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Abstract

Supernumerary Robotic Limbs (SRLs) can make physical activities easier, but require cooperation with the operator. To improve
cooperation between the SRLs and the operator, the SRLs can try to predict the operator’s intentions. A way to predict the oper-
ator’s intentions is to use his/her Facial Expressions (FEs). Here we investigate the mapping between FEs and Supernumerary
Robotic Arms (SRAs) commands (e.g. grab, release). To measure FEs, we used a optical sensor-based approach (here inside
a HMD). The sensors data are fed to a SVM able to predict FEs. The SRAs can then carry out commands by predicting the
operator’s FEs (and arguably, the operator’s intention). We ran a data collection study (N=10) to know which FEs assign to
which robotic arm commands in a Virtual reality Environment (VE). We researched the mapping patterns by (1) performing an
object reaching - grasping - releasing task using “any” FEs; (2) analyzing sensors data and a self-reported FE questionnaire to
find the most common FEs used for a given command; (3) classifying the FEs in FEs groups. We then ran another study (N=14)
to find the most effective combination of FEs groups / SRAs commands by recording task completion time. As a result, we found
that the optimum combinations are: (i) Eyes + Mouth for grabbing / releasing; and (ii) Mouth for extending / contracting the

arms (i.e. a along the forward axis).
CCS Concepts

o Computer systems organization — External interfaces for robotics; Real-time operating systems; o Software and its engi-

neering — Virtual worlds training simulations;

1. Introduction

Supernumerary Robotic Limbs (SRLs) (or in our case, Supernu-
merary Robotic Arms, SRAs) can support people in physical activ-
ities [All18]. The SRAs are especially useful if the user wants to:
(1) reduce physical workload; and (ii) use more than 2 arms (c.f.
Fig. 1 and Fig. 2). They have been adopted in healthcare [Gmb18],
and in several other sectors of activities (e.g. construction [PA16],
fabrication).

Although SRAs can also be operated remotely, SRAs are usually
operated by the user “wearing” them (whom we will refer to as the
operator) [LAM18], with: (i) a direct mapping of the operator’s
own arms to the SRAs (e.g. robot arms strapped to the operator);
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and / or (ii) joysticks / buttons. The cooperation between the opera-
tor and the SRAs makes physical tasks much easier. For example, in
the case of ceiling tiles, the operator positions the SRAs to support
a ceiling tile, and then can focus on fixing it to the ceiling [BA14].

However, cooperation with SRAs is challenging, as it requires
the operator to balance his/her arms movements and the SRAs
movements. Indeed the SRAs are “moving with” the operator’s
arms, making it difficult to keep the SRAs in place while the
operator moves his/her own arms. Moreover, the SRAs cannot
guess the intends behind the operator movements. Recent works
have been addressing the issue by either stopping the mapping
(e.g. releasing a joystick on top of the robotic arms), by remap-
ping the robotics arms to other body parts [ABB* 16, DVV*19],
by recording / playing commands, and / or using Al and task-
recognition [BA14, VDV*19].

In this work, we investigated the use of Facial Expressions (FEs)
based commands to control virtual SRAs (here only 2 arms). Indeed
we argue that FEs are: (i) an usable control method to give contin-
uous or discrete commands (e.g. to move the robotic arms along
an axis, to record / play a command, etc.); and (ii) able to convey
“emotion-based” commands (e.g. to have a kill-switch if the oper-
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Figure 1: The operator has his 2 hands busy with large boxes and
uses a FE command to make a SRA grab the door handle.

ator looks frighten, to move slowly if the operator looks tired, etc.).
The Fig. 2 presents several applications of FEs and SRAs coopera-
tion.

We used a VE with virtual SRAs instead of using real SRAs.
Indeed VR is a cost-effective, safer and faster approach than devel-
oping with real SRAs. Since the HMD is covering the face (and a
RGB camera cannot be used to get FEs), here facial movements are
measured with 16 reflective optical sensors built-in the HMD, and
classified in FEs by using a SVM (c.f. Sec. 3).

After this work, we plan to use reflective optical sensors built-in
glasses [MSO™*15] with the same sensing method than the HMD in
order to adapt real SRAs environment.

The novelties of this work are:

e We used FEs commands to control SRAs, as a novel attempt to
connect robots actions to human motions and emotions;

e We mapped a set of FEs to a set of SRAs actions and researched
the optimum combinations of FEs commands / SRAs actions for
areaching / grabbing / releasing task (c.f. Sec. 4).

2. Related Work
2.1. Motion Based Control Method of Robot Arm

Among the numerous methods to control a robot arm, some rely on
recognizing known human motions (e.g a hand gesture) and using
them as a control method by associating them to a robot actions.
This type of control method allows low dof commands (e.g. a set
of 5 hand gestures) to control a high dof robot, and are used to
facilitate Human-Machine Interaction (HMI).

Rogalla et al. [REZ*02] developed a control method using verbal
and / or hand gestures based commands for a one arm robot. The
gestures (recognized with a RGB camera and a contour-curvature
approach) were used as a set of commands, such as: confirmation,

. X Painful expressic + — Surprised + Sudden change of line of sight =
Surprised ?xpress!on — Guard Support with robot arms  Catch falling objects

Shape change of mouth 5 j
Object movement

Change mouth shape —
Carry objects to mouth

Gazing at objects —
Grasp objects

Figure 2: From left to right: (1) Upon a surprised FE, the SRAs rise
up to guard the operator against falling objects; (2) Upon a painful
FE, the SRAs support the operator; (3) Using the gaze direction
and a surprised FE, the SRAs try to catch the object in view; (4)
Following a FE, the SRAs do a discrete action, here bringing a
soda to the wearer; (5) Using the gaze direction, the SRAs grasp
the object in view; (6) Following a FE, the SRAs do a continuous
action, here moving alongside an axis.

stop, triggering scripts, etc. Similarly, Jindai et al. [JSYWO06] pro-
posed a control method using verbal and hand gestures (also rec-
ognized with a RGB camera and a contour-curvature approach)
based commands for a “handing over” robot. Here the commands
adapted the robot handing velocity and position. Lately, Tsarouchi
et al. [TAM*16] proposed a method for simplifying one arm robot
programming using human motions. They associated a set of body
/ hand gestures (recognized respectively thanks to the Kinect / Leap
Motion API) to a set of programming instructions, and tested it in a
case study where they programmed a one arm robot to do a picking
up task.

While useful, these control methods have the issue to be some-
what difficult and time consuming to setup, as it is necessary to
“develop” the set of human motions (“develop”, as in write them in
the software). Niwa et al. [NIAM12] developed a simple yet effec-
tive approach to this issue, called the “Tumori control”:

1. The operator looks at the robot doing a recorded action (e.g.
goes to the right);

2. At the time of a robot motion, the operator does an action (e.g.
joystick tilts to the right);

3. The operator’s action is now associated to the robot’s action (e.g.
here if the joystick tilts to the right, then the robot goes to the
right).

2.2. ““Alternative” Mapping of Supernumerary Robotic Arms

As mentioned previously, we are using FEs to control SRAs. One
of the excepted output of our work is to investigate further user
behaviour when controlling robots with body parts. Previous stud-
ies presented specifics mapping of SRAs to research the impact of
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body control over user behaviour / cognition / performance. We
present some of them below.

Saraiji et al. [SSM* 18], used teleoperated SRAs (= no mapping
between the operator arms and the SRAs). The teleoperator had
video feedback thanks to a 3 dof camera mounted on the SRAs and
was able to teleoperate the SRAs. Sasaki et al. [SSF*17] controlled
SRAs with the operator’s legs (= “not a natural mapping” between
the operator legs and the SRAs). Feuchtner et al. [FM17] used the
well known long arm illusion [KNSVS12] to manipulate remote
objects (= “not a 1:1 mapping” between the operator arms and the
SRAs) in AR. A virtual long arm reached real far away objects
(e.g. a rotating panel about 2 meters away), which were remotely
activated when the SRAs “touched” them (e.g. the panel rotates as
the virtual hand “touches” it).

2.3. User Interface Using Facial Expressions

FEs recognition techniques have been widely studied. It is common
to recognized them thanks to an RGB camera [NNVW15] and IA
classification (such as SVM). For precise measurement (in health-
care especially), it is also possible to use electromyography sen-
sors [ABB*04]). Once recignozed, FEs can be used either to give
some insight into the user’s physiological / emotional state, or as
input for HMI. We will focus on the later.

Ciftci et al. [CZY17] recognized mouth gestures (7 at most)
when wearing a HMD (using a camera to record the mouth, a 3D
edge map to detect the mouth area and a SVM to classify it as a
gesture) and used them for interacting with a small VR application
(move a player with a stretch mouth, eat an object with a smile,
etc.). Matthies et al [MSU17] detected FEs (5 at most: smile, look
away, turn head, open mouth, mouth in “shh”, using facial muscles
with an electrode-mounted earphone), and used them to control a
smartphone application.

On the other hand, Masai et al. [MSO™15] used reflective photo-
sensors embedded in an HMD (i.e. the “AffectiveWear”), and clas-
sified the sensors data into FEs (8 at most, c.f. Sec. 3). Reflective
photo-sensors are smaller, have lower latency and lower power con-
sumption than the RGB cameras used to recognize FEs. Transon
et al. [TVN*17] evaluated FEs interactions inside a HMD (using
an “AffectiveWear” approach), and showed that, for short time ses-
sions (< 1 min), there was no significant differences in self-reported
workload and usability when using FEs compared to pressing a but-
ton, even when used intensively.

3. Implementation

To operate SARs with FEs, we developed a control method us-
ing the operator’s FEs to command virtual SARs (c.f. Fig. 3. We
present the implementation of our system in this section.

3.1. Reflective Photo Sensor Embedded in the HMD

We used the “AffectiveWear” approach to capture FEs when wear-
ing a HMD. Here, a set of 16 reflective photo-sensors is fixed inside
an Oculus CV1 (c.f. Fig. 4). The distance value d of every sensors
is calculated (c.f. Eq 1) and fed to a set of SVM classifiers (each
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Figure 3: System execution. A FE commands the virtual robot arm.

of them trained to correspond to a FE, such as raising eyes, mov-
ing left cheek, etc.). The highest confident classifier predicts the
corresponding FE [SNO*17].

Figure 4: The Oculus CVI with the placement of every photo-
sensor. Please note the photo-sensors at the bottom of the HVD,
able to detect the skin surface around the user’s mouth (and there-
fore better detect FEs done with his/her mouth,).

In more detail:

The distance value d can be approximated by the following equa-
tion (c.f. Eq 1):

d~(5)7 (1)

The reflection value r of a sensor depends of the system char-
acteristics (i.e. the constants o and Y, which are estimated by least
square regression) and the distance sensor-object surface d (here
sensor-skin surface).  can be approximated by the following equa-
tion (c.f. Eq 2):

re i )

To identify a FE from d we use a SVM with a one-vs-rest ap-

proach [Bis06], where making a decision means applying all classi-

fiers to an unseen sample x and predicting the label £ for which the

corresponding classifier reports the highest confidence score (c.f.
Eq 3):

yX) = m,ngk(X ) 3)
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We also calculated the probability of the identification results
belonging to each class. Platt [Pla99] has proposed fitting a logis-
tic sigmoid to the outputs of a previously trained SVM. Specifi-
cally, the conditional probability is assumed to be of the form (c.f.
Eq 4) [Bis06]. The values for the parameters A and B are defined
by minimizing the cross-entropy error function defined by a train-
ing set consisting of pairs of values y(x,) and #,.

p(t =1|X) = o(Ay(X) +B) )

Also, y(X) is the discriminant function represented by the Eq 5
(0(X) is the feature space conversion function [Bis06]).

y(X) =W o(X)+b )

3.2. “Tumori Control” Method

The task we developed (c.f. Sec. 4) uses 4 SRAs actions: (i) ex-
tending / contracting a SRA to reach an object (done by changing
the elbow angle); and (ii) opening / closing the SRA hand to grab
an object. To associate these actions to FEs, we used the “Tumori
control” method (cf. Sec.2.1):

1. We playback SRA actions in the VE (here “reaching” actions
and “grab” actions);

2. When the SRA does an action, the operator does a FE to asso-
ciate the action to a FE, c.f. Fig. 5 (e.g. when the SRA extends to
reach an object, the operator smiles, thus associating the “reach-
ing action” to his/her smile).

— VR
Step1:

The operator sees,a video of the rgbot ( /

-/ o
> "
-
NSV A
~
Step2: The operator intends tp operate '-" = /”
the robot and makes an exneression \ o

Figure 5: An example of “Tumori control”, the operator sees the
SRA grab an object in the VE, and at the same moment does the FE
he wants to associate to the “grab action”

The “Tumori control” method work especially well between 1-1
associations (here 1 robot arm operation is linked to 1 FE). While
this is an issue for advanced controls, here we are targeting simple
controls (moreover FEs on their own must be kept simple to be
done effectively). In our system, if there is a change of FE when a
motion is executed, then the motion is automatically associated to
the FE at the time of the expression change).

3.3. VE for linking robot arms and FEs

The VE was built in Unity 2019 and displayed in a Oculus Rift
CV1. There are 2 SRAs localized on each side of the avatar’s waist
(c.f. Fig. 6). Since the operator can only control 1 SRA at a time,
the right / left SRA is controllable when the operator is looking at
respectively his/her right / left side (when grabbing an object, the
right / left switching is automatically turned off to easily move the
object). The “controlled” SRA follows the head direction thanks
to Inverse Kinematics (IK). The IK, implemented with Unity’s Fi-
nallK plugin, targets a transform positioned about 1.5 meters in
front of the HMD.

The VE receives the operator’s current FE every 15ms from our
FEs recognition system (sent by UDP). In addition, the FE com-
mands (e.g. opening / closing) and the elapsed time since the begin-
ning of the task are displayed against a wall in front of the operator.

Figure 6: The operator’s avatar and the SRAs follow the operator’s
head direction 8only 1 SRA follow the head / can be commanded at
a time).

4. Study 1 - Assigning Facial Expressions to Supernumerary
Robotic Arms Actions

We conducted a data collection study to know which FEs the par-
ticipants chose to command a SRA to extend / contract its arm and
open / close its hand.

4.1. Experiment Design

10 participants (invited one-by-one) joined the study: 7 males (age:
M = 32.6, SD = 13.1) and 3 females (age: M = 41.3, SD = 22.5).
Each of them received an explanation of the system and the task,
and then put on the HMD. Throughout the study, they were helped
by the experimenter and explicitly told to stop if there was any sign
of discomfort (such as dizziness). Once in the VE (c.f. Sec. 3.3),
after a quick calibration, participants looked at a SRA actions (i.e.
extending / contracting arm and opening / closing hand) and were
asked for each actions to associate the action to a FE of their choice
by making said FE, cf. Sec 3.2). We collected 2,000 sensor data
samples of every FEs (to find out the FEs used and also to prepare
a “global” classifier).

After associating every SRA actions to a FE, the participants
performed a cube reaching - grabbing - moving task (i.e. they had to

© 2019 The Author(s)
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Table 1: FEs associated to SRA actions for each participant

Close hand Open hand Extend arm Contract arm
1 Eyes+Mouth Eyes+Mouth Mouth Mouth
2 Mouth Eyes Cheek Cheek
3 Eyes+Mouth Eyes+Mouth Mouth Mouth
4 Eyes+Mouth+Cheek | Eyes+Mouth+Cheek | Eyes+Mouth+Cheek Eyes+Mouth+Cheek
5 Eyes+Mouth+Cheek | Eyes+Mouth+Cheek | Eyes+Mouth+Cheeks | Eyes+Mouth+Cheek
6 Eyes+Eyebrow Eyes+Eyebrow Mouth Mouth
7 Eyes+Eyebrow Eyes+Eyebrow Mouth Mouth
8 Eyes+Eyebrow Eyes+Eyebrow Eyes Mouth
9 Eyes Mouth Eyes Mouth
10 Cheek+Mouth Cheek+Mouth Eyes Eyes
Table 2: Command set used by 2+ participants
Close hand Open hand Extend arm Contract arm

Group 1 Eyes+Eyebrow Eyes+Eyebrow Mouth Mouth

Group 2 | Eyes+Mouth+Cheek | Eyes+Mouth+Cheek | Eyes+Mouth+Cheek | Eyes+Mouth+Cheek

Group 3 Eyes+ Mouth Eyes+ Mouth Mouth Mouth

reach for a sphere positioned at a point A by extending a SRA arm,
then grab the sphere by closing the SRA hand, move the sphere
inside a cube positioned at a point B and release it by opening the
SRA hand, c.f. Fig 7). Then, they removed the HMD and answered
the “FE questionnaire” regarding the FEs they chose (c.f. Fig 8),
before exiting the study room.

4.2. Results

Here, we show the results of the data collection to find out which
FEs and FEs combination the participants chose to command a
SRA.

4.2.1. Frequent Pattern of FEs combination

The Tab. 1 shows the FEs used to command a SRA. If FEs were
used simultaneously, all were listed. Also, we do not separate left
and right FEs.

4.2.2. Pattern analysis of FEs combination

Following the results of the Tab. 1 and our own observations, we
combined the FEs used by 2+ participants (c.f. Tab. 2) and grouped
them into 3 FEs groups.

5. Study 2 - Operational Efficiency for Each FEs Group

Based on the result of the study 1, we constructed 3 groups of FEs
to command SRA (c.f. Tab. 2). In this study, we compared the 3
groups in terms of task completion time, time that each FE group
was used. And we did the System Usability Scale(SUS) [GBKP13]
just one time in order to investigate the whole systems usability.

© 2019 The Author(s)
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5.1. Experiment Design

14 participants (invited one-by-one) joined the study: 12 males
(age: M = 28.83, SD = 6.75) and 2 females (age: M = 25.5, SD
=0.7). Just like in the previous study, participants received an ex-
planation on the system and the task, put on the HMD and were
helped by the experimenter. Once in the VE, after a quick calibra-
tion, the participants did the following:

e The participants did the 4 FEs of a group of FEs (c.f. Tab. 2), as
well as a neutral FE. The participants repeated each FE until at
least 2.000 samples were recorded;

e The experimenter asked the participant to make each of those 4
FEs at least 10 times, to verify the accuracy of the classifiers (we
obtained 89.7% of recognition in average);

e The participants then did the reaching - grabbing - release task
(c.f. Sec. 4) 3 times, 2 times as a training, and 1 last time
where his/her performance was recorded for further analysis (cf.
Fig. 9).

The participants repeated this process for every group of FEs,
here 4 times (to avoid order effect, the order of the group of FEs
changed between participants). Then, they removed the HMD and
answered a SUS questionnaire [GBKP13] regarding the use of FEs
to command a SRA, before exiting the study room.

5.2. Result

Here, we show the performance and SUS result to know which

group of FEs is the most efficient / usable.

5.2.1. Analysis of Task Completion Time for Each
Combination of FEs

We calculated the time of task completion for each group of FEs
(Fig. 9). Note that we removed 1 data set because the accuracy of



22 M. Fukuoka et al. / FaceDrive: Facial Expression Driven Operation to Control Virtual SRAs

its FEs recognition decreased during the study (the HMD moved)
and commanding the SRAs became too demanding.

Figure 7: The reaching / grabbing / releasing task. Left: the par-
ticipant is going to grab a sphere. Right: the participant is going to
release the sphere inside a cube.

Please to fill the part of

the face that was used How would you describe your Facial

Expression (FE)? For example: | smiled. |
frowned, | raised the left eyebrow, ...

Command A
(Close hand)
Why did you chose this FE?
How would you describe your FE?
Command B
(Open hand)
Why did you chose this FE?
low would you describe your FE?
Command C

(Extending arms)

44@“

a5 ‘&mﬁa‘
‘i&'}:i{';‘\’f, Why did you chose this FE?

YA

How would you describe your FE?

Command D
(Contracting arms)

Why did you chose this FE?

Figure 8: The FE questionnaire focus on the facial regions [Sigl6]
used for each commands (translated in English from ANONY-
MOUS LANGUAGE for this submission) as well as the reasons the
participant chose them. We combined the results with the sensors
data samples collected.

We found a significant difference in task completion time be-
tween the group of FEs with ANOVA: F (2, 36) = 3.259, p <.046.
Also, As a result of multiple comparison by Fishers Least Signifi-
cant Difference (LSD) test, it was found that Group 1 has signifi-
cance longer average task completion time than Group 2 and Group
3 (as seen in the Fig. 9).

TASK COMPLETION TIME

Group 1 Group 2 Group 3

Figure 9: Box plot of task completion time of the study 2.

5.2.2. Usability Evaluation

We asked each participant to fill a SUS questionnaire relatif to the
use of FEs to command a robot arm, SUS score: M = 69.28;SD =
18.92. We show the response histogram of SUS contents in Fig. 10.

6. Discussion

In many case the same facial region was used to command 2 similar
actions (e.g. the mouth was use for both extending and contracting
the arm). Indeed participants associated similar actions with simi-
lar FEs. The other way around, participants did not associate non
similar actions with similar FEs (except some, like participant 9).

We observed 2 limits to the use of FEs inside a HMD: (1) a ma-
terial one - The HMD made it difficult to move the upper half of
the face, therefore participants preferred to use the lower half (i.e.
the mouth); and (2) a physical one - Fine tuned eyebrows-based
FEs are difficult to do [Rin84] (or even impossible for some peo-
ple), therefore participants moved their eyebrows simultaneously
with their eyes. Also, we observed that after participants issued
a command by opening their mouth, they often forgot to close it.
Since the mouth was kept open. it increased the FEs false recogni-
tion rate. Moreover, some participants had difficulty to open their
mouth wide, it made it difficult to classify the FE and impacted
their task completion time.

Regarding FEs, when moving the lower half of the face (e.g.
mouth), the left side moves following commands from the right
side of the brain, and the right side moves following commands
from the left side of the brain. But when moving the eyebrows, the
brain commands are transmitted to both the left and right eyelid.
Thus, even if people try to move only one eyelid, the other one
moves in conjunction. Raising the corner lowers the lower eyelid
and narrows the closing range of the upper eyelid. So it becomes
easier to wink. This is considered to be the reason some people
used the eyes and other parts at the same time.

In this study, we investigated a correspondence between basic
SRA actions and FEs using VE in order to survey SRA manupu-
lation method. In the next stage, verification in a real environment
will be performed using a glasses-type device (c.f. Sec. 1). The po-
tential gap of adapting real SRAs are as follow:

(© 2019 The Author(s)
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Figure 10: SUS result

e Deterioration of FEs detection accuracy due to device misalign-
ment.

e The influence of the social situation (situations where the user
should not laugh or should not frown under the influence of inter-
personal relationships) could changes FEs associated with SRAs
action.

There is far less variation in the task completion time in the
Group 3 (Eyes + Mouth) than in the Group 1 (Eyes + Eyebrow),
likely because the Group 3 have FEs geometrically close to each
other (i.e. the mouth is shared between the actions in the Group 3),
making it more natural to use. This suggest that it is more efficient
to use FEs close to each other (in term of facial geometry)

(© 2019 The Author(s)
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In terms of system usability, the evaluation varies widely among
individuals (in average, it is slightly above average). Again, it is
likely because of the HMD made it difficult to move the upper half
of the face, some FEs also, are more tiring to do than others.

7. Conclusion

In this study, we proposed a SRA control method using FEs. The
purpose of the studies were to find out how FEs can be associated to
SRAs actions. We realized those studies in a VE, with virtual SRAs
and an AffectiveWear setup (i.e. here an HMD with 16 reflective
photo-sensors able to classify FEs with a SVM).

The FEs were then associated to SRAs actions, such as opening /
closing the hand. We examined people preferences in associating a
given FE to a given SRA action in a reaching - grabbing - releasing
task (c.f. 4.2. We then grouped the FEs into relevant group (based
on people’s preferences) recorded their performance (i.e. comple-
tion time) in a reaching / grabbing / releasing task.

We observed that there is lower variance in task completion time
when using the eyes and the mouth simultaneously rather than us-
ing the eyes and the mouth separately. We also observed that the
operator often forgets to close his/her mouth, leading to FE false
recognition. Based on these findings, when applying FEs manipu-
lation to a SRA in a real environment, we will consider associated
similar FEs to similar SRA actions, as well as “linking” eyes-based
FEs to mouth-based FEs. Furthermore, while here we mainly dealt
with conscious change of FEs, but in future work, we will investi-
gate the possibility of using SRAs under unconscious FE changes,
such as surprise.
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