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Abstract

This paper introduces a new software model and new tools for managing indoor smart environments (smart home, smart build-
ing, smart factories, etc.) thanks to MR technologies. Our fully-integrated solution is mainly based on a software modelization
of connected objects used to manage them independently from their actual nature: these objects can be simulated or real. Based
on this model our goal is to create a continuum between a real smart environment and its 3D digital twin in order to simulate
and manipulate it. Therefore, two kinds of tools are introduced to leverage this model. First, we introduce two complementary
tools, an AR and a VR one, for the creation of the digital twin of a given smart environment. Secondly, we propose 3D interac-
tions and dedicated metaphors for the creation of automation scenarios in the same VR application. These scenarios are then
converted to a Petri-net based model that can be edited later by expert users. Adjusting the parameters of our model allows to
navigate on the continuum in order to use the digital twin for simulation, deployment and real/virtual synchronization purposes.
These different contributions and their benefits are illustrated thanks to the automation configuration of a room in our lab.

CCS Concepts
• Human-centered computing → Interactive systems and tools; HCI theory, concepts and models; Virtual reality;

1. Introduction

The emergence of Mixed Reality (MR) technologies, which include
Augmented Reality (AR) and Virtual Reality (VR), provides more
affordable hardware and improves the acceptability of such devices
to the consumer market. This growing market leads to a dissemina-
tion of these technologies into companies of any size as well as in
the users’ own homes. Meanwhile, the Internet of Things (IoT) is
a pretty dense network of physical objects connected over the In-
ternet that are able to sense the real world and to act on it [Kop11].
As these objects and their features are ramping up while becoming
cheaper [JJH∗15], they tend to transform our world into a compo-
sition of smart environments: smart-homes, smart-buildings, smart
cities. A smart environment is defined as an environment able to
acquire and apply knowledge about the environment and its inhabi-
tants in order to improve their experience in it [CD07]. Particularly,
connected objects can offer services to automatize some users’ re-
current behaviors in order to save them time and efforts, and assist
them in different tasks in such smart environments.

MR and IoT fields share a common aspect that is to propose
a way to build a connection between the real world and a virtual
version of it: its digital twin [GS12]. While MR focuses more on
interactions and rendering, IoT allows the automation of routines
that act seamlessly from the user’s point of view. However, the
IoT setup process in smart environments remains pretty complex to

achieve as it requests a deep understanding of the system in order to
create desired behaviors. Nowadays, only desktop applications are
available to achieve this goal, which increases the cognitive load
of users. Indeed, they have to map identifiers, without any spatial
references, to real connected objects located in their smart environ-
ment. We state that MR is able to solve this issue by providing an
immersive way to manage IoTs behaviors in smart environments.

Our goal is to create a continuum between a real smart environ-
ment and its digital twin using MR technologies. The digital twin
aims to act as a mediation tool between a user and the real smart
environment he/she wants to manage. We propose to use the digi-
tal twin of a real environment for the configuration of its behaviors
and for their validation and deployment. Our contributions focus on
automation behaviors but they could also target the creation of in-
teraction behaviors. Automation behaviors differ from interaction
behaviors as their progress does not require an explicit user com-
mand such as a gesture or a voice command. To do so, we introduce
a software model based on the multi-agent model Presentation-
Abstraction-Control (PAC) [Cou87] that allows a seamless man-
agement of simulated and real connected object. This model is
leveraged by two kinds of tools in order to provide a full pipeline
for managing a smart environment. For now, these tools focus on
indoor smart environments but they could be extended later to sup-
port the outdoor ones as well. These tools address application de-
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Figure 1: A digital twin of a smart environment is captured in AR
and configured in VR. Our software model described in this pa-
per allows to navigate on the virtual-real continuum to exploit this
digital twin for multiple purposes.

velopers and designers as well as architects and building managers.
First, we propose a Google Tango based application to capture the
geometry and the positions of the connected objects of a given envi-
ronment. Then, a VR editor allows to load the result of this capture
(or another geometry file) in order to complete its configuration
with additional connected objects and furniture. Then, within the
same VR application, automation scenarios can be created thanks
to 3D interactions and to a dedicated visual metaphor based on 3D
jacks connectors and sockets. This VR editor generates a Petri-net
based scenario that can be edited later by expert users. Once the
capture and configuration steps are performed, our software model
allows to navigate on the real virtual continuum in order to define
how much the real world and its digital twin are linked. Indeed, this
property of our model can be used to move from purely simulations
to real deployments, through real and virtual worlds synchroniza-
tion. This continuum and our pipeline for the creation of a digital
twin are detailed in Figure 1. To illustrate these different contribu-
tions, the different examples that we give in this paper are based
on the management of a room in our lab equipped with traditional
automation objects: a plug connected to a lamp, a siren, a smoke
sensor, a motion sensor, a temperature sensor, and a door sensor.

Our paper is structured as follows, Section 2 presents some re-
lated work. Then, Section 3 introduces our software model dedi-
cated to the implementation of connected objects proxies. Section
4 presents our tool to capture and configure a 3D smart environ-
ment while Section 5 describes our approach for the creation of au-
tomation behaviors and how they can be simulated and deployed.
Finally, we conclude and give some opportunities for future work.

2. Related Work

The idea to create a continuum between the real and the digital
world has already been explored. Lifton and Paradiso [LP09] in-
troduced the concept of dual reality that aims to merge the real
and the virtual world by means of networked sensors and actu-
ators. It allows reflecting changes made into the virtual world in
the real one and vice versa. These solutions can be classified into
two categories. First, some solutions propose to use virtual envi-
ronments (VEs) for prototyping connected objects behaviors in the
real world. Secondly, other solutions focus on using VEs for simu-

lating connected objects behaviors. The goal of such a simulation is
to validate these behaviors before deployment and to generate data.

Prototyping Smart-Environments

AVIot [JJH∗15] is a web-based interactive authoring and visual-
ization tool of indoor smart environments. It proposes the user to
import the model of his/her environment or to select in a database
a 3D model close to it. Automation behaviors can be configured
with a scripting language or with visual programming thanks to a
combination of boolean events and actions. For now, it does not
propose any solution for linking the prototyped smart environment
with the real world. Similarly, Belluci et al. [BZDA17] propose
X-Reality toolkit for the rapid prototyping of smart environments
dedicated to novice users based on the configuration of a 3D digital
twin of the real environment. It includes a virtual world 2D editor,
a state chart editor to program behaviors of virtual and physical el-
ements and a runtime execution server for deployment. X-Reality
toolkit allows the communication between virtual and physical ob-
jects opening perspectives for real-time monitoring and simulation.
To continue, Pfeiffer et al. [PPL18] introduce a pipeline for the cre-
ation of MR interactions with IoTs. An application designer has
to capture a 360 panorama of the real environment first and then
configure it in VR thanks to pre-developed visual augmentations
and behaviors. Automation behaviors are programmed thanks to
Node-RED (https://nodered.org/) and interaction events
are published using MQTT [MQT14]. With this process, they can
target both simulated and real connected objects. It allows a user
to prototype its MR application in a 360 panorama then deploy it
in the real world. Finally, Reality Editor [HHM13] is a a handheld
AR interface that allows users to create automation behaviors by
linking objects between them directly in the real world.

Simulating Smart-Environments

Simulation of smart environments can be used to validate pre-
defined services and behaviors before deploying them in the real
world. UbiReal [NYT∗06] is a solution for simulating smart en-
vironments in order to ease the development of ubiquitous appli-
cations. It includes a graphical user interface to design 3D indoor
smart environments and the possibility to visualize devices states
with 3D animations during the simulation. System testing can be
performed to determine if an application works as expected in a
variety of contexts thanks to the simulation of wired and wireless
communication, the emulation of physical quantities (temperature,
humidities, etc) and the simulation of users behaviors. Similarly,
V-PlaceSims [LCK08] is a simulation tool that allows an architect
to design and configure a smart home from a floor plan. It is de-
veloped as an online VE platform for design collaboration between
the architects and potential inhabitants. In order to provide feed-
back to the architects, end users can explore the space thanks to 3D
avatars to check how the environment looks like, and also how it
reacts to their behaviors thanks to a real-time simulation. Simula-
tion of smart environments can also be used for generating data of
connected objects. Indeed, such data can be exploited to perform
classification and recognition of activities of daily living. In that
category, Ariani et al. [ARCL13] propose a smart home simulation
used to generate data of ambient sensors. It is based on a 2D ed-
itor to design a floor plan and to configure its sensors. Then, they
simulate activities in the smart home thanks to the A* pathfinding
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Figure 2: Our PAC [Cou87] based model dedicated to the manip-
ulation of simulated and real connected objects

algorithm [HNR68]. Park et al. [PMBK15] developed a 3D smart
home simulator with Unity3D (https://unity3d.com/). In
this simulator, the user controls a virtual character with the mouse
and the keyboard in a VE equipped with virtual ambient sen-
sors in order to generate data. Last, OpenSHS [AAS∗17] is an
open source 3D simulation tool developed with Blender (https:
//www.blender.org/) for smart home dataset generation. It
includes a library of devices such as doors and motion sensors, ap-
pliances switches and light controllers. The design of the VE and
the positioning of these sensors is performed in Blender. Data are
generated by a user interacting with the VE and with a replication
algorithm dedicated to the generation of large datasets.

Summary

For now, none of the different prototyping solutions propose a
full workflow to both simulate the created behaviors and monitor
their execution in the real world. Also, simulation solutions do not
provide any link between the simulation and the real world. Most of
the times the geometry of the simulated VE is not based on the real
world. Also, in those solutions, the simulated behaviors cannot be
replicated automatically in the real world. Overall, we believe that
these solutions lack of a common interface for simulated and real
connected objects in order to address with the same approach the
processes of prototyping, simulating, deploying and monitoring.
Moreover, the VEs and behavioral editors provided by the differ-
ent tools are mainly based on 2D interactions while 3D interactions
could ease the different processes by giving more spatial cues to the
end users. Regarding the design of the manipulated VEs, the link
with the real world could be more developed thanks to 3D capturing
tools or simply by supporting the import of common CAD formats.
Our contributions aim to address theses current limitations.

3. PAC-based Virtual and Real IoT model

Our goal is to provide developers with a model for the develop-
ment of proxies used to monitor and manipulate connected objects
that can be virtual (simulated), real or both. This is motivated by
our need to create a continuum between the real world and its digi-
tal twin. Indeed, when a developer implements automation and in-
teraction behaviors involving a given smart environment, an ideal
workflow must allow him to validate them in its digital twin, then
deploy them in the real world and last monitor their progress by dy-

namically coupling the real world and its digital twin. These steps
correspond to different positions on the real virtual continuum de-
scribed in Figure 1. Regarding these needs, such a model must:

• R1: Ensure that a proxy can be linked to a virtual object, to a real
one or to both at the same time. This configuration must be pos-
sibly modified in order to allow the developer to navigate on the
virtual real continuum (switch from simulation, to deployment,
to synchronization).

• R2: Allow the definition of high-level behaviors that can be ap-
plied seamlessly to real and virtual connected objects.

• R3: Allow the communication between connected objects inde-
pendently of their nature (real, virtual or both).

In the field of Human Computer Interaction (HCI), multi-agent
models propose to represent an application as a collection of spe-
cialized computing units: the agents. This approach is particularly
interesting in the field of smart environments as such an environ-
ment can be considered as a collection of connected objects that
can communicate. Thus, our model is a specialization of a com-
monly used multi-agent model: Presentation-Abstraction-Control
(PAC) [Cou87]. PAC decomposes an agent into three facets: the
Abstraction holds the semantics and the main features of the agent.
The Presentation facet manages both the inputs and the graphi-
cal representation of the agent. The Control facet ensures the con-
sistency between the Presentation and Abstraction facets thanks
to a synchronization mechanism. Comparing to other agent mod-
els such as Model-View-Controller (MVC) [KP∗88], PAC allows
a better decoupling between the functional features and the input
and output features of an agent thanks to its Control facet. This
is particularly needed in our case and this is why the model that
we propose is based on PAC. Moreover, recently, specializations
of the PAC model were provided in order to suit the needs of 3D
user interfaces. First, PAC-C3D [DF11] ensures a strong decou-
pling between the core functions of a VE, its representations, and
its collaborative features. Then, the model proposed by Lacoche et
al. [LDA∗15] introduces an additional presentation facet, the Logi-
cal Driver, dedicated to handle particular input and output devices.

In order to fulfill our different requirements, the model that we
propose, described in Figure 2, decomposes the Presentation Facet
of PAC into three different facets:

• The Virtual View aims at rendering (visual, audio, etc.) a con-
nected object in the virtual world. It handles its 3D geometry and
may update it according to the modifications of the agent state.
For instance, for a light object, it will create a virtual light in the
scene and manage its activation status, its color, its intensity, etc.
Regarding the siren that is available in the room that we want to
manage, this facet can play a sound in the virtual world.

• The Simulation Facet aims at simulating the behavior of a con-
nected object. It can report properties modifications and com-
mands to the agent according to its observation of the virtual
world. This simulation focuses on the functional aspects of a
given object and not on low level factors such as network com-
munications. The realism of the simulated behavior depends on
the quality of the implementation of this facet made by the de-
veloper. For instance, for the simulation of a motion sensor, it
will use a physics engine to detect a collision between a virtual
human and its detection area combined with a ray-cast to check
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Figure 3: Distant Controller facets communicate with real objects
thanks to a communication layer that is interfaced with IoT hard-
ware services. Each real object is configured with a unique id.

if this virtual human is in its line of sight. Regarding a temper-
ature sensor, such value cannot be observed directly from the
virtual world. In our simulation tool described in Section 5.2,
the temperature is set in VR by the end user. Such value could
also be retrieved from a web service such as OpenWeatherMap
(https://openweathermap.org/).
• The Distant Controller aims at synchronizing the state of the

agent and the state of a distant real object. It can report prop-
erties modifications and send commands from the agent to the
real object and vice versa. In our implementation, it does not
manipulate directly a physical hardware with a particular SDK.
Indeed, as described in Figure 3, it exchanges standardized mes-
sages with a communication layer interfaced with IoTs hard-
ware services through TCP/IP. Each of the real objects detected
by these services needs to be registered in the communication
layer with a unique id. The Distant Controller facet needs to be
configured with its id to be able to communicate with a par-
ticular object. For now, it is interfaced with a service that can
communicate with real objects through the Zwave (https:
//z-wavealliance.org/) protocol. Other protocols could
be integrated later such as HTTP or Zigbee (https://www.
zigbee.org/). The implementation details of this communi-
cation layer, those IoT services and the discovering of objects by
these services are out of the scope of this paper.

For a given agent, these facets are optional, switchable between ses-
sions, and also combinable in order to cover R1. Indeed, it means
that an object can be either fully virtual or fully real but also virtual
and real simultaneously. For instance, if a Virtual View facet and a
Distant Controller facet are deployed for a given object, the virtual
aspect of the object is automatically synchronized with its aspect in
the real world. For a temperature sensor, the value displayed in the
real world could be automatically displayed in the virtual world. In
addition, if a Distant Controller facet and a Simulation Facet are
deployed at the same time, an object could react to both virtual and
real worlds. As an example, a motion sensor could detect real per-
sons as well as virtual humans moving in the digital twin of the real
world. Additional examples are provided in Section 5.2.

Regarding the other facets, the role of the Abstraction facet
globally remains the same. It contains and gives access to the prop-

erties and the commands of an object. It can be interfaced with the
processing layers (interaction, automation, etc.) of the application.
Communications between different connected objects are also per-
formed through this facet. In the original version of PAC, these ac-
cesses are made through the Control facet. Our implementation al-
lows a direct access to the Abstraction facet for simplicity reasons.
Indeed, this facet gives a unique interface for these properties and
commands independently of the actual nature of the manipulated
object. The automation tool presented in Section 5 directly exploits
this capacity of our model. These aspects of the Abstraction facet
allows the model to cover R2 and R3. Finally, the Control facets
keeps the same role as in the original PAC model. It ensures the
consistency between the Abstraction and the Presentations facets.
It ensures that when a property is modified or when a command
is called in the Abstraction facet, the Presentations facets are cor-
rectly notified. A property modified by a Presentation facet is also
reflected on the Abstraction facet thanks to it. In our implementa-
tion it can also handle concurrency between the different Presenta-
tion facets. For instance, if both Simulation and Distant controller
facets are deployed at the same time, they can provide opposite
commands and properties in some particular cases. Therefore, in
our implementation the application developer can configure which
facet to prioritize (we do not propose merging capabilities yet).

An agent created with this model can encapsulate all fea-
tures of a connected object or can decompose an object with
multiple features into multiple agents. For instance, a Fibaro
Motion Sensor Fgms-001 (https://www.fibaro.com/en/
products/motion-sensor/), that is available in our lab, can
perceive motions as well as the luminosity and the temperature of
a room. Our model can support both approaches but in our imple-
mentation we choose the second one in order to propose a generic
library that does not rely on current particular hardware.

Using this model we have created a library of objects developed
in C# for Unity3D. It contains different types of ambient sensors
such as motion, door, temperature, humidity, luminosity, smoke and
flood sensors. It also contains different kinds of appliances such as
light controller, plug, alarm, thermostat. This library includes the
different objects contained in the room that we want to manage.
Our implementation also integrates an XML configuration file to
setup the objects of a given environment. It can be used to edit
their position, their id and to determine which facets of each agent
need to be instantiated. This library is directly exploited by the tools
presented in Section 4 and 5. In the next Section, we describe a tool
able to generate the XML configuration file of a given environment.

4. Creating a Digital Twin of a Real Smart Environment

In this Section, we propose an AR tool to create a digital twin of an
indoor smart environment. It is defined by the geometry of the real
environment and by the connected objects it contains. These objects
are taken from the library implemented using our software model.
Once this digital twin is captured in AR, it can then be completed in
a VR application. This digital twin aims to act as a mediation tool
between the user and the smart environment he/she wants to man-
age. Our goal is to provide the user with an easier and more natural
way to manage it compared to classical desktop-based interfaces.
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(a) (b) (c)
Figure 4: Creating a digital twin of an indoor smart environment. (a) We use a Google-Tango to capture the geometry of an environment
and the arrangement of its objects. The geometry is visible at the bottom left. (b) Connected objects and furniture are added in VR using a
ray-based interaction technique and a menu attached to the non dominant hand of the user. (c) The digital twin of our lab. Connected objects
are highlighted in red: a temperature sensor on the right, a smoke sensor on the ceiling, a plug, a siren, a lamp and a door sensor at the top.

4.1. AR Environment Capture

We propose an AR tool to capture the geometry of an indoor smart
environment and the arrangement of its objects. Indeed, most of the
times the end user does not have a 3D model of it. This is especially
true for smart homes. It is less true for smart buildings that often
have an associated Building Information Modeling (BIM) File.

This tool is a Google-Tango based application. The Tango tablet
provides an AR display with 6 Degrees of Freedom (DoFs) track-
ing and a depth camera that is able to reconstruct the real environ-
ment and output the 3D mesh of it in real-time [Gül16]. However,
from our perspective, the current Tango 3D reconstruction feature
generates a fairly accurate mesh. This mesh also lacks of semantic
information that could be useful to identify which part of the mesh
is a wall or the floor. Thus, rather than using the 3D reconstructed
mesh, we choose another approach in order to capture the geometry
of the environment. Indeed, the device is able to estimate a 3D plane
regarding the current captured point cloud. We leverage this feature
to define the geometry of the rooms by asking the user to target the
floor, then the walls and click on the touch-screen for each of these
parts in order to make the application constructs a clean 3D mesh
of the room geometry as shown in Figures 4a and 4c. This process
can be performed for a whole floor of a real environment. When a
user selects the same wall in two connected rooms, tracking drifting
issues can make them have a slightly different estimated position.
In that case, we perform a merging process for these walls. Open-
ing such as doors and windows can also be configured. For a given
opening, the user has to point its 4 corners (more complex openings
are not supported yet). Then, we use raycasting with the previously
defined planes to determine the world position of each corner. Fi-
nally, the same approach is used to determine the connected objects
positions in the environment. In this last step, the user targets each
of these objects, chooses which object he currently points to in our
library of objects, and touches the screen to define the 3D place-
ment of the pointed real object. This process is illustrated in Figure
4a where the user places a connected plug in our lab. Raycasting is
also used to determine their 3D position. The results of this tool are
an OBJ file for the geometry of the environment and a first version
of the XML file that contains the connected objects parameters.

This approach gives a simple version of the geometry of the real
environment without any texture information but with identified
structures (floor, walls, openings) and with the appropriate dimen-
sions as shown in Figure 4c. Before using it in the next steps of our
pipeline, an environment captured with this tool can be edited in 3D
modeling tool or directly in Unity3D. This allows to reach a higher
level of realism, to add more complexes structures or to assemble
multiple captured floors. For instance, the door that separates the
two rooms in Figure 4c has been added in Unity3D.

4.2. VR Environment completion

In that second step, the user edits in VR a smart environment, cap-
tured with the previously described tool, or loaded from an existing
model in a particular format such as FBX or IFC. Indeed, this VR
approach is useful for managing a building that is not available for
an AR capture. For instance, an architect could want to configure
the automation behaviors of a building before its construction. In
that case, for now, this loaded model needs to be manually edited
in Unity3D in order to add colliders to walls and floors.

The goal of this second step is to complete the information of the
3D digital twin of the environment by adding additional connected
objects and by adding custom furniture from a list of predefined 3D
models. This VR tool is also used to select the unique identifier of
each object. This is required to allow each object to communicate
with an IoT service through our communication layer as described
in Section 3. Adding furniture is optional as it is used to create a
more accurate digital twin. These furniture can be important if we
want to simulate a virtual agent navigating in the digital twin.

This VE is implemented in Unity3D and with SteamVR
(https://steamcommunity.com/steamvr) in order to be
compatible with multiple headsets. It requires two 6DoF controllers
to be usable. The same VE is used in the automation tool described
in Section 5. This VE uses an asymmetric bimanual interaction
paradigm based on the use of a 3D ray in the dominant hand that is
able to select and manipulate close and distant objects without the
need to move. Moreover, this 3D ray can be used to define a spot
on the floor to teleport the user providing him large-scale naviga-
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tion capability. Furthermore, a hand-held 3D interface is carried by
the non-dominant hand and displays a rotating menu with different
panels to add objects in the scene: connected objects and furniture.
For instance the panel for adding connected objects is shown in
Figure 4b. Furniture 3D models are loaded from a dedicated folder.
It allows the end user to add his/her own objects that correspond
to their environment. Last, a dedicated 3D interface with a virtual
keyboard is also provided to configure the id of a given object.

At the end of this step, the digital twin of a smart environment
is completed. For instance, the digital twin of our lab is depicted
in Figure 4c. This digital twin is ready to be used for editing its
behaviors and to simulate and deploy them as described next.

5. Automation configuration, simulation and deployment

In the field of smart environments, one of the main uses of con-
nected objects is the creation of automation scenarios in order to
assist building occupants in their daily routines or for security rea-
sons. Current approaches for creating such automation scenarios
are mainly dedicated to expert users and are often based on desk-
top interfaces that lack of context information. For instance, it can
be easier to find some objects placed in an indoor environment us-
ing real spatial cues instead of not so-meaningful identifiers.

Regarding the automation of our lab, our need is to define three
different automation scenarios

• Everyday life scenario : when the door is opened and the motion
sensor detects someone, the plug is activated in order to switch
on the lamp. When the motion sensor detects no one, the plug is
disabled.
• A security scenario: when the smoke sensor is triggered, the

alarm needs to be activated.
• An anti-intrusion scenario: when the door is opened during night

hours the alarm needs to be activated.

We propose to edit such behaviors in VR in the digital twin of
the real environment. Then, we demonstrate how these behaviors
can be simulated and deployed using this VE and the configuration
possibilities offered by our software model.

5.1. Creation of automation behaviors

Our approach exploits the VE described in the previous Section.
Automation behaviors can be created after the digital twin config-
uration is complete. The main purpose of this work is to explore
novel 3D interaction metaphors that are able to create complex
links between connected objects defining behavioral scenarios in
an easier way than classical desktop interfaces. We still provide ex-
pert users with such a desktop interface in order to add more com-
plexity to the behaviors created in VR. This 2D editor relies on the
concept of Petri-nets [Mur89].

The process of creating a behavior in this VE is composed of
two steps. The first step is to simply link objects in order to begin
the definition of a specific behavior between sensors and actuators.
Then, in a second step, these links must be configured to precisely
create the mapping that defines which input triggers which output.
These mappings are made between properties (inputs) and func-
tions (outputs) that are exposed by the Abstraction Facet of our

model introduced in Section 3. This aspect of our model allows
to check a connected object state or to trigger one of its actuators
independently of its real nature: real or simulated. Therefore, the
automation behaviors created with this tool can be deployed seam-
lessly to a real smart environment or to a simulation.

Regarding the first step, in order to initialize a link between two
objects of the scene, the user has to point to one object after the
other with the 3D ray while pressing the selection button (in our
case: the trigger). A 3D straight line is displayed in the VE to ma-
terialize the created link. Then, in order to configure the mapping
between the sensors and actuators of multiple linked objects, we
propose a world-anchor link box metaphor. The main idea of this
metaphor is to represent objects’ sensors as jacks connectors and
actuators as sockets in which jacks can be plugged. Also, these
jacks wires can be grabbed and moved by the user with the 3D
ray. For a given object, sensors correspond to properties in the Ab-
straction facet and actuators to functions. In our implementation,
they are extracted from the Abstraction class using C# custom at-
tributes. Compatible properties include boolean and number (float,
int, etc.) values. For now, actuators correspond to functions with-
out attributes. While boolean properties can be directly mapped to
an actuator, number properties need to be converted. Therefore, we
provide multiple 3D operators (one input socket, one output jack)
to convert a number property to a boolean one. These operators are
LESS, GREATER and EQUALS. The comparison value can be in-
creased and decreased by the end user with two 3D buttons. We
also introduce 3D operator components to manage logical links,
e.g AND and OR relations, that expose two sockets and one jack
in order to combine both inputs into a single output. These com-
ponents can be recursively plugged in order to possibly make an
infinite combination of logical links. The link box can also be ma-
nipulated, and the user can place it in the VE to organize his/her
space. It can also be hidden to avoid visual overloads. We provide
an example of a link box in Figure 5a. It corresponds to the ev-
eryday life scenario described in the introduction of this Section.
In this link box, the "Turn On" function of the plug is connected,
through an AND component, to the "Open" property of the door
sensor and to the "Presence detected" of the motion sensor. The
"Turn Off" function of the plug is connected to the "No Presence
detected" of the motion sensor. This scenario controls the behavior
of the lamp as this one is connected to the plug in the real world.

Once completed, a scenario is saved in a Petri-Net based scenario
model based on #SEVEN [CGBA14]. We use an implementation of
these concepts provided by a third party. As an example, the cor-
responding Petri-Net of the behavior detailed in Figure 5a is pre-
sented in Figure 5b. It is composed of two Petri-nets. The left one
checks if the door is open and if the motion sensor detects someone
before turning on the plug (and therefore the lamp). It corresponds
to the "AND" relation. The right one checks at each processing step
if the motion sensor does not detect anyone. In that case, it turns off
the plug. In #SEVEN, the context is checked thanks to sensors com-
ponents in order to progress in the Petri-Net. When such progress
is made, an action can be triggered thanks to effectors components.
These components exploit the Abstraction facet of our model in or-
der to check the properties of an object and to trigger its commands.
This approach has three advantages. First, Petri-Net is a widespread
concept in the field of automation. It eases the understanding of a
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(a) (b) (c)
Figure 5: Automation of a smart environment. (a) Objects sensors and actuators are connected with a link box metaphor. Here, the plug is
enabled when the door is open and the motion sensor detects someone (AND relation). It is disabled when the motion sensor detects no one.
(b) The behaviors are converted in a Petri-Net based scenario model. The two Petri-Nets correspond to the two links shown in the first figure.
(c) Using software model, the same automation scenario can be used for simulation and deployment purposes. On the left, the plug (and so
the lamp) is enabled when the agent enters the virtual room. On the right, the real lamp is enabled when a real user enters the real room.

scenario for developers and designers. Second, the implementation
of #SEVEN that we use provides an execution engine for running
the created scenarios at runtime. Third, this implementation also
provides a 2D editor integrated in Unity3D to edit the scenarios
generated by the VR tool. It allows expert users to define more
complex relations between the objects than just mappings between
sensors and actuators. Regarding the anti-intrusion behavior that
we want to be deployed in our lab, it cannot be configured in VR as
we do not provide visual components to check the hour yet. Only
a single mapping between the motion sensor and the alarm can be
performed in VR. Then, a sensor can be added to the generated
Petri-net in the 2D editor to check the current time before checking
the motion sensor state. For now, such a modified scenario cannot
be edited back in VR as we do not provide equivalents 3D compo-
nents to all #SEVEN sensors and effectors components.

5.2. Behaviors Simulation, Deployment and Monitoring

Once the different automation behaviors have been designed they
can be used in a coordinated way with the digital twin. As described
in Section 3, by editing the XML configuration file of the digital
twin, it is possible to select the facets that are instantiated for each
connected object (The Abstraction and Control facets are always
instantiated). Exploiting this digital twin and its behaviors is per-
formed in the same VE but the application needs to be restarted
when changes are made in this XML file. This property of our
model allows developers and designers to easily navigate on the
virtual-real continuum giving them multiple perspectives.

First, the digital twin can be used for Simulation purposes in the
same VE. Such a simulation can be used to validate the behaviors
before deploying them in the real world. For instance, for a build-
ing that is not constructed yet, automation behaviors can be defined
and validated in order to be ready at the end of the construction pro-
cess. Here, only the Simulation and Virtual facets of each agent are
instantiated. Then, each object only reacts to the virtual world. For
this simulation, we have integrated a dedicated panel with multiple
tools in the 3D menu attached to the user’s hand. For instance, the
user can target a virtual agent present in the VE and selects its des-

tination with its 3D ray. This agent then walks to this destination.
This agent can be used to validate that our light is correctly turned
on when someone enters the room of our lab as shown in Figure 5c.
Virtual smoke can also be added in the VE allowing us to validate
our security scenario described at the beginning of this Section.
Simulation is particularly relevant in that case as such event could
be difficult to reproduce in the real world. In addition, it is possi-
ble to validate our anti-intrusion scenario by setting the hour in the
simulation panel and by controlling the agent. This panel allows
the modification of the room temperature as well. Additional sim-
ulation tools will be added in the future to support other use-cases.

Second, deployment in the real world of these behaviors can
also be performed. Here, only the Distant Controller facets are in-
stantiated. The digital twin is then passive and not synchronized.
The VE is not relevant and 3D rendering can be disabled. Only
the Petri-Net behaviors are executed. As explained, communica-
tions between these behaviors and real objects are abstracted by
the Abstraction and Distant Controller facets of each agent. As an
example, Figure 5c demonstrates that our scenario is correctly exe-
cuted in the real world. The door and motions sensors react to a real
person entering the room and the plug and the lamp are enabled.

Third, the digital twin can also be used for monitoring. When
the Distant Controller and the Virtual View facets are instantiated
for a given object, its rendering is synchronized with its real world
properties as described in Section 3. In that case, the behaviors are
still deployed in the real world and someone immersed in the VE
can monitor their progress. This capability of our model allows to
control the state of a smart environment in real-time in the VE. For
instance, in our case, the virtual door is rendered as open when
the real one is open and the virtual temperature sensor displays the
temperature captured in the real world by the real one. The virtual
and the real lights are also synchronized even if this lamp is not a
connected object. Its status depends on the plug. To maintain this
synchronization, a link must be defined with our automation tool
between the state of the plug and the activation status of the lamp.

Last, merging simulation and deployment features is also pos-
sible. Indeed, by instantiating all types of facets, a given object can

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

103



J. Lacoche et al. / Model and Tools for Integrating IoT into Mixed RealityEnvironments: Towards a Virtual-Real Seamless Continuum

be rendered in the VE and can react and act both on the virtual and
the real worlds. It gives users interesting capabilities to impact the
real world from the virtual one and vice versa. It corresponds to the
concept of Dual Reality introduced by Lifton and Paradiso [LP09].
For instance, as it is possible to add a virtual smoke in the VE, a
building manager could use this feature for a fire drill in the real
world. Similarly, in our case the virtual agent could be used to turn
on the light in the real world in order to fake a human presence.

6. Conclusion and Future Work

To conclude, in this paper, we propose a pipeline for managing
smart environments. It includes a software model for the creation
of proxies for simulated and real connected objects. This model is
leveraged by an AR tool to capture the geometry and the object
configuration of an environment and by a VR tool to configure its
behavior. This VR tool is completed by Petri-net editor taken from
the state of the art in order to allow expert users to complexify the
created behaviors. Using these tools combined with our model, we
demonstrate that a digital twin of a smart environment can be cre-
ated and used for simulation, deployment and real/virtual synchro-
nization purposes. We strongly believe that these MR tools propose
an easiest and more efficient way to manage smart environments by
involving more natural interactions and more spatial cues.

As future work, our tools need to be evaluated by developers
and designers in order to demonstrate this supposed increased effi-
ciency. For that purpose, we plan to compare the performances of
our automation editor with a commonly used tool such as Node-
RED. Our tools need to be completed and tested on different types
of building to provide a fully integrated solution. Indeed, as detailed
through the paper, some steps still need to be performed manually
in Unity3D or in a 3D modeling tool. Our current focus is to add
the possibility to navigate on the real virtual continuum directly at
runtime to provide users with seamless sequential prototyping sce-
narios. We also plan to add an object recognition step in our AR
capture tool in order to automatize the placement of objects. Deep
learning approaches could be investigated to do so. For instance,
Mesh-RCNN [GMJ19] could be used to automatically fulfill the
captured environment with its furniture. The VR automation tool
could also be transposed in AR with an adapted device such as the
Magic Leap One glasses (https://www.magicleap.com) as
they also include plane detection and a 6doF controller for interac-
tions. Finally, our VE could also be used to prototype interactions
with connected objects as in [PPL18]. These interactions could then
be tested in VR before being deployed with AR.
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