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Brno University of Technology, Czech Republic

Figure 1: Three testing scenes - Sponza, Conference Room and Sibenik

Abstract
This paper presents fast and robust per-sample correct shadows for WebGL platform. The algorithm is based on
silhouette shadow volumes and it rivals the standard shadow mapping performance. Our performance is usually
superior when compared with high resolution shadow maps. Moreover, it does not suffer from a number of artefacts
of shadow mapping and always provides per-pixel correct results.
WebGL 1.0 provides just vertex and fragment shaders. Thus, we put all our algorithms evaluating silhouette
edges to vertex shaders. Specially precomputed data are fed to the vertex shaders that extrude shadow volume
sides just for silhouette edges. Some optimizations are deployed for performance and data size reasons that are
important especially on low performance configurations, such as cost-effective tablets and mobile phones. The
paper evaluates our solution on number of models. Our solution performs on par with high resolution omni-
directional shadow mapping.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

1. Introduction

Shadows are an important visual cue for human perception
of 3D space, providing human brain with additional informa-
tion about the structure of the scene that is usually visualized
as a 2D image on the computer screen.

Two popular methods for shadow visualizations are used
nowadays - shadow volumes [Cro77] and shadow mapping

[Wil78]. Shadow mapping got its hardware acceleration in
2001 with GeForce 3 and became popular shadow method in
computer games and other areas. However, shadow mapping
is prone to visual artefacts [LGMM07]. Tremendous amount
of research was done to lessen these artifacts to some extent,
for instance [SD02] [WSP04] [ZSXL06] [Ros12]. Another
approach is to adjust the scene design in a way that artefacts
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will not become visible. Such approach is probably largely
used in computer game industry but it is not acceptable in
CAD or toher systems, where precise visualization of the
model is required.

Shadow volumes got their hardware support in 1991 when
hardware stencil buffer was introduced [Hei91]. Unfortu-
nately, Heidmann’s algorithm, that became known as z-pass,
was not robust when the viewer himself was in shadow.
Thus, [CK00] and [BS99] proposed z-fail algorithm. Finally,
[EK02] presented robust z-fail algorithm that should provide
correct visual results for any arbitrary scene.

As shadow volumes work partially in image space, they
are capable to deliver per-pixel precise shadows. However,
rasterizing large shadow volume extents made them fill-rate
limited in most cases. The extrusion of shadow volumes
only from silhouette edges, instead of every edge, became
the main performance optimization. The algorithm for find-
ing silhouette edges on manifold meshes was described by
[Ber86]. [BS03] was the first to show the silhouette algo-
rithm implemented entirely in graphics hardware. [McG04]
described silhouette algorithm implemented in vertex shader
only using specially precomputed mesh. [vW06] developed
optimized silhouette construction using SSE2 instructions
for computer game Doom 3. [SWK07] used then-new ge-
ometry shader for silhouette algorithm.

Many silhouette algorithms require 2-manifold triangle
meshes to work correctly. More general algorithms were
proposed to alleviate this restriction. [AW04] requires the
mesh to be orientable only. [KKT08] showed the algorithm
that works on arbitrary meshes however it exhibits visual
artefacts from time to time due to limited numerical pre-
cision of both GPU and CPU computing units. [PSM∗13]
made the algorithm robust and verified its artefact-free
property on a number of computing platforms. [MKZP14]
showed the further performance gains when implemented
using tessellation shaders.

2. Algorithm

Our solution is based on the robust silhouette algo-
rithm developed by [PSM∗13] and enhanced algorithm by
[MKZP14]. However, they present CPU, multi-core CPU,
geometry shader, OpenCL and tessellation shader imple-
mentations in their papers, while the only GPU computing
capabilities available in WebGL 1.0 are vertex and fragment
shaders. For our solution, we have chosen vertex shader
and took the idea of [McG04] to feed vertex shader by
a specially constructed mesh data. These mesh data pro-
cessed by vertex shaders will extrude shadow volume only
on silhouette edges. [McG04] designed solution just for 2-
manifold meshes so we had to design a new solution, merg-
ing McGuire’s approach with the algorithm presented in
[PSM∗13]. Furthermore, we developed a number of data-
related optimizations that will be described later.

2.1. Overview

The core idea of the algorithm is to find the edges that form
the outline of the possible silhouette of the model for the
given light position. Then, the edges of the silhouette are
extruded to infinity and closed by caps at the model and
at the infinity as required by z-fail algorithm, forming the
shadow volume of the model. When we refer to silhouette of
a model, we mean subset of all edges of the model that satis-
fies the following condition: edge is considered as silhouette
edge when number of light-facing and light-back-facing tri-
angles adjacent to this edge is not equal. We will call the
extruded quads as shadow volume sides, cap at the model as
front cap and cap at the infinity as back cap.

The computed shadow volume is used for shadow visu-
alization using traditional stencil z-fail approach that is de-
scribed in detail in [EASW09]. Two-sided stenciling opti-
mization is used as it is supported by WebGL 1.0. Briefly,
the algorithm works in three steps:

1. Render the regular scene, producing z-values to the z-
buffer and producing scene with ambient light to the color
buffer

2. Render the stencil mask using the shadow volume geom-
etry and set stencil function to act whenever z-test fails;
front faces are set to increment and back faces to decre-
ment stencil value on z-test fail.

3. Render the regular scene with the light switched on while
setting stencil test in such a way that the color buffer is
updated only in places with zero stencil value, e.g. update
only lit regions.

The core of our algorithm lies within the step 2.. We use
two shaders in this step - a shader for sides-data and a shader
for caps-data. These shaders computes Shadow Volume (SV)
for particular scene transformation and light position.

2.2. Basic Input Data

First step of our algorithm is the construction of shadow-
geometry. The shadow-geometry is composed of two parts:
data for SV sides (sides-data) and data for SV caps (caps-
data) (see Figure 5).

Data for sides are composed of all edges of input scene.
Every edge is described with its vertices and a set of opposite
vertices O = {O0,O1, . . . ,On−1}. An edge and its opposite
vertices form triangles that are attached to that edge. There
are also additional data for every edge (see subsections 2.4
and 2.5).

Caps-data are composed of triangles of input scene with
additional information.

We construct these two parts in preprocessing part of our
algorithm. They are both stored in separate files along the
scene files. Though that it’s not necessary, we chose to trade
the on load construction for download time. Neither one of

c© The Eurographics Association 2015.

86



Fast robust and precise shadow algorithm for WebGL 1.0 platform

the two approaches influences the measurements of perfor-
mance.

2.3. Multiplicity computation

The multiplicity is computed as follows: We construct a
plane using the light position and edge’s two vertices. We
call it a lightplane. A lightplane divides space into two sub-
spaces. Then, we iterate through the opposite vertices of the
edge and count their number in both light plane subspaces.
Difference between these two numbers is the edge multiplic-
ity, see Figure 2. The orientation of the lightplane determines
which number we substract from which. It needs to be con-
sistent. Then if it is zero, the edge is not silhouette edge and
no edge extrusion happens. If it is non-zero, then absolute
value of multiplicity gives the number how many times we
need to extrude the side. The number of extrusion translates
directly to the number of stencil buffer incrementations in-
troduced by this side of the shadow volume. The sign of
the edge multiplicity gives the extruded quad winding or-
der, which will either increment or decrement stencil buffer
value.

2.4. Vertex Shader for Sides

In order to compute multiplicity, VS has to receive an edge,
a set of opposite vertices and a light source. A light source
position can be set using uniform variable. We use vertex
attributes for edges and sets of opposite vertices (see. Figure
3).

In this section we will closely describe shader for sides
and format of sides-data. Every edge of the scene can ex-
trude n sides of SV (see [KKT08]), where n is number of
attached triangles to this edge, see Figure 2. We label n as
maximal multiplicity - maxMult. We label computed current
multiplicity as curMult and it has the following property:
−maxMult ≤ curMult ≤ maxMult. A computed multiplic-
ity determines the number of sides extruded from the edge.
We use the algorithm for computation of multiplicity pro-
posed in [MKZP14].

+ +

-

Figure 2: Edge P0 → P1 has n = 3 opposite vertices:
O = {O0,O1,O2}. Its maximum multiplicity is n = 3. Cur-
rent multiplicity of this edge, given by light source and trans-
formation, is +1. One quad P0,P1,P2,P3 is extruded using
edge and light source. This quad has the same orientation as
light plane (black arrow).

We speed up computation of multiplicity using paral-
lelization by vertex shaders (VS). In order to prevent writes

and reads from memory we compute and draw shadow-data
in one step. To make this streaming concept possible, VS has
to receive all data for all potential SV sides. Let us denote an
index of potential side as s.

One side of the volume is composed of 2 triangles and 6
vertices. Let us denote an index of vertex as v. The vertex
shader has to receive maxMult ·6 vertices for every edge. As
example, that is 18 vertices for maxMult = 3. For every ver-
tex, VS computes current multiplicity - curMult. curMult
determines whether a vertex is useful or not.

Vertex that lies on such side for which s > |curMult| is
useless. All useless vertices are transformed to (0,0,0). This
transformation ensures that useless sides of SV will be de-
generated and will not be rasterized.

Useful vertices have to be moved to one of the four possi-
ble positions: Pid (see Figure 2):

toIn f (P,L) = (pxlw− lx, pylw− ly, pzlw− lz,0) (1)

P0 = (ax,ay,az,1)

P1 = (bx,by,bz,1)

P2 = toIn f (P0,L)
P3 = toIn f (P1,L) (2)

In equation 2 P0 → P1 symbolizes an edge and L =
(lx, ly, lz, lw) symbolizes light position. id depends on index
of vertex v and computed multiplicity curMult according to
following equations:

id =

{
idCCW if curMult > 0
idCW otherwise

(3)

idCW =

{
6− v if v > 2
v otherwise

(4)

idCCW =

{
v−2 if v > 2
2− v otherwise

(5)

Pseudo code implemented in VS for sides-data (Figure 3)
is in Algorithm 1.

2.5. Vertex Shader for Caps

In order to compute multiplicity, VS has to receive all ver-
tices of triangles and light source position. Similarly to sides,
all vertices of a triangle are sent to VS using vertex attributes
(see Figure 4).

A shader for SV caps works with scene triangles. Six ver-
tices are needed in order to create a couple of caps (front
and back cap). The vertex shader is therefore executed 6 ·m
times, where m is the number of scene triangles.
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...=

=
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...

Figure 3: The image shows data structure for sides of SV.
Every vertex (V) contains n+ 2 vectors of size 4. A and B
are vertices of an edge and O j are opposite vertices. Forth
components of A and B are used for special purposes - stor-
ing number of opposite vertices, index of side and indices
idCW, idCCW. Side (S) contains 6 vertices (two triangles).
If maxMult is n, there has to be n sides for every edge (E).
Sides data is composed of m edges of input model.

Algorithm 1: Pseudo code for one vertex of a vol-
ume side extrusion in Vertex Shader.

Data: Edge vertices A,B, set O, light position L,
side id s, indices idCCW , idCW ,
model-view projection matrix M

Result: gl_Position
1 compute vertices Pi according to equation 2;
2 curMult = computeMultiplicity(A,B,O,L);
3 if s < |curMult| then
4 compute id according to equation 3;
5 gl_Position = M ·Pid ;
6 else
7 gl_Position = (0,0,0,0);

In order to prevent errors, both caps have to properly
oriented. The orientation has to be the same as orienta-
tion of sides and has to be performed deterministically. We
use deterministic computation of multiplicity destribed in
[MKZP14] to do so. Compared to sides, there is only one
opposite vertex.

First, VS finds reference edge using method described in
[MKZP14]. Then it computes multiplicity using third vertex
and reference edge. The multiplicity determines orientation
of particular triangle.

Furthermore, we propose a method that shifts front cap to
infinity. After transforming the vertex into the clip space, we
simply set its z component to its w. The shifting can be seen
on Figure 5. This ensures that the front cap always fails the
depth test. We avoid the far plane clipping by using the mod-
ified projection matrix, which effectively sets the far plane
into infinity [MHE∗03]. Let A = (ax,ay,az,aw) be vertex of

=

...

=

Figure 4: The image shows data structure for caps of SV.
Every vertex (V) contains 3 vectors of size 4. A,B,C are
vertices of scene’s triangles. Forth component of A is used
for special purposes - storing index of vertex v. Six vertices
forms couple of front and back cap. Caps data is composed
of m couples for m triangles of input model.

front cap in clip space. The shifted vertex B toward infinity
from camera can be computed according to equation 6:

B = (bx,by,bz,bw) = (ax,ay,aw,aw) (6)

Front Cap

Back Cap
Sides

Light

Figure 5: The image shows shadow volume that is con-
structed from a triangle. The front cap is shifted to infin-
ity using homogeneous coordinates in order to prevent self-
shadowing artifacts.

Pseudo code implemented in VS for caps-data (Figure 4)
can be seen in Algorithm 2.

2.6. Data size optimizations

The size of shadow-geometry can be large in comparison
to size of input scene. For example, for input scene having
e = 1000 edges and maxMult = 3, the size of sides-data can
be evaluated using equation 7.

e ·maxMult ·6 · (2+maxMult) ·4 ·4 = 1440000[bytes] (7)
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Algorithm 2: Pseudo code for caps in Vertex
Shader.

Data: Triangle vertices P0,P1,P2, light position
L, vertex id v, model-view projection
matrix M

Result: gl_Position
1 curMult = computeMultiplicity(P0,P1,P2,L);
2 if curMult = 0 then
3 gl_Position = (0,0,0,0);
4 return;

5 if curMult < 0 then
6 swap(P0,P1);

7 if v < 3 then
8 V = M ·Pv;
9 gl_Position = (Vx,Vy,Vw,Vw);

10 else
11 gl_Position = M · toIn f (P5−v,L);

Every edge can produce up to 3 sides. Every side contains
6 vertices. Every vertex contains 5 vertex attributes with size
of 4 floats.

Size of sides-data can be reduced maxMult · 6 times. In
the example shown in equation 7, the reduced size would be
80000[bytes]. Reduction can be achieved by using combi-
nation of instancing and drawing a shadow-geometry using
multiple draw calls. The instancing is present in every cur-
rent mainstream browser as an extension.

Modification is simple. First step is to remove additional
data idCW , idCCW and s from vertex attribute B.w, see Fig-
ure 3. After this step, every vertex V in edge E in the Fig-
ure 3 has the same data. Therefore, it is necessary to com-
pute idCW and idCCW inside VS using gl_VertexID and
equations 3,4 and 5. Unfortunately, WebGL does no support
gl_VertexID, so we have to simulate its behaviour using ad-
ditional vertex attribute. Also, the variable s has to be sent
to VS using another vertex attribute. The variable s can be
also computed using gl_InstanceID, but it is not present in
current WebGL. Alternatively, we could use uniform vari-
able and multiple drawcalls, which is what we do. The final
equation for computation of size of sides-data is as follows:

16 · (2+maxMult) · e[bytes] (8)

e is number of edges in input scene.

Size of caps-data can be also reduced using similar ap-
proach. The final equation for computation of size of caps-
data is as follows:

48 · t[bytes] (9)

where t is number of triangles in input scene.

3. Measurements and evaluation

Our evaluation focused on two aspects:

• performance comparison with shadow mapping methods
• performance on various devices using popular scenes

For comparison with the shadow mapping, we consid-
ered that shadow volumes provide omnidirectional shadows
while shadow mapping only directional. For omnidirectional
shadows, cube shadow mapping need to be utilized.

We used standard shadow mapping instead of one of
its optimized versions, such as LiSPSM [WSP04] or CSM
[Dim07]. These optimized versions focus on shadow visual
quality and do not improve the performance.

For the second point, we evaluated our algorithm on
several test scenes and hardware configurations, including
handheld devices. Desktop measurements were carried out
on high-end graphics hardware. Handheld platform was rep-
resented by NVIDIA SHIELD tablet with Tegra K1 SOC
running Android 5.0.1, desktop platform by Radeon R9
290X and GeForce GTX 980 running in system with Intel
Core i7 4790, 16GB of memory and Windows 7. We used
Firefox browser version 36.0 on both - desktop and NVIDIA
SHIELD tablet. Firefox browser was chosen as it provided
the best means for measurements. WebGL 1.0 lacks support
for OpenGL queries, so we had to opt for timing draw com-
mands ourselves, which was not possible in some browsers
like Google Chrome and Opera because glFinish is imple-
mented asynchronously in these browsers. We measured our
algorithm both using ANGLE and with disabled ANGLE.

We have chosen some popular well-known scenes: Cry-
tek Sponza, Conference Room and Sibenik Cathedral using
scenes flythrough.

Every test scene contains single point-light source. The
canvas resolution for flythroughs was 1920x1080, unless
specified otherwise. On NVIDIA SHIELD Tablet, we were
able to create cube map having only 2k by 2k texels per side
due to hardware limitations.

3.1. Popular scenes

For our measurements on popular scenes, we have chosen
following well-known models Crytek Sponza (262k trian-
gles), Conference Room (331k triangles) and Sibenik Cathe-
dral (75k triangles). Performance on these scenes has been
measured by camera flythrough. Averaged frame rendering
time for each scene is shown in the tables 1, 2.

As can be seen in the Table 1, our shadow volumes
are faster than 8k omnidirectional shadow mapping (e.g.
8192x8192x6) on both - high-end NVIDIA and AMD cards.
Even on shadow mapping optimized pipeline, we are slightly
faster. This is no longer true for 4k and 2k shadow mapping,
however 2k and 4k shadow mapping does not provide suf-
ficient shadow resolution, see Figure 6. On the other side,
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scene Sponza Conf. room Sibenik
method R290 G980 R290 G980 R290 G980

no shadow 3.3 3.9 1.0 0.9 0.7 1.1
SM1 13.5 13.8 4.0 3.5 1.7 1.6
SM2 13.4 14.1 5.2 3.8 3.0 2.4
SM4 16.1 15.3 9.8 6.4 8.5 5.7
SM8 37.0 21.8 28.2 15.5 28.9 18.7
SV 14.5 19.2 7.4 11.0 7.1 10.1

Table 1: Average frame time (ms) for flythroughs using
ANGLE.

scene Sponza Conf. room Sibenik
method R290 G980 Shield R290 G980 Shield R290 G980 Shield

no shadow 2.5 2.5 31.8 1.0 1.3 21.5 0.8 1.1 12.9
SM1 6.8 5.6 77.8 3.8 2.9 43.9 1.9 1.8 37.1
SM2 8.0 5.6 75.9 5.3 3.5 57.5 3.6 2.8 55.0
SM4 15.0 8.4 0.0 11.2 6.0 0.0 10.3 6.0 131.2
SM8 41.7 22.9 0.0 34.2 16.0 0.0 36.0 18.8 0.0
SV 14.7 22.2 207.5 8.0 15.3 165.4 7.6 13.1 73.0

Table 2: Average frame time (ms) for flythroughs without
using ANGLE.

our shadow volumes always provide per-pixel precise solu-
tion or per-fragment, if antialiasing is used, because shadow
volumes perform its computation in screen space.

Figure 6: The image shows diference in quality between
shadow mapping and shadow volumes.

We performed more detailed analysis of our flythrough
animation. The frame times are shown in the Figure 7, Figure
8 and Figure 9. As can be seen, shadow volume performance
is view dependent. Anyway, the performance is higher than
8k shadow mapping for about two thirds of our flythrough in
Crytek Sponza scene.

On Radeon R9 290X, the performance of shadow vol-
umes is more stable as shown in the graphs 8. Shadow vol-
umes performance roughly equals to the performance of
4k shadow mapping, sometimes even attacking 2k shadow
maps.

Finally, Figure 9 shows the performance on NVIDIA
SHIELD tablet. The performance is not on interactive level,
but we consider 4 FPS in FullHD on tablet for such large
scene as acceptable. The performance is more stable than
on GeForce GTX 980 (only about 20% fluctuation com-
pared to 40%) and roughly only ten times slower than high-
end NVIDIA GPU. This seems to go in hand with number
of shader processors available on the devices, e.g. 192 vs.

2048. Unfortunately, we have not been able to create larger
cube shadow maps on NVIDIA SHIELD device and mea-
sure them. We only succeeded with 2k cube map.
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SM1

no shadows

Figure 7: The figure shows flythrough Crytek Sponza on
GeForce GTX 980. We observe that SM is very well opti-
mized, even for large textures. But SV also manage to be
real-time for most view points, although not as stable.
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Figure 8: The figure shows flythrough Crytek Sponza On
AMD platform. The SV seem to provide an interesting aleter-
native to SM. While it behaves more stable than on NV plat-
form, it also manages to be faster than 4k SM in average and
completely outperforming 8K SM.

3.2. In-depth performance analysis

We measured the time of all rendering stages of our applica-
tion. The stages are:

1. rendering of ambient scene
2. silhouette edge set evaluation in vertex shaders
3. rasterization of shadow volumes
4. blending of lit parts of the scene

The results depend on output video resolution. Thus,
we made the tests on four output resolutions: 800x600,
1920x1080, 2560x1600 and 3840x2160, that corresponds
roughly to 0.5, 2, 4 and 8 megapixels video output. The test
was carried out on Sponza flythrough.

First, we show the results of the flythrough in figures, but
only for 1920x1080 resolutions due to limited paper space.
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Figure 9: The figure shows flythrough Crytek Sponza on
NVIDIA SHIELD. Both methods perform only in interactive
time. Although SM performs better here, it must be taken into
account that it is only 2k cubemap, compared to previous
results where SV are on-par with 4K SM and difference be-
tween 2K SM and SV were much bigger. Thus quality-wise,
shadow volumes are better alternative to SM also on this
platform.
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Figure 10: Timings for stages for Sponza scene on NVIDIA
GeForce GTX 980 - 1920x1080

Then, we present all the results for all output resolution in
the tables using just average values.

As can be seen in Figure 10, the shadow volume rasteri-
zation is the most varying part. As the scene view changes
during the animation, the shadow volumes changes occupied
space on the screen, sometimes producing smaller, some-
times higher rasterization work.

Table 3 and Table 4 show average times of all four render-
ing stages on Sponza flythrough for four output resolutions.
As can be seen from the results, the first and last stage (am-
bient scene rendering and blending of lit scene) grows rather
slowly with increasing output resolution. For resolution in-
crease from 0.5 to 8 megapixels, e.g. 16 times, ambient scene
rendering time increases only about 50% on GeForce GTX
980 and by 25% on Radeon R9 290X. For blending stage,
GeForce GTX 980 time increases only about 8% and Radeon
R9 290X time increases by 25%. The second stage (silhou-

stage 800x600 1920x1080 2560x1600 3840x2160
4 3.1 3.1 3.4 3.8
3 0.8 6.7 14.3 28.8
2 5.3 5.5 5.2 5.8
1 3.6 3.9 4.6 5.3

Table 3: GeForce GTX 980 average times in milliseconds
for Sponza Flythroughs for all four stages and resolutions.

stage 800x600 1920x1080 2560x1600 3840x2160
4 1.8 1.9 2.0 2.3
3 1.5 6.1 12.2 24.0
2 3.1 3.2 3.1 3.2
1 3.5 3.5 3.9 4.4

Table 4: Radeon R9 290X average times in milliseconds for
Sponza Flythroughs for all four stages and resolutions.

ette edge set evaluation) takes constant time. Shadow vol-
ume rasterization grows rapidly. About 36 times on GeForce
GTX 980 and about 16 times on Radeon R9 290X .

4. Conclusion and future work

This paper presented fast and precise method for render-
ing shadows in web applications using WebGL API. Despite
limitations of WebGL 1.0 (only vertex and fragment shader,
no queries, etc. ), our algorithm is able to compute silhou-
ette shadow volumes on GPU. The algorithm is robust and
works with any arbitrary triangle meshes, producing precise
per-sample correct shadows.

We tested the algorithm on number of well-known scenes
and it proved to be faster than omnidirectional shadow map-
ping with resolution 8k on GeForce GTX 980 and Radeon
R9 290X while not suffering from any artefacts seen on
shadow mapping. On Radeon R9 290X, it performs even bet-
ter and outperforms even 4k omnidirectional shadow map-
ping. Among the algorithms for precise shadows, our algo-
rithm is the fastest one for WebGL up to our knowledge.

Contribution of the paper is the silhouette edge evalua-
tion implemented in vertex shader, shadow data space opti-
mizations to limit large amounts of shadow-data transmitted
over network and robust rendering of shadow volume caps
by moving them to infinity.

For the future work, we consider to lower bandwidth re-
quirements by not transmitting the topology data for shadow
rendering but generating them on the client side from the
scene data. We are considering to use WebGL for this task as
we are not sure about Javascript performance for such com-
putationally expensive task. We also consider a kind of hi-
erarchical edge evaluation that would drop large number of
edges if they do not contribute to the shadows on the screen.
A tempting idea is to use compute shaders for the algorithm
once it is available as WebGL extension or included in future
WebGL releases.
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