot2 = = and J 2 =
dist W T b2 D) wiinn (pseudo_dist) o

where: a = |a, b, c:d]|" = |n:d]|"
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Meshless Interpolations

Transformation of lines and planes

EZ E3
p=x1><x2 p=x1><x2><x3
Dual problem X =pXp, X =pyXpPyXpPs3

In graphical applications position of points are changed by an
interaction, i.e.

x'=Tx
The question is how coefficients of a line, resp. a plane are changed if
the points are transformed without a need to be recomputed from the
definition.

It can be proved that
p' = (Txy) X (Txy) = det(T)(T™H)'p 2 (T™)'p
or

p' = (Txy) X (Txy) X (Tx3) = det(T)(T™)'p 2 (T™)'p
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Meshless Interpolations

Transformation of lines and planes

As the computation is made in the projective space we can write
p'=TH'p=I[a,b:c]" for lines in E?
or

p =T Hp=I[d,b, c:d]" for planes in E®
THIS SIMPLIFIES COMPUTATIONS

Transformation matrices for lines, resp. for planes are DIFFERENT
from transformations for points!

Note that a normal vector of a line is actually a co-vector, i.e. an
oriented “surface”.
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Meshless Interpolations

Data Types, Structures and Classification
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Meshless Interpolations

Data types
Data type Dimensionality | Interval of values | Interpolation
moh{ASCII}

Textual > i.e. {0,...,255})" NO

Geometrical d=2o0ord=3 (—o0, ) YES

Images d=2ord=3 {0, ...,255}" YES

Signals™™ d=2ord=3 (—00, ) NO

Numerical® d =?? (—00, ) YES

{ }* usually restricted to 1,2 or 4 Bytes
™ float, double... x real, complex, quaternion....
** signal representations - spectral representation

e Interpolation of geometrical data & image data

e Data structures

Eurographics, Zurich, 2015
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Meshless Interpolations

Data structures

e Representation of discrete entities, i.e. images, CT/MRI data etc.

e Representation of continuous entities, i.e. surface of objects

Representation of

e physical entities - scalar [CT/MRI], vector and tensor fields
representation of physical or other phenomena
Large data volume - [GB] - [TB]

e geometrical entities — shapes, volumes etc.

STATIC x DYMAMIC data

Dynamic data - synchronous x asynchronous data [sea sensors...]

Eurographics, Zurich, 2015 Vaclav Skala

66



Meshless Interpolations
Q1 =0

S1v1 = S,v;

{x; h} — {[X, yr Z]Tr [h1; ey hm]T}

Associated values h
Static Dynamic
wn
3 Static Q = {x, h}} Q = {x, h(t)}}
<
S =
§ Dynamic Q = {x(t), K}} Q = {x(t), h(t)}?
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Meshless Interpolations

Data structures - classification

III

e unordered - data without any inner “topological” structure
o0 scattered - data scattered with or without known distribution
o clustered - data having some geometric clustering in space
e ordered
o un-structured - irregular triangular or tetrahedronal meshes
[crash tests, mechanical properties computations....]
o structured - typically orthogonal meshes - exact mapping of
neighbours vertices, cells etc.
= irregular - cells have different shapes - rectangles can be of
different shapes
= regular - cells have the same shape - all rectangles are same

Structures

o plain — no hierarchy etc.
o hierarchical, adaptive etc., e.g. quad tree, octree, ....,
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Meshless Interpolations

In data visualization data are tessellated to cells and the given values
(scalar or d-dimensional) are associated with cell’s vertices.

Basic cells

e line segment

e triangle

quadrilateral - planar or non-planar
tetrahedron

pyramid

parallelpiped, hexahedron

prism
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Meshless Interpolations

Let us consider a simple case in E - tetrahedron

General interpolation formula: (®; is an interpolation function)
n n
x=(xy,2z)=T(r,s,t) = ExiCDi (r,s,t) x € cell (x;) 2 d; (r,s,t) =1
i=1

i=1
Values are given in the vertices. Parametrization

x1 = (0,0,0) x, = (1,0,0) x3 = (0,1,0) x, = (0,0,1)
¥
]
b .
/ \\“‘bx ;,:1
<
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Meshless Interpolations

Interpolation functions

P, =1—-r—s—t o, =1 D, =5 D, =t

Inverse transformation

(x — x1)T(x2 —xq1) (x— x1)T(x3 —x1) (x— x1)T(x4 — x1))
| x, — x4|[? || x3 — x4][? ’ | x4 — x4|[?

)

(r,s,t) =T 1(x) = (

Inverse transformation does not exist in the implicit form for all cell
types -> numerical (iteration) computation -> stability

[hexadron - “deformed cube”]

How to interpolate smoothly in triangular meshes?
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Meshless Interpolations

Interpolation of Ordered Data
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Meshless Interpolations

Interpolation

Parametric Explicit Implicit

x = x(u) z = f(x) F(x,z) =0

x = x(u,v) z=f(x,y) F(x,y,z) =0
e Linear

o linear X(t)=Xy+ (X; —Xy)t t € (—,00)

o barycentric X(A,4,) =4 Xo+4,X; & A41+4,=1

sin[(1-t)Q] X+ sin[tQ]

o spherical slerp(X,, X, t) = e o+t ——7 X1
e Polynomial
oe.g. Px)=ax"+a,_ (x" 1+ +ax+ag etc. =>Ax=0»b

Eurographics, Zurich, 2015 Vaclav Skala

73




Meshless Interpolations

Linear interpolation

X(t)=Xo+ (X1 —Xp)t tE (—o, )

Non-linear monotonous parameterization

x(t) =x9+ (x; —xp) t
x(t) =xp+ (X3 —xp) t
y®) =yo+ (1 —yo)t
z(t) =zyg+(z1 —zy) t
w(t) =wy+ (w; —wy) t

t € (—o0,00)

We can interpolate using homogeneous
coordinates without “normalization”!!
e homogeneous coordinate w > 0

In many algorithms, we need
“monotonous” parameterization, only
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Meshless Interpolations

Spherical interpolation

sin[(1 — t)) sin|t()
[(_ ) ]X0+ .[ | 1
sin () sin ()

Instability occurs if Q - k.

slerp(Xy, X, t) =

Mathematically formula is correct;
in practice the code is generally

incorrect! [ g ]

‘ Courtesy of wikipedia

slerp(Xo,X;,t) 2 slerp,(Xo, X1, t)

_ [sin[(l —t)Q]X, + sin[tQ]Xll
sin ()

= [sin[(1 — £)Q]X, + sin[tQ]X,:sinQ]T projective scalar used
Homogeneous coordinates homogeneous coordinate
== better numerical stability & division operation can be postponed
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Meshless Interpolations

Line — Convex polygon intersection

procedure CLIP_Line ( Xa, Xg );

/* XA=[XAIYA:WA]T XB=[XBIYB:WB]T */

begin /* p=[a,b:c]’ given - NO STEP 1 */

{1}p :=Xpa X Xg; [/* p:ax+by+c =0 */

{2}for k:=0 to N-1 do /*xx=[Xk,Yi,Wk] */

{3} if p'x > 0 then c:=1 else ¢:=0;

{4}if c=[0...0]" or c=[1...1]" then EXIT;

{5}i:=TAB1[c]; j:= TAB2[c];

{6}Xp:=pXe,;, Xg:=pXxe,;

{7}DRAW (Xa; Xg ) * e;—i-th edge */

end /* CLIP_Line */

/* c identifies an edge intersected */
TOO COMPLEX?

NO SIMPLE, ROBUST and FAST

Line clipping algorithms in E?

Cohen-Sutherland
Liang-Barsky

Hodgman

Skala — modification of
Clip_L for line segments

X, x, X
e
e3
F(x)<0 e,
X
F(x)>0 e,
X, X,

e Skala,V.: A new approach to line and line segment clipping in homogeneous
coordinates, The Visual Computer, SpringerVol.21, No.11, pp.905-914, 2005
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Rectangular normalized window

Meshless Interpolations

X5 )(Z/X‘B/

Xp =P X € e, S
For th = -1, i.e. 1=0 e

or the edge y , y + F(x)<0 3 N

. i j k X,
X4 =X, Ya:Wal" =la b c|=1Ib—c —a:qd]
0 1 1 F(X)>O €,
b—c —a b—c X X,
2 — 1T =] ,—1:1]7 i
a a a

Actually expression fory, , resp. for x, is given by the window edge.

No multiplication or division operations

A simple modification if a line is given parametrically

(in the Euclidean or projective space) as

Simple modification for non-convex polygon but it requires
intersections sorting => 0(M IgM), where M is a humber of

intersections.
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Meshless Interpolations

Partition of Unity
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Meshless Interpolations

Shepard’s interpolation

C Wi ()
Wi (X
flx) = N f ()
-p
where w;(x) = ||x — xJ|| and p>0
14 . r T 14
12+ A _-"."'-\ - 120 +’.
10+ P4 ] Lol /
8 e g 8 /.4---/ -~
. .l_,o---/
6 / 6 ;
0 : : :
% 50 100 150 200 ¢ 20 100 10 200
0<p<1- PEAKS p > 1 smooth, derivative in points is ZERO

Taken from: Ken Anjyo, J. P. Lewis, Frédéric Pighin Scattered data interpolation for computer graphics,
SIGGRAPH 2015
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Meshless Interpolations

Shepard’s method - example of the Partition of Unity, which is actually
a blending of local approximations with {¢,} with weights so that
Y« 9 = 1 on the data sub-domain (k-nearest neighbors etc.)

Local reconstruction:

Global reconstruction: — - —— — - — -

Sample point: =

P
P N
& \%5..\ ,
o S, RN
-';, e BT
%,‘:.,—_-" ~
.
L] Yo
. o TP g T — -".
ot . ' N
e N
//" . o
o =
/fl’l‘ a::‘\
L e
i oy
- \\ .
L
*y
'\\\
Partition of unity
Supports
g
E— - E— — o S—
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Meshless Interpolations

Interpolation of Unordered Data

Meshless [meshfree] methods
http://meshfree.zcu.cz
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Meshless Interpolations

Meshless (meshfree) methods
Meshless interpolations are used for:
e scattered data interpolation, i.e. for interpolation of data sets
o {h; = f(xy, ---'xd)}]ivzl
e d —dimensional space in general
e time-varying data, i.e. for spatio-temporal problems in general
e scattered data in time - “not framed” data

Meshless methods:
e offer smooth interpolation naturally in the contrary to the methods
based on tessellations.

e do not require a tessellation step, which has high computational

a/,+1

complexity, e.g. Delaunay triangulation is of 0| n
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Meshless Interpolations

Meshless (or meshfree) techniques are primarily based on the idea of
Radial Basis Function (RBF) interpolation [BuhmO03], [Wend10],
[Wrig03].

However RBF based methods are not separable, i.e. interpolation
cannot be made along selected axis followed by another along the
second axis etc., but easily extensible for the d-dimensional case, in

general

Summary

RBF based techniques:
e are easily scalable to the d-dimensional space,
e do not require tessellation of the definition domain
e offers smooth interpolation naturally.

e lead to a solution of a system of linear equations
[Duch77], [Hard71] with a full or sparse matrices.
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Meshless Interpolations

Two different types of RBF interpolation problems:

e explicit (“functional”) representation, i.e. F(x) = h, e.g. a height
map in E°- 2 1/2D i.e. .F(x,y) = h

e implicit (iso-lines, iso-surfaces, e.g. in surface reconstruction),
.e. F(x) =0
However, there is a severe problem - surface extraction

where: x is a point representation generally in d-dimensional space and
h is a scalar value or a vector value.
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Meshless Interpolations

RBF Interpolation

The RBF interpolation is based on computing of the distance of two
points in the d-dimensional space and is defined by a function:

M M
F@ =) xo(lx-x1)= . 4 o) 1y = llx— x|
j=1 j=1

It means that for the given data set {(x;, h;)}}!, where h; are associated
values to be interpolated and x; are domain coordinates, we obtain a
linear system of equations:

M
hi=fa =) yo(lu-xl) i=1..m
j=1

where: 1; are weights to be computed and e.g. ¢(r) = r*lgr etc.
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Meshless Interpolations

Due to some stability issues, usually a polynomial P,(x) of a degree k is
added to the formula:

M
hi = f(xl-) = ZA] go(”xl — x]”) + Pk(xi) i=1,...M
j=1

For a practical use, the polynomial of the 1% degree is used, i.e. linear
polynomial P;(x) = a’x + a5, in many applications. So the interpolation
function has the form:

M M

flx) = Z/lj o(||x: — x]|) + a™x; + ap = Z/lj @;j+a’x; + ag
j=1 j=1
hizf(xi) t=1,...M

and additional conditions are applied:

M
Z/li =0 z/lixi =0
j=1 '
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Meshless Interpolations

It can be seen that for d-dimensional case a system of (M +d + 1)
linear equations has to be solved [ Ax =b ],

where M is a number of points in the dataset and d is the
dimensionality of data.

Surface has “elastic” property
=> there is not a “circle” on
the top we would expect

Taken from: Xin Wei, Yi-Zhong Wu, Li-Ping Chen: A
new sequential optimal sampling method for radial
basis functions, Mathematics and Computation, Volume 218, Issue 19, 1 June 2012, Pages 9635-9646
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Meshless Interpolations

Computational complexity of solution linear system of equations is

O(N3) resp. if iterative 0(kN?)
but k is high.

Result is a function f(x). It means that

e we can determine interpolated value at any given point without
d/2+1‘

)

tessellation, i.e. without triangulation in EZ or E3 ! O(N

e there is no need to deal with smoothness problems over
triangulated meshes in E? or E3 !
(contour smooth interpolation on a triangular mesh)

Question

“How to decrease number of 4;” ??7?
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Meshless Interpolations

. T
For d = 2 vectors x; and a are given as x; = [x;,y;]” and a = |a,, a,] .

Using a matrix notation we can write for 2-dimensions:

(P11 - Pim X1 Vi 1[4 rhee
Pm1 - Pum X Yu 1||Am _ | hu
X1 .. Xy 0 0 O0]lay 0
Vi . Yy 0 0 0}]1ay 0
-1 1 0 0 0JdLap- 0
B Pj[A
pT O“a]:lgl Ax=D> aTxi+a0=axxi+ayyi+a0

It can be seen that for the two-dimensional case and M points given
a system of (M + 3) linear equations has to be solved.

e If "global” functions, e.g. TPS (¢(r) =r2lgr ), are used
the matrix B is “full”,

e if “local” functions (Compactly supported RBF - CSRBF) are used,
the matrix B can be sparse.
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Meshless Interpolations

The RBF interpolation was originally introduced by Hardy [Hard71] by
introduction of multiquadric method in 1971, which he called Radial
Basis Function (RBF) method. Since then many different RFB
interpolation schemes have been developed with some specific
properties, e.g. Duchon [Duch71] uses

() =rilgr

which is called Thin-Plate Spline (TPS). A function ¢(r) = e~¢"* was
proposed by Wright [Wrig03].

Later Compactly Supported RBF (CSRBF) were introduces as

gD(T):{(l—r)qP(r), 0<r<1 ’

0, r>1
where: P(r) is a polynomial function and q is a parameter.

Theoretical problems with stability and solvability were solved by
Ducon [Duch77].

Eurographics, Zurich, 2015 Vaclav Skala 90



Meshless Interpolations

Generally, there are two main groups of the RBFs:
e “"global” - a typical example is TPS function
e “local” - Compactly supported RBF (CSRBF)

If the “global” functions are taken, the matrix A4 of the LSE is full and
for large M is becoming ill conditioned and problems with convergence
can be expected. On the other hand if the CSRBFs are taken, the
matrix 4 is becoming relatively sparse, i.e. computation of the LSE will
be faster, but we need to carefully select the scaling factor « and the
final function might tend to be “blobby” shaped.

“Global® functions ¢(r)
Thin-Plate ) : :
Spline (TPS) relgr Multiquadric (MQ) V1+ er?
Gauss function e e’ Inverse Quadric (IQ) 1/m

Table 1 Typical example of “global” functions
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Meshless Interpolations

ID | CSRBF CSRBF Y%

ID A
1 |[(1-7), 6 |(1—r)8(35r2 4+ 18r + 3t d
2 1-7)33@r+1|7 (1-1r)8 . 1N N D O
(32r3+25r2+8r+3) U
3 (1 - r)-sl- 8 (1 - r)-sl- :
(8r% + 5r + 1) |
4 |(1-1r) 9 |(1—-7)3(57+1) ] TN
5 [A-ri¢@r+110|A-nid6r*+7r+1 | / ...................................
Table 2 “Local” functions - CSRBF 0 S g

Tab.2 presents typical examples of CSRBFs. T_he;-/'ar-é defined’for the
interval (0, 1) but for the practical use a scaling must be used, i.e. the

value r is multiplied by a scaling factor a, where 0 < a < 1.

Eurographics, Zurich, 2015 Vaclav Skala 92



Meshless Interpolations

In the case of surface reconstruction from scattered spatial data results
is an implicit function F(x) = 0. This situation is a little bit more
complicated, as the matrix A is generally symmetric, semi-definite or
positively definite and the equation Ax = 0 would have only a trivial
solution x = 0. In this case a surface is considered as an oriented one
and additional off-set points are added expecting that a value in those
points is §. Usually additional points are given in the normal vector
direction, i.e. +n and -n and matrix size is increased by factor 9, i.e.
3n x 3n, where n is a number of the given points [Carr01], [PanR12].

off-surface ‘normal’ points

Also as number of points might be very VR
high subdivision techniques are used
[Macell].

surface points .
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Meshless Interpolations

Meshless techniques are primarily based on approaches mentioned
above. The resulting matrix 4 tends to be large and ill-conditioned.
Therefore some specific numerical methods have to be taken to
increase robustness of a solution, like preconditioning methods or
parallel computing on GPU [Nakal1] etc. Also subdivision or
hierarchical methods are used to decrease sizes of computations and
increase robustness [Ohta03], [Suss10].

Meshless interpolation a techniques are used in engineering problem
solutions, nowadays, e.g. partial differential equations [Fass07],
surface modeling [PanR11], surface reconstruction of scanned objects
[Carr01], [Skall3a], reconstruction of corrupted images [Zapl09], etc.

Generally, meshless object’s representation is based on specific
interpolation techniques [AdamO08], [Skal13b], [Skal12]. Detailed
description can be found in [BuhmO3], [Fass07] and [Wrig03].
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Meshless Interpolations

Spatio-temporal data are usually considered as “framed” or
“synchronized” in time. The first difficulty is distance computing as
distance of two points x; = (x{,v4,24,t1) and x, = (x5, 5, 2,,t,) is usually
taken as

d =+ —x)2 + (v, = y1)2+(25 — 2)2+y2(t, — t;)?

where y = 1 dimensionless. It is incorrect, as we are putting difference
in [m] and in [s]. Therefore y must be of [m/s].

As the scattered spatio-temporal data are naturally scattered in time as
well, i.e. they are not “framed”, meshless methods enable to solve
spatio-temporal not “framed” interpolation, manipulation and
representation in a consistent way.
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Meshless Interpolations

Approximation — Least Square Error

Eurographics, Zurich, 2015 Vaclav Skala
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Meshless Interpolations

In many applications approximation instead of interpolation is needed,
typically sampled data approximation with Least Square Error (LSE).

It is necessary to distinguish cases of the approximation
e explicit, i.e. y = f(x) in E2 or y = f(x) in E¢ x =[x, .., % %]
e implicit, i.e. F(x,y) =0in E? or F(x) =0 in E¢

Explicit case - Regression

e linear,i.e.y=a+bx,resp.y=ap+a; x+a, x+-+a, "x

e quadratic, i.e. y = a + bx + cx?

e polynomial, i.e. y = ay + a;x + a,x* + -+ a,x", e.g. Lagrange
interpolation etc.

e hyperbolic, i.e. y=a+b/x

Implicit case, i.e. F(x) = 0 case, the Orthogonal (Total) Least Square
Error should be used.
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Meshless Interpolations
Explicit case - Given {x;,y;} i = 1,...,n , looking for polynomial y = f(x)
Vi = ag + aq 1xi+a22xi+---+arrxi i=1,....nn>r
this lead to over determined system of linear equations Ax = b
Difference between data a interpolation
r=b—-Ax (vector!)
The ERROR E is defined as
E=|r|?=r"r=|b—Ax||? = (b— Ax)"(b — Ax)

Minimization

0E 0
= [b"b — bTAx — (Ax)"bh + xTATAx] = 0 Vk=0,...,7
aak aak

If [|r|| < 0.05 then E < 0.0025 => converges fast - 0
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Meshless Interpolations

Usual solution

ATAx = ATh x=(ATA)"ATb

11l => jnstability - eigenvalues (if A would be regular) 1, - 1,> or
SVD is used.

A similar approach is taken for other “explicit” LSE

However for large datasets, the problem of numerical instability
remains.

Note that LSE method is not of the coordinate system origin
independent — father points have higher weight, so changing more the
space orientation of the approximating function, e.g. of a plane in the
case of linear interpolation.
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Meshless Interpolations

Orthogonal (Total) Least Square Errors

F(x,y)=0 ,resp. Fx)=0 x=|"x, ...,d'lx]T
If ATAx = ATb would be used we actually get Qx =0 as b =10
Typical example

Given points {x;, y;}, resp. {x;,y;,z;} i=1,..,n and we are looking for a
line ax + by + ¢ = 0 or a plane ax + by + cz + d = 0 fitting the data with a
minimal distance (orthogonal) error, i.e. minimizing the distance
(orthogonal) of all the data from a plane.

More complex solution —> eigenvalues and eigenvectors have to be
computed in general case.

A simple solution in E? is available ->Graphics Gems II
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Meshless Interpolations

Meshless approximation of
un-ordered multidimensional data sets
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Meshless Interpolations

Approximation of Un-ordered Data and Least Square Error

Real life data are noisy. Approximation is to be used instead of
interpolation and Tikhonov regularization known in statistics can be
applied to RBF.

o ollal =14

is used, where I is identical matrix and q is a parameter. If g value is

high, function gets smoother, if g is small, the function is closer to pure
interpolation.

However the size of the matrix remains and it is large.
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Meshless Interpolations

Let us consider RBF again in the form

M
) =) 4 o(lx - &) + a"x; + ag
j=1

h = F(x;) i=1 N  Glven points X
. N— e
where: §;are not given points, but ¢ e .’ .' * L.
points in a pre-defined “virtual mesh” .' e e o e o
as only coordinates are needed ', . = “. .
1 H " L 4 '—. ® ¢ * =
(there is no tessellation needed). . . . S L.
This “virtual mesh” can be irregular, N .'-' L g  Ce
orthogonal, regular, adaptive etc. ’ ot et o °.
. .. r‘ . :

= New reference points §
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Meshless Interpolations

For simplicity, let us consider 2-dimensional squared (orthogonal)
mesh in the following example.

M
flx) = Z’lf ol = &) » Given points X
j=1
. .
i=1,..,N . ] 1
and the ¢; coordinates are the corners of e 0 e
this virtual mesh. S I
= : .do"—.. : °® .‘ * .
It means that the given scattered data ¢ ° e 7 .'-' . , .
will be actually “re-sampled”, e.g. to the |° et e o °
squared mesh. e« Tt ke
4 . TL- »
The question is how to decrease M, i.e. .
number of 1 values and decrease = New reference points ¢

computational cost significantly.
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Meshless Interpolations

In many applications the given data sets are heavily over sampled, or
for the fast previews, e.g. for the WEB applications, we can afford to
“down sample” the given data set. Therefore the question is how to
reduce the resulting size of LSE.

Of course there is a possibility to decrease number of 1's, e.g. by
picking the smallest one and remove relevant point and recomputed
all.

But note that the solution of a system of linear equations is of O(N3) in
general and usually ill condition systems is solved.

The above presented approach of specifying position of §; points gives

us a chance to set “virtual points” at place of our interest with a high
density, while in the rest of the space their distribution can be sparse.
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Meshless Interpolations

Let us consider that for the visualization * Given points X
purposes we want to represent the il . i il
final potential field in d-dimensional e | ‘ .
space by M values instead of N and M « A . "

N. The reason is very simple as if we .' . . I ot o
need to compute the function f(x) in L .° . nH". | ol
many points, the formula above . . 7 Se L.
needs to be evaluated many times. We . M .'-' . ‘ ..
can expect that the number of y A
evaluation Q can be easily requested e R L ,.

at 102 N of points (new points) used " N "
for visualization. = New reference points §

If we consider that Q¢ = 102 N and N > 10% M then the speed up factor
in RBF function evaluation can be easily about 10* !

This formulation leads to a solution of a linear system of equations
Ax = b where number of rows N >» M, number of unknown [4,, ..., 4, ]".
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Meshless Interpolations

This approach reduces the size of the linear system of equationsAx =b
significantly and can be solved by the Least Square Method (LSM) as
ATAx = A"b or Singular Value Decomposition (SVD) can be used.

T P11

PDi1

PN 1
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Meshless Interpolations

The high dimensional scattered data can be approximated by RBF
approximation efficiently with a high flexibility as it is possible to add

additional points of an area of interest to the virtual mesh and increase
precision if needed.

It means that a user can add some points to already given virtual mesh
and represent easily some details if requested.

Note that a mesh is not generated!
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Meshless Interpolations

However, there are other possibilities, how to decrease computational
cost.

If the Compactly Supported RBF (CSRBF) approach is used:

e the matrix A is a sparse matrix

e if data set preprocessed and space subdivision technique is applied,
then only the data in a cell and its neighboring cells are used for
computation of 4, which makes the computation much more faster
and also stability is increased.
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Meshless Interpolations

More general approach

Let us assume again

Il
~

M
e =) & (|l - 1) i=1,..,N AR
j=1
whereM < N
We want to determine 4 = [44, ..., 4,]T minimizing quadratic form
1
_ T
2)1 QA
with a linear constrains A4 — f = 0, where Q is positive and symmetric
matrix.
This can be solved using Lagrange multipliers & = [, ..., &7, i.€.
minimizing
1
A7Qa—§"(4A - f)

i.e A=?and & =?

Eurographics, Zurich, 2015 Vaclav Skala 110



Meshless Interpolations

So we are getting as the matrix Q is positive

Jd (1
ﬁ@m ~ £7(A2 —f)) =QA-ATE=0

d (1
a—€<§ﬂqa — &A1 - f)) =ATA-f=0

in more compact matrix form

5 o lld=[7

As Q is positive definite, block in matrix operations can be applied and

we get:

A=Q7lAT(AQ7'A)If §=(4Q71AN)If

If A= AT and invertible, computation can be simplified.
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Meshless Interpolations

Experimental data generation
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Meshless Interpolations

Random distribution of points is usually used
Halton points — better distribution
Any non-negative integern, 0<a; <p, 3k >0, p — prime
k
n = z aipi
=0
Function

maps to the interval (0,1)
Sequence generated

hyn = {h,(n):n=0,12,..,N}
Example:

h3(10) = 1/3 + 1/33 — 10/27

hs,10 = {0; 1/3:2/3'1/9'4/9'7/9rz/<9'5/9'8/9'1/27'10/27'}
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Meshless Interpolations
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Code see - http://en.wikipedia.org/wiki/Halton seguence

Useful testing functions for multi-dimensional experiments

fa() = 4% [Tjeqy 2 (1 — xz)

sinc(x) = [T,

Eurographics, Zurich, 2015
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Meshless Interpolations

Meshless interpolation and approximation — examples
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Meshless Interpolations

Image reconstruction

B- unknown values
0O- known values
B - current pixel

20-okoli 16-okoli 16-okoli

\ T I 1

. - poskozeny ob. . - opraveny ob.

Surface reconstruction
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Meshless Interpolations

Image reconstruction

riinal - 60% corrpted els Rconstructred image

Original image [BertalmioZOO] Reconstructed [UhIir&SkaIéZOOG]
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Meshless Interpolations

Surface reconstruction from scanned data

off-surface ‘normal’ points

surface points .

Surface reconstruction (438 000 points) [Carr et al. 2001]
Implicitly defined problems:

F(x,y,z) =0
Problems:
e It leads to Ax = 0 - trivial solution, only

e additional points with “orientation” have to be artificially included
togetAx=0»b
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Meshless Interpolations

(@) (b) ©

Figure 3: Reconstruction of a hand from a cloud of points with and without validation of normal lengths.

Surface reconstruction (438 000 points) [Carr et al. 2001]
There is a severe problem

e how to set the “offset” points and how to place them
e what is the minimum of the “offset” points, as the computational
cost grows significantly
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Meshless Interpolations

Non-trivial problems

Turbine blade with 594 000 points
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Meshless Interpolations

Visualization & Meshless representation
Meshless methods offer natively

e smoothness of the physical phenomena, i.e. F(x) = h, resp. F(x) = h
generally in d-dimensional space

e analytical form for derivatives , e.g. ¢(||x|]) = go(w/xz + yz)

200D _ 2 o) 2 y) = )
oo o ety
_x9 dp(llxl) _y @
=70 0 — 73,90
- x 0
220 = Z sl =) =% = o)
j=1

where Tij = ||xi x]”
Similarly for the case of approximation r; = ||x; — &
where §; are virtual points given by a user
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Meshless Interpolations

Visualization & Meshless representation

In data visualization no “high precision” is needed for the visual
assessment of the behavior of the physical phenomena

e reduction of weights 1; => user controlled =>approximation
e hierarchical approach

In the case of precision required

e Progressive RBF interpolation — point insertion or point removal of
computational complexity O(N3) to 0O(N?) - using block matrix
operations

J. SGiBmuth, Q. Meyer andG. Greiner: Surface Reconstruction Based on Hierarchical Floating
Radial Basis Functions, Computer Graphics Forum, Vol.29, No.6, pp. 1854-1864, 2010

Skala,V: Progressive RBF Interpolation, 7th Conference on Computer Graphics, Virtual
Reality, Visualisation and Interaction in Africa, Afrigraph 2010, pp.17-20, ACM, 2010
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Meshless Interpolations

Summary
Meshless methods are:

e Progressively developing methods in many fields ranging from
computational sciences, e.g. partial differential equations, solving
economical problems, visualization, computer graphics etc.

e Offering unique properties
o natural smoothness
o applicability in d —dimensional problems

e Parallelization — as matrix-vector operations are used, relevant
specialized libraries available on CPUs and GPUs
GPUML (GPU fro Machine Learning open SW), GMRES, etc.

e If CSRBF are used, simple use for wide range of data sets
space subdivision and parallelization techniques can be applied
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Meshless Interpolations

Parametric curves
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Meshless Interpolations

Hermite curve

Cubic curve given by two end-points and two tangent vectors

x(t) =at3+bt?+ct+d x'(t) = 3at? + 2bt + ¢

Substituting t = 0 and t = 1 we get 4 equations for unknown values, i.e.
a,b,c,d

x(0)=d x'(0)=c
x(1)=a+b+c+d x'(1)=3a+2b+c
=>solve Ax = b
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Meshless Interpolations

Ax=Db
0 0 0 1lraq [x(0)]
1 1 1 1f[b|_[x(D
0 0 1 o0}]c x'(0)
3 2 1 oltdd Lx(1).

Solution

a = x(0)
b = x'(0)

¢ = —3x(0) + 3x(1) — 2x'(0) — x'(1)

d=—2x(0) —2x(1) + x'(0) + x'(1)

and we can write for the x coordinate

x(t) =x"Myt x = [x(0),x(1),x'(0), x'(D]" t =[t3,t%t,1]"

My

Eurographics, Zurich, 2015

-3 0 1]
3 0 0
-2 1 0
-1 0 O

Vaclav Skala 126



Meshless Interpolations

Usually a notation
P(t)szMHt P=[PO,P1,P(,),P1,]T t=[t3;t2;t;1]T

is used to express that x,y and z coordinated are to be taken.

M, is a matrix of the Hermite form and blending functions are
1

gu(t) = [91(), g2(t), g3(1), g2 (O]"
=My [t3,t%,t,1]7 te<0,1>

l.e.
g.(t) =2t3 —-3t? + 1
g2(t) = —2t3 + 3t?
gs(t) =t3 —2t*+t 2

ga() =t° — t? .
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Meshless Interpolations

Bézier curve
Bicubic Bézier curve is given as similarly as:
P(t) = [Py, Py, P,, P3] Mg [t3,t%,¢,1]7 te<0,1>

Important property of the Bézier curve is that it is always inside of the
convex hull of the given control points

o

w
SO W W
o O O

General definition

PO =) BNOP o =(})a-ome
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Meshless Interpolations

Coons curve

This curve is different - it does not pass the control points but it is
naturally C? continuous.

P(t) = [Py, Py, P,, Ps1 M [t3,t%,t,1]7 te<0,1>

The Coons matrix is given as

—1 3 =3 1

113 -6 0 4

Mc “6|/-3 3 3 1
1 0 0 o0l
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Meshless Interpolations

General form of cubic parametric curves
P(t) = [Py, Py, P,, P31 My [t3,t%,¢,1]7T t€e<0,1>
or as

X(t) = xTMF t y(t) = yTMF t
z(t) =z"Mpt t =[t3,t5t,1]7 t€(0,1)

where M. is a matrix of the form used
and kernel functions are given as
gr(t) = Mg [t3,t%,t,1]7 t€(0,1)

However Hermite or Bezier curves have to be smoothly connected

How to make it?
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Meshless Interpolations
Curves joining

In applications a connection of cubic curves is needed to get a complex
shape.

Continuity (parametric)

e C° - two segments are connected, i.e. share a common point
e CK - a k™ derivative of the first segment at the end point is equal to
a k'™ derivative of the second segment in the starting point

Unfortunately the C¥ (k>1) continuity does not ensure continuity
(smoothness) if a curve is rendered in x,y, resp. x,y,z.

Usually segments are smoothly connected; however each segment
might be, in principle, of different form.
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Meshless Interpolations

Smooth Hermite curves C? joining and 2P(t)

P(t) =P"™M,t P =[P, P, P}, P{]" t=[t3t%¢ 1]
For

e C° connection - P(1) = 2P(0) - points share the same coordinates
e C! connection - % 1p(1) = % 2p(0) simple solution "*P'(1) = P’ (0)

- speed of a moving object changes continuously
2 2
e C? connection % 1p(1) = % 2pP(0) - acceleration changes

continuously - How to make it?
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Meshless Interpolations

Let us consider a simple example of €% connectivity

d d?
P(t) =at’+ bt +ct+d —-P(t) = 3at? + 2bt + ¢ —5 P(t) = 6at +2a
=lpr) = Lp(0) leads to a condition 6" 1qg 4+ 271 =2 1
a = P(0) b = P'(0)

c =—-3P(0)+3P(1) —2P'(0) — P'(1) d =—-2P(0) —2P(1) + P'(0) + P'(1)

Putting together with *P(1) = 2P(0)
2[3( ' =1tp) =217t — P+ 6[2(F TP — 'P) +217tP 4+ P
— 2[3(i+1p . ip) —9 iP/ . i+1Pr]
Simplifying
i~1pr 4 4 ipr 4 i¥1pr = 3(itlp _ i~1p)
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Meshless Interpolations

In a matrix form
- 0P/ - - (VR Y

1 0 i P : P :

1 4 1 0 Op 3(%P - °P)

O 1 4 1 O :

0 1 4 4ff™?p'| [3(™'P-"73P)
0 - _m—lpl_ m—lpl

If °P""(0) = ™P"(0) = 0 => natural cubic spline

It can be shown, that a relation between Hermite and Bézier forms

exists as xh =3x8 —-xB) and x; = 3(xE — x8)
1 0 -3 0"x§'
, ar oo 3 o«
XO ,xo,xl x1 ==
[ I"=lo 0 o =3 x5
01 o 3|8
| 3_

that is actually a transformation from Bézier form to Hermite form.
Similarly between other forms, see next.
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As all the above mentioned parametric curves are of the form

P(t) = [Py, P, P,, Ps] My [t3,t%,¢,1]7

there are mutual transformations possible - M¢,,, 1,

te<0,1>

From Hermite Bezier B-Spline
1 0 -3 0] 1 0 -3 0]
. . 00 3 0 114 1 0 -3
Hermite Identical 00 0 -3 a1 2 3 0
0 1 O 3. 0 1 O 3 |
3 3 0 O] 1 0 0 O]
. 11o 0 3 3 . 114 4 2 1
To |Bezier 3lo 1 0 o Identical A
0 0 -1 0l 0 0 0 1.
—3 6 -3 6] [6 0 0 0
. 11 -3 6 -=-3||-7 2 -1 2 .
B-Spline 3l—r 2 1 > s 1 9 —7 Identical
-2 1 -2 71/ L0 0 0 6
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Meshless Interpolations

Rational Bézier curve

Euclidean X =[X,Y,Z]"

Yizo Bi' (D)wiq;
o Bl'(®)w;

i=0"-1

X(t) =

15t derivative

Projective x = [x,y,zzw]’

X0 =) BOq

How simple !

Eurographics, Zurich, 2015
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Br() = () -

quite complicated

X©=) GOV

l
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Parametric surfaces
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Parametric bicubic surfaces

A parametric bicubic surface (patch) P(u,v) is given as a “tensor”
product of cubic curves, i.e. curves P(u) and P(v), u,v € (0,1).
Requirement: is that P(u,v) for u = const or v — const are cubic curves
as well. Hor_

AT

rai‘-/-nf

Ka —
/Z”D-."'

However, diagonal and
antidiagonal curves are of the
degree !!!1

Note, that the domain for
(u, v) must be squared.

As the patch is rendered as a
triangular mesh, at the end,
due to the non-linear
parameterization triangles are of a different size!
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Hermite (Ferguson) bicubic patch

e 4 corner points
e 8 tangential vectors
e 4 twist vectors

16 control values for x, y, z

P, - matrix of control values

My - Hermite matrix

P(u,v) = [ud,u?,u, 1] ML Py My [v3,v%,v,1]7  w,v €(0,1)

139
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Meshless Interpolations

Hermite bicubic patch
P(u,v) = [u3,u?,u, 1] M5 Py My [v3,v%,v,1]7 u,v €(0,1)
T
P(u,v) = [Px(u, v),B,(u,v), P (u, v)]
Hermite control values

[POO xO]_] i -POO P01-_
Pio  x11 ov [P0 Pi4]
i Pyo P01] 0% [Pyo Por
Lou P10 P11 Judv _P10 P11--

PH=

Matrix of the Hermite form

2 =3 0 1
1-2 3 0 0
MH_1—210

1 -1 0 0.
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Bézier bicubic patch

. X 94
e 4 corner points
e 8 outer points "(3
e 4 inner points s
XW o “(zaﬂ

16 control values for x, y, z
P - control points X4
°

My - matrix of the Bézier form
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Meshless Interpolations
P(u,v) = [u3,u?u, 1] ML P M [v3,v?,v,1]7 u,v € (0,1)

P(u,v) = [Px (u,v), P,(u,v), P,(u, v)]T

Bézier control points

PB=

Matrix of the Bézier form

-1 3 3 1
13 -6 3 0
MB_—3300
1 0 0 0

Important

Surface is inside of the convex hull determined by the control points
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Parametric space Euclidean space
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Coons form

Hermite (Ferguson) and Bézier surfaces passes the “corner” control
points. Coons surfaces do not pass control points, but they are
C? continuous naturally.

P(u,v) = [u3,u?,u, 1] ML P, M, [v3,v%,v,1]7 u,v € (0,1)

P(u,v) = [Px (u,v), B, (u,v), P, (u, v)]T

Coons control points Matrix of the Coons form
p. = Pio P11 Pz Pi3 M =l 3 -6 0 4
¢~ PZO P21 PZZ P23 ¢ 6_3 3 3 1

Eurographics, Zurich, 2015 Vaclav Skala
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General form and mutual transformations
So far all bicubic parametric patches are of the form
P(u,v) = [ud,u?,u, 1] ME P My [v3,v%v,1]7

where M is a matrix 4 x 4.

It means that we can describe a smooth surface by 3 x 16 values, i.e.
by 16 values for each coordinate.
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Transformation from Hermite to Bézier

For x coordinate

XB= =

1 1 -
X11 X11 t+ 3 %13 X12 ~5X14 X12

1 1 1 1 1 1
X117+ 3%31 X11 + §(x13 + X31) — 5X33  X12 + §(x32 — X14) — 5X34  X12 + 3 %32

1 1 1 1 1 1
X21 ~3%Xa1 X21 + 3 (X33 — X41) — 5Xa3 X22 —3 (X4 + X42) — oXaa X2z —3X42
1 1
| X1 Xp1 + 3 %23 X22 —3%X24 X22
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Meshless Interpolations

Transformation from Bézier to Hermite

" [Poo x01] 9Y [Poo P01] ]
Pio x11 ov P10 Pi1
0 [Py Pp1] 9% [Py P01]
Lou P10 Pi1 oudv |Piro Pi1l

For x coordinate

PH=

(X11 X12  X13  X14] Pos i
X, = X21 X22 X23  X24| _
X31 X32 X33 X34
| X41  Xa2 Xa3 Xga
[ X00 X03 3(x91 — X00) 3(x93 — Xp2) |
X30 X33 3(x31 — X300) 3(x33 — x32)

3(x10 — Xg0) 3(x13 —X93) 9(xgp — X01 — X10 + X11)  9(Xo2 — Xo3 — X12 + X13)
13(x30 — X20) 3(x33 —x23) 9(xz0 — X271 — X390 +X31) 9(X22 — X33 — X33 + X33)
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Meshless Interpolations

There are the following issues to be considered if used as interpolation:

e if the patch is to be rendered usually is tessellated by a triangular
mesh

e the z value is usually taken as value of a function z = f(x(u), y(v)),
however this requires regular tessellation (squared), and due to
the non-linearity of a parameterization, final result might be far

from being expected

e if a patch tessellated by Au = const, resp. Av = const then Ax # const,
resp. Ax # const.
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Summary and conclusion
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Meshless Interpolations

Summary and conclusion

We have got within this course an understanding of:

Numerical representation and precision issues
Coordinate systems, duality, transformations
Data types, structures, classification

Meshes

Interpolation of ordered data

Interpolation of un-ordered data
Approximation - Least Square Error
Approximation of un-ordered data

Examples & experimental results

Parametric curves

Parametric surfaces

Acknowledgment - some items included in this presentation were downloaded from the
Internet open resources and authors are acknowledged if they are known. Thanks belong to
them.
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Meshless Interpolations

APPENDIX — RBF testing functions
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Meshless Interpolations

RBF testing functions used for testing (used in references)

Function F1 x,y € (0,1) x(0,1) Franke’s function
3 -1 3 -1 1
_2 92 92 2 N2 _ 92
Fl(x,y) = 4exp( 2 ((9x —2)*+ (9y — 2) )) +4exp(49 (9x — 2) 10 9y —2) )

+ %exp (_Tl (9x — 7)% — % 9y — 3)2) + %exp(—(%c —4)2+ (9y —7)?)

Function F2 x,y € (0,1) x (0,1)
1
F2(x,y) = 5 [tanh(9y — 9x)] + 1

Function F3 x,y € (0,1) x (0,1)
3 1.25 + cos(5.4y)
61+ (3x —1)?]

Function F4 x,y € (0,1) x (0,1)
1 [ 81 1) 1\2\]
i) =5 |G ((x-3) +(-3) )
Function F5 x,y € (0,1) X (0,1) _ _
1 [ 81 1)2 1\2\]
pce) =5 |- ((x-3) +(-3) )
Function Fé6 x,y € (0,1) X (0,1) _ _
1 1\2 1\2 1
F6(x,y) =§[64—81<<x—5) + (y—z> )] —3
Function F7 x,y € (—1,1) x (—1,1)
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Meshless Interpolations

e =anl5{(x=3) o] jeml-s((e- 3 -3 )
“fero((eeg) + 0+

Function F8 X,y € (—2,2) X (—2,2)
F8(x,y) = sin(3x) cos(3y)
Function F9 x,y € (0,1) X (0,1)

F9(x,y) = x exp(—x* — y?)
Function F10 Peakx,y € (—3,3) x (—3,3)

F10(x,y) = 3(1 — x)%exp(—x% — (y + 1)?) — 10 (g —x3 — y3) exp(—x? — y?)

- %exp(—(x +1)2 —y?)
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Meshless Interpolations

Marschner-Lobb grid 511 x 511 x 511

1 mZ
14+ a1+ cos(2f,,) mcos(5m/x? + y?))—sin(—
Fcey = w7 cos (3mx7 7)) = sin () (1)
2(1+ )
Peaks grid 353 x 353 x 1069
F2(x,y,2) = (V3 + \/§x)2exp(—x2 —(y+13»H-10 (g —x3 - y5) exp(—x2 — y?)
1 (12)
— §exp(—(x +1)2—y?)—2z
Genus3 grid 511 x 511 x 511
F3(x,y,2) = [1 - (5)2 - (l)z] [(x — 3.9)% + y? — 1.44](x2 + y2 — 1.44)[(x + 3.9)2 + 2
24 6/ ~\35 ' ' | ' (13)
— 1.44] — 25622
Six peaks grid 5595 x 595 x 373
F4(x,y,z) = (3x? — y?)?y? — (x? + y*)*—2z3 - 0.001z (14)
Flower grid 511 x 511 x 511
F5(x,y,z) = sin(30) sin(4¢) — r (15)

where: ¢ azimuth coordinate, © zenith coordinate, r maximum distance from a surface
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Join our research activities in meshless methods at
Meshfree methods workshop
to be held as a part of the:

23" WSCG International Conference on Computer Graphics,
Visualization and Computer Vision
(http://www.wscg.cz or http://www.wscg.eu)

Abstract submission: by May 12, 2015
upto 2 pages of the WSCG format sent via @mail
(accepted will appear in the WSCG 2015 abstracts proceedings)

Final paper submission by July 30, 2015 - accepted and presented
papers will be published in proceedings with ISBN
Will be sent for indexing to Scopus, ISI and other;
Selected papers will be published in the Journal of WSCG
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Questions

D77

Contact

Vaclav Skala
c/o University of West Bohemia
Plzen, Czech Republic

http://www.VaclavSkala.eu
or
skala@Kkiv.zcu.cz subject: “meshless”
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