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Abstract
Since its inception, the CUDA programming model has been continuously evolving. Because the CUDA toolkit aims to consis-
tently expose cutting-edge capabilities for general-purpose compute jobs to its users, the added features in each new version
reflect the rapid changes that we observe in GPU architectures. Over the years, the changes in hardware, growing scope of
built-in functions and libraries, as well as an advancing C++ standard compliance have expanded the design choices when
coding for CUDA, and significantly altered the directives to achieve peak performance. In this tutorial, we give a thorough
introduction to the CUDA toolkit, demonstrate how a contemporary application can benefit from recently introduced features
and how they can be applied to task-based GPU scheduling in particular. For instance, we will provide detailed examples of
use cases for independent thread scheduling, cooperative groups, and the CUDA standard library, libcu++, which are certain
to become an integral part of clean coding for CUDA in the near future.
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1. Presenter Details

Michael Kenzel � is a researcher at the German Research Center
for Artificial Intelligence. His research interests focus on the areas
of GPU programming models, high-performance computing, and
real-time graphics with numerous publications at reputable venues
including Eurographics, SIGGRAPH, and SIGGRAPH Asia. He
has been involved in teaching courses in the areas of GPU program-
ming as well as computer graphics for many years at two different
universities.

Bernhard Kerbl � is a post-doctoral university assistant at TU
Wien. He obtained his PhD at Graz University of Technology for
his research into GPU scheduling, real-time rendering, parallel data
structures and geometry processing. He has published papers on
these topics at major computer science venues, including Euro-
graphics, ACM CHI and SIGGRAPH. His interests include real-
time rendering, parallel programming and high-performance com-
puting. Bernhard regularly reviews technical papers for top-tier
venues and has been part of the IPC for the Eurographics and High-
Performance Graphics conference venues. He has taught graphics
and CUDA-related courses at three Austrian universities.

Martin Winter � is a PhD student at Graz University of Technol-
ogy, Austria, working in the GPU Computing Group at the Institute
for Computer Graphics and Vision. Since joining the group, he has
published several first-author papers at conferences as master stu-
dent (HPEC’17) and as PhD student (SC’18, PPoPP’19, ICS’20
and PPoPP’21), as well as a number of second-author publications,
even winning a best student paper award at HPEC’17. His research
interests include high-performance computing, dynamic graph / re-
source management and task scheduling on GPUs as well as teach-
ing (currently teaching the introductory GPU programming course
at Graz University of Technology).

Markus Steinberger � is an Assistant Professor at Graz Univer-
sity of Technology, Austria, leading the GPU Computing Group at
the Institute for Computer Graphics and Vision. His biggest hon-
ors include the promotion sub auspiciis praesidentis rei publicae in
2014, being the first Austrian to win the GI Dissertation Prize, and
winning the Heinz Zemanek Prize. His research interests are re-
flected by the numerous awards won by his papers, including ACM
CHI, IEEE Infovis, Eurographics, ACM NPAR, EG/ACM HPG,
and IEEE HPEC best paper.

2. Outline

In the first part of this tutorial, we will give a quick overview of
the history of the GPU, followed by an introduction to CUDA and
how to set up basic CUDA applications. Afterward, we will con-
sider the CUDA execution model and how it maps to the underly-
ing hardware architecture, followed by a few examples for writing
CUDA code and the first steps towards performance optimization.
We will focus on the basic execution hierarchy, as well as the con-
cept of warp scheduling and latency hiding. We will discuss tools
for debugging and profiling, as well as the most important CUDA
libraries.

In the second part, we will consider the different types of mem-
ory that CUDA provides to developers. Furthermore, we will ana-
lyze the actual behavior of the underlying hardware when respond-
ing to memory requests, and how to optimize data layouts for peak
performance. We will discuss the two different layers of compiled
CUDA code: PTX and SASS. We will look at some examples of the
different types of machine code, and give examples of efficient and
high-overhead instructions with respect to throughput and achiev-
able occupancy on the GPU.

In the third part, we treat advanced mechanisms of CUDA that
were not covered by earlier parts, novel features of recent toolkits
and architectures, as well as overall trends and caveats for future
developments. The relevant features that we will discuss include
managed memory, independent thread scheduling details, coopera-
tive groups, the libcu++ standard library, tensor cores, the set-aside
L2 cache. For each of them, we provide use cases and, where ap-
plicable, important factors to consider when first introducing them
into existing codebases, as well as pitfalls when porting legacy code
to accommodate these new mechanics. We also provide our own
personal recommendations for managing new GPU features.

In the final part of the tutorial, we will cover the different levels
of the GPU hierarchy and how they can be exploited for different
programming patterns. We then turn to task scheduling, first de-
tailing queues on GPUs, a core component of most task scheduling
approaches. Based on such queues, we then build different schemes
for task scheduling on the GPUs, controlled from the CPU or en-
tirely from the GPU. Lastly, we will hear about some examples,
which greatly benefit from task parallelism and typically exhibit
mixed parallelism during execution [KKM∗18, SKK∗12, SKB∗14,
KKS∗17, WMZ∗18, WMPS20].

3. Schedule

Full-Day Tutorial, 4×90 minutes

To provide a profound understanding of how CUDA applica-
tions can achieve peak performance, the first half of this tutorial
outlines the modern CUDA architecture. Following a basic intro-
duction, we expose how language features are linked to—and con-
strained by—the underlying physical hardware components. Fur-
thermore, we describe common applications for massively parallel
programming, offer a detailed breakdown of potential issues, and
list ways to mitigate performance impacts. An exemplary analysis
of PTX and SASS snippets illustrates how code patterns in CUDA
are mapped to actual hardware instructions.

In the second half, we will focus on novel features that were
enabled by the arrival of CUDA 10+ toolkits and the Volta+ archi-
tectures, such as ITS, tensor cores, and the graph API. In addition
to basic use case demonstrations, we outline our own experiences
with these capabilities and their potential performance benefits. We
also discuss how long-standing best practices are affected by these
changes and describe common caveats for dealing with legacy code
on recent GPU models. We show how these considerations can be
implemented in practice by presenting state-of-the-art research into
task-based GPU scheduling, and how the dynamic adjustment of
thread roles and group configurations can significantly increase per-
formance.
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1. Fundamentals of CUDA

1.1. History of the GPU
1.2. The CUDA execution model
1.3. Kernels, grids, blocks and warps
1.4. Building CUDA applications
1.5. Debugging and Profiling
1.6. Common CUDA libraries

2. Understanding the GPU hardware

2.1. The CUDA memory model
2.2. Warp scheduling and latency hiding
2.3. Independent thread scheduling
2.4. Performance metrics and optimization
2.5. Basics of PTX and SASS

3. Recent CUDA features and trends

3.1. Synchronization with independent thread scheduling
3.2. Graph API
3.3. Arrival-wait barriers
3.4. Tensor cores
3.5. Set-aside L2 cache
3.6. libcu++: a standard library for CUDA
3.7. Global memory vs. texture memory
3.8. Shared memory vs. the L1 cache

4. Task-based CUDA programming

4.1. Programming on different levels of the GPU hierarchy
4.2. Persistent threads and megakernels
4.3. Dynamic parallelism and task-queues
4.4. GPU queues
4.5. Dynamic memory management
4.6. Mixed-parallelism usage scenarios: image processing, soft-

ware rasterization, mesh subdivision, building spatial accel-
eration structures and more

4. Intended Audience

The target audience possesses basic to advanced knowledge of
parallel algorithms and graphics APIs. This tutorial intends to at-
tract viewers with a strong interest for understanding and optimiz-
ing for the underlying mechanisms of parallel execution on GPU
hardware. Senior developers get a chance to acquaint themselves
with recent CUDA features and their impact on kernel design. Fur-
thermore, the audience is introduced to task-based applications of
CUDA beyond the classic many-kernel programming pattern.

5. Sample Course Notes

Ever since compute capability 3.0 (Kepler), CUDA has had support
for the basic concept of unified memory. The methods for managing
it allow for a significant amount of control, even on devices where it
is not supported directly by the system allocators. The fundamental
additions to the CUDA architecture that managed memory provides
are the __managed__ keyword for defining variables in memory,
as well as the cudaMallocManaged method to allocate storage on
the host side. The managed memory will automatically be migrated
to the location where it is accessed, without explicit commands to

trigger the transfer. This solution decouples the handle to a mem-
ory range from its actual physical storage, which is transient and
may change multiple times during execution. Initially, there was a
noticeable performance penalty associated with the use of unified
memory, but recently, managed memory has experienced a signif-
icant boost, making it much more practical than it used to be in
addition to simplifying the code base, so we will quickly revisit it
here.

With unified or managed memory, both the CPU and GPU may
try to access the same variables at the same time, since kernel
launches and CPU-side execution are asynchronous. While it is
now possible on some systems to have concurrent accesses, older
cards with compute capability lower than 6.0 and even moderately
modern ones may not support it. In this case, the CPU must ensure
that its access to managed memory does not overlap with kernel
execution. This can for instance be achieved with synchronization
primitives.

Important performance guidelines for managed memory is the
avoidance of excessive faulting since this negatively impacts per-
formance. Furthermore, it should be ensured that data is always
close to the processor that accesses it. Lastly, when memory is often
migrated between host and device, this can quickly lead to thrash-
ing, which is detrimental to performance as well. Managed memory
has recently been made significantly more effective, insofar as the
migration of data can now occur with a fine-granular page faulting
algorithm, which somewhat alleviates these problems. However,
developers can additionally provide hints that make memory man-
agement easier at runtime. In order to do so, they can „prefetch“
memory to a certain location ahead of it being used. Furthermore,
developers can define general advice on the utilization of memory
to indicate the preferred location of physical storage, the devices
where it should remain mapped, and whether or not the access is
governed by reading rather than writing.

Next up, we will take another look at some of the details of Inde-
pendent Thread Scheduling, which was introduced with the Volta
architecture. We previously discussed the behavior of ITS, and how
it enables for instance use cases where threads in the same warp
may wait on each other, which would have caused a deadlock with
legacy scheduling. However, with guaranteed progress, such algo-
rithms are now safe to implement in CUDA.

The switches to disable or enable ITS are listed here. Currently,
GPU models still support both modes, so it is possible to run the
previous example on newer GPUs with ITS enabled/disabled to see
the results. It is not yet certain if legacy scheduling will eventu-
ally be abandoned in favor of ITS, however, other GPU compute
APIs, like OpenGL‘s compute shader, appear to default to legacy
scheduling for compatibility reasons.

There are of course a few limitations to ITS. First of all, ITS
cannot absolve developers of improper parallel coding. While it
can in fact take care of deadlocks, it is still very much required of
developers to be aware of the scheduling model of GPUs to make
sure they can avoid live locks as well. Second, ITS can only pro-
vide a progress guarantee for threads and warps that are resident
at any point in time. That is, in case of a large launched grid, if
the progress of threads depends on a thread that was not launched
until all SMs were filled up, the system cannot progress and will
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hang, since resident warps are not switched out until they complete
execution. Lastly, ITS, due to the fact that it is not guaranteed to
reconverge, may break several assumptions regarding warp level
programming. In order to ensure a fully or partially reconverged
warp, developers must make proper use of __syncwarp and can
no longer assume lockstep progress at warp level, which is a hard
habit to break.

__syncwarp may, at first glance, seem like a smaller version
of syncthreads, however, it has a number of interesting peculiari-
ties that make it more versatile. Most importantly, __syncwarp is
parameterized by a mask that indicates the threads that should par-
ticipate in synchronization, in contrast to syncthreads, which must
always include all non-exited threads in the block. __syncwarp
may be executed from different points in the program, enabling for
instance a warp to synchronize across two different branches, as
long as the masks match. If optimizations at warp-level are made
by developers, in order to write correct code, they will need to make
generous use of __syncwarp in many common patterns.

In the next section, we will consider the CUDA graph API. Many
applications consist of not one, but a larger number of kernels that
are in some way pipelined or processed iteratively. Usually, the na-
ture of the computations that must occur does not change signifi-
cantly, and a program performs the same steps in the same order
for a number of iterations. A good example would for instance be
the simulation of game physics, where in each frame, several small,
incremental updates are made to achieve adequate precision. These
applications can often easily be expressed in the form of a graph,
where each step represents a node and edges indicate dependencies.
CUDA graphs enable the definition of applications with this graph
structure, in order to separate the definition of program flow and
execution.

When one places a kernel into a stream, the host driver performs
a sequence of operations in preparation for the execution of the
kernel. These operations are what are typically called “kernel over-
head”. If the driver, however, is aware of the program structure and
the operations that will be repeatedly launched, it can make opti-
mizations in preparation for this particular workload. In order to en-
able the driver to exploit this additional knowledge, developers can
construct these graphs either from scratch or existing code. CUDA
Graphs support fundamental node types that suffice to build arbi-
trary applications from their combinations. It is possible to create,
attach and parameterize nodes at any point before the graphs are
made final.

In CUDA without graph APIs, we rely on streams in order to
define the dependencies between different CUDA operations. By
sorting commands into different streams, we indicate that they are
not dependent on one another and can be concurrently scheduled.
When using the graph API to build graphs from scratch, by default
no dependencies are assumed. That is, if multiple kernel execution
nodes are added to a graph without the definition of a dependency,
they will execute as if they were all launched into separate streams.

When code is recorded into a graph, the conventional de-
pendency model is assumed. For instance, if a single stream is
recorded, all commands that may have potential dependencies on
one another are treated as such. If multiple streams are being
recorded, the commands in different streams may run concurrently.

Capturing multiple streams into a graph takes a little extra care.
Each captured graph must have an origin stream, and other cap-
tures streams must somehow be associated with the origin. Simply
starting a capture in one stream before commands are executed in
another will not suffice. In order to establish this association, one
stream may for instance wait on an empty event from the origin
stream. This way, the dependency of one stream on the other is
made explicit and captured in the graph as well.

A highly popular topic of GPUs today is the introduction of
tensor cores and their crucial part in many machine learning al-
gorithms. For those of you who wondered what exactly it is that
tensor cores do, we will now take a short look under the hood and
describe what makes them tick. With the arrival of the Volta ar-
chitecture, NVIDIA GPUs have added a new function unit to the
streaming multiprocessors, that is, the tensor core. The number and
capability of tensor cores is rising quickly, and they are one of the
most popular features currently. A tensor core and its abilities are
easily defined: each tensor core can perform a particular fused ma-
trix operation based on 3 inputs: a 4× 4 matrix A, a 4× 4 matrix
B, and a third 4× 4 matrix for accumulation, let’s call it C. The
result that a single tensor core can compute is A×B+C, which on
its own does not seem too helpful. However, the strength of tensor
cores originates from its collaboration with other cores to process
larger constructs.

This collaboration can be achieved in one or two ways. The first
is by using one of the readily-available libraries that make use of
these capabilities in highly-optimized kernels, such as TensorRT,
cuDNN or cuBLAS. For general purpose applications, it is recom-
mended to use these solutions for higher performance.

However, the access to tensor cores is also exposed in CUDA di-
rectly via a separate header for matrix multiplication and accumu-
lation of small matrices, which are usually only a part of the total
input. These matrix tiles, or „fragments“, can be larger than 4×4 if
threads in a warp cooperate. The MMA headers define warp-level
primitives, that is, tensor cores must be utilized collaboratively by
all the threads in a given warp.

The performance of these computations is significant since the
tensor core is optimized for this very specific operation. A tensor
core can achieve 64 fused-multiply-add operations per clocks. With
8 tensor cores per SM, this leads to a vast 1024 operations per-
formed in each cycle. However, restrictions do apply in their utiliza-
tion. A common assumption is that tensor cores work directly on
single-precision floating point values, however, this is only true for
the accumulation part of the operation. So far, the input fragments
A and B may not be 32-bit wide, but rather 16-bit half-precision or
the more adaptive tf32 type, which has a bigger range than half-
precision types. The choice of what data types are used as input di-
rectly affects the maximum size of the fragments that can be collab-
oratively computed. A common configuration, with half-precision
for input fragments A and B, enables warps to compute MMA op-
erations on 16× 16 fragments. When using, e.g., tf32 for A and B
instead, one of the dimensions must be halved.

Although knowing the exact functionality of tensor cores is inter-
esting, a much more practical approach for the most common use
cases, like machine learning, is to use the available libraries, like
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TensorRT. The corresponding solutions support the loading and in-
ference with network layouts in common machine learning formats,
such as ONNX, and can compute results with unprecedented per-
formance.

Let us now turn to the warp-level primitives that we haven‘t
discussed so far. In addition to shuffling and voting, recent ar-
chitectures have introduced additional primitives that provide in-
teresting use cases for optimization. Two new exciting operations
can now occur with high efficiency within a warp. One is the
__match_sync operation, which has been enabled since Volta.
Previously, we had the __ballot operation, which enabled us to
find out for which threads in a warp a certain predicated evaluates
to true. However, now threads can individually identify the threads
whose value in a given register matches their own. Additionally,
it is now possible to reduce results from registers to a single re-
sult with a single instruction. This functionality is accelerated in
hardware with the Ampere architecture. For the first of the two,
we can easily find interesting use cases. Consider for instance the
task of processing a mesh. For rendering and many other geometry
tasks, meshes are split into triangle batches with a given number
of indices. When processing must be performed per vertex, e.g.,
for vertex shading, in order to exploit significant reuse of vertices
in a mesh, duplicate vertices can be identified, and each unique
vertex can only be shaded once. This was for instance realized in
our previous work on enabling vertex reuse on the GPU in soft-
ware. Previously, we addressed this by shuffling vertex indices and
recording duplicates among threads. However, with the Volta archi-
tecture, this task maps to a single hardware-accelerated instruction.
For the latter reduce operation, the application is more straight-
forward. Consider for instance the implementation of a reduction,
where we used shuffling in the later stages to exploit intra-warp
communication. The aggregate of different shuffle instructions can
now be replaced with a single reduce instruction for the entire warp.

Lastly, another operation is made available that is strongly moti-
vated by the introduction of ITS, and how it affects thread schedul-
ing. With ITS, threads may no longer progress in lockstep, diverge
and reconverge somewhat arbitrarily. __activemask is a spe-
cial warp primitive, since it does not include synchronization and
no mask must be provided. This means that it can be called with-
out knowing which threads will be calling it. __activemask re-
turns a set of threads about which it makes no concrete guaran-
tees, other than that these threads are converged at the point where
__activemask is called. If the result of this function is used as
a mask, other warp-level primitives can use it to opportunistically
form groups of threads that are currently converged to optimize par-
ticular computations. All of these new instructions are helpful, but
they also illustrate something else: getting optimal performance out
of the GPU is getting more and more intricate. Comparably simple
goals, like the one realized in the example we just gave, require a
lot of careful design, correct handling and interpreting of bitmasks,
and remembering the individual optimizations that can be done in
hardware. This may seem discouraging, especially for newcomers
to CUDA. However, in addition to exposing these new low-level
operations, CUDA also now provides developers with a helpful new
library called cooperative groups, which encapsulates these behav-
iors but abstracts the low-level details for improved usability.
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