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Figure 1: Two scenes created using ProGenVR: (left) a computer room, and (right) a town center. In both cases, a main model (a desk and
a city block, respectively) was created from an asset library using a set of procedural rules, and cloned multiple times to achieve the shown
results. While all clones follow the same set of rules, each one is unique due to randomization features.

Abstract

3D content creation for virtual worlds is a difficult task, requiring specialized tools based typically on a WIMP interface for
modelling, composition and animation. But these interfaces pose several limitations, namely regarding the 2D-3D mapping
required both for input and output. To overcome such limitations, VR modelling approaches have been proposed. However,
translating relevant tools for creating large 3D scenes to VR settings is not trivial. Procedural content generation (PCG) is one
such tool that allows content to be automatically generated following a set of parameterized rules. In this work, we propose a
novel approach for immersive 3D modelling based on a set of procedural rules for content generation and natural interactions
to bridge the gap between immersive content creation and PCG. We developed a prototype implementing our approach and
conducted a user evaluation to assess its applicability. Results suggest that the cost of time and mental effort associated with
the rules’ definition can be compensated by the saved time and physical effort when creating complex scenes.

CCS Concepts

* Human-centered computing — Graphical user interfaces; Virtual reality;

1. Introduction

3D content creation is a complex and time-consuming task usu-
ally carried out on a desktop environment, in editors like Maya
or Blender with WIMP-style interfaces (windows, icons, menus,
pointers). It is used to create digital content like virtual worlds for
television and cinema, human and animal models for biology and
medicine, machine models for engineering and the manufacturing
industry, digital characters and scenarios for video games, etc. Each
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domain has a different purpose for 3D content creation and there-
fore requires a different set of tools or approaches. Editors based on
WIMP and 2D screens have a few limitations. The first is that the
input space is limited to the two-dimensional movement allowed
by the mouse, making it difficult and awkward to perform certain
kinds of 3D operations. The 2D display output space where 3D
scenes and models are visualized is also limited, and the user’s per-
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ception of shape, depth and size would be improved if stereoscopic
visualization was employed instead.

To overcome the issues above, 3D immersive editors with spa-
tial input have been researched. However, despite the more natu-
ral interactions they offer, translating certain tasks from traditional
WIMP/2D tasks to 6-DOF/3D is not trivial. In particular, a set of
tools which have become highly relevant in the creation of large
3D scenes is the one of procedural content generation (PCG) tools.
These tools enable the generation of multiple entities automatically
following a set of rules, which can be parameterized. These rules
can specify, for example, the scale and position of multiple gener-
ated objects, transformations applied to them, and the number of
repetitions to e.g. populate a forest with trees. To create variations
and thus avoid repetition patterns, randomness is often used.

If these pose some challenges to users (in particular non-
technical ones, as many artists are) in a WIMP/2D setting, their
usage in an immersive setting is even more daunting. To address
this challenge, we propose a novel approach for creating 3D scenes
in an immersive environment using natural interaction and proce-
dural generation techniques. We resort to a set of simple rules that
users can apply to existing models, and use as building blocks to hi-
erarchically create complex scenes, as exemplified in Figure 1. We
developed a prototype implementing our approach, and validated
it through a user evaluation. Therefore, the main contributions of
our work are: (1) a set of procedural content generation rules for
3D modelling in immersive environments; (2) an interaction de-
sign that allow users to apply such rules using natural metaphors;
(3) a working and usable implementation of that proposal; and (4)
a user evaluation highlighting the pros and cons of our approach.

2. Related Work

We address the challenges in immersive content editing with proce-
dural generation in three key aspects: content creation in immersive
virtual environments (IVE), the particular case of procedural con-
tent generation, and current VR interaction models.

2.1. Content creation in IVE

Approaches to content creation can be grouped in the four cate-
gories of sketching, instantiation, CSG and PCG. Most works are
sketch and drawing based, where the user must draw the contours
of objects they wish to create, or draw on already existing ones
to cut or extrude them [JMY*13,RD19, FLJZ98, DCJH13,IMT06,
CRSM13, Hal13]. The instantiation approach is the simplest one
— the user selects an asset from a collection and places it in the
scene, performs basic manipulation operations — translations, ro-
tations and scaling - and adjusts other properties such as textures
and lighting [JMY™*13, WLL13, FLJZ98, MMS*17, Bol80]. In the
CSG approach the user creates new objects using constructive solid
geometry operations like intersection and union of two or more ob-
jects [RD19, DCJH13, MMS™17]. Finally with the PCG approach
the user does not directly create every object instance but instead
specifies rules, patterns and properties that are used to generate the
object(s). This is further explored in the following section.

2.2. Procedural Content Generation (PCG)

In procedural content generation, new content is created through
the application of functions instead of modelling it interactively or
describing it explicitly. The generated content can be adapted from
other content, for example by applying random variations, solving
constraint problems so to satisfy specific properties, or just exer-
cising a set of transformation rules defined by the creator in a pro-
cedural generation language. This practice can be applied to create
various different types of data, from textures and random meshes
to terrain, trees, road networks, cities and buildings [STBB14].

Two common techniques used are L-systems and split gram-
mars [CBSFO7]. A basic L-system is composed of a formal gram-
mar and a collection of production rules; starting with an initiator
string, each atom in the string may be expanded into a string of
symbols according to a generator rule, recursively. They are usu-
ally accompanied with a mechanism for generating a figure or ge-
ometric object. A good example of their application is the seminal
work of Parish and Muller [PMO1] - CityEngine. It takes as input
various maps with information such as terrain elevation, water bod-
ies and population density, and uses extended L-systems to derive
the road network of the city and the distributions of buildings; an-
other L-system is used to generate the buildings themselves after
extrusion of each allotment. Split grammars incorporate the no-
tion of geometrical shape into the production rules, making them
a better fit for modelling of architecture [CBSFO7]. The alphabet’s
symbols are shapes that can be split according to production rules
and annotated with additional information. In the work of Wonka
et al. [WWSRO03], where they were introduced, the symbols of the
grammar were augmented with parametric attributes representing
physical dimensions of shapes, depth and texture data. A control
grammar was further used to help refine the attributes of the shapes
created by the split grammar.

2.3. VR interaction models

Interaction models are the ways in which the user interacts with the
modelling system and are closely coupled with the input/tracking
devices used. Some of the approaches revolve around using hand
gestures or 3D-tracked controllers either in a fully immersed vir-
tual reality environment [JMY ™13, WLL13, MMS*17, CRSM13]
or in an augmented environment [RD19, DCJH13, FLJZ98, Bol80,
Hal13]. Others rely on stroking and drawing in either two or three
dimensions with a pen or just the user’s fingers, and applying op-
erations on them, such as extrusions [RD19, NGDA* 16, FLJZ98,
DCJH13,IMT06, CRSM13]. Voice commands can be a primary or
secondary input mechanism depending on the modelling approach,
with uses ranging from tool selection to object manipulation and
instantiation [FLJZ98, Bol80]. Other works rely on more tradi-
tional WIMP-based input from mouse and keyboard [NGDA*16]
or tablet [WLL13], particularly those works of procedural mod-
elling of urban buildings which do not focus on the interaction
model [WWSRO03,PMO1].

Many of the works studied combine 3D input and per-
ceived spaces [JMY*13,RD19, WLL13,DCJH13,MMS*17] while
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combining two different content creation approaches: sketch-
ing [JMY*13, RD19, DCJH13], instantiation [JMY*13, WLL13,
DCJH13, MMS*17] and CSG [RD19, DCJH13, MMS*17]. How-
ever, we have not found a modelling approach that combines 3D
input and perceived space in a fully-immersive virtual environment
with procedural generation techniques and a natural interaction
model, and therefore proposed to explore that combination with
this work.

3. ProGenVR

The proposed approach allows users to assemble models in a virtual
reality environment. Our approach considers a model as a composi-
tion of various static assets, with hierarchical relationships between
these and procedural rules to change their visibility status, place-
ment, and orientation. Users have core modeling operations avail-
able to build the model, such as cloning and moving objects, enti-
ties such as groups and uniformly spaced tilings, and an assortment
of randomization operations and objects. The randomization allows
users to clone models, generating a different outcome following the
specified rules. This tool can be helpful for quickly spawning sev-
eral city blocks when creating a city or generating different rooms
at runtime that a player can explore.

3.1. Primitive Objects

Our modelling approach starts with loading primitive objects into
the scene. We call the initial assets primitive objects because they
do not have any procedural rules and can only be moved around and
copied. They cannot be edited or partitioned into smaller blocks,
unlike procedural objects.

3.2. Procedural Objects

Procedural objects can be either composite or randomized. When
creating these procedural objects, all types of objects might be
used, both primitive as well as other composite and randomized
objects.

3.2.1. Composite Objects

Composite objects are those which contain sets of other objects
organized either in a manually defined layout - Groups - or a regular
rule-based layout - Tilings - as described next.

Group. The first composite object is the Group, which is the
union of one or more objects with a fixed relative layout. A Group
is created by selecting one or more objects in the scene, and then
joining them into one aggregate object. The incorporated objects
are called the elements of the group. Once formed, the Group can
be moved and rotated as a single object and its elements keep their
relative distances and orientations.

Tiling. Another composite object is the Tiling. A Tiling wraps a
single object, the tile or child, and lays out a fixed number of clones
of this tile along a straight line with uniform spacing (Figure 2). The
number of tile clones, the spacing between tiles and the orientation
of the tiles can be adjusted, and the tiling direction can be changed
by rotating the Tiling object itself. To create matrices of objects, a
Tiling object can be used as the child of another Tiling object.
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Figure 2: Editing a Tiling procedural object. The red handle is
used to set the tiling range and the blue one can be used to change
the tiles’ orientation. The number of tiles can be increased and de-
creasing using menu buttons.

3.2.2. Randomized Objects

Randomized objects are objects that can assume different forms or
properties, either by selecting a random object from a given set, or
applying randomized transformations to an object.

Random. The first procedural object is the Random, which can
be constructed in a similar way to the Group, but instead of showing
the union of all incorporated objects with a fixed layout, it shows
exactly one of these objects, chosen uniformly at random. To have
different probabilities for each object being shown, multiple copies
of the objects can be used in the same Random. The incorporated
objects are called the variants of the Random, and exactly one of
these variants is visible or active at any moment. Upon creation of
the Random, all variants snap to the position of the first selected
at creation time, but retain their world-space orientation. All the
variants appear, by default, in the same place, though this can be
adjusted later.

Mover. The Mover adjusts an object’s location by applying a
random offset chosen uniformly at random from within a defined
three-dimensional offset range (Figure 3). This can be used to cre-
ate variations of an object that does not appear in the same position.
For instance, it can be used within a Tiling object to create a row of
objects that are not perfectly aligned.

Rotator. The Rotator is similar to the Mover, focusing instead
on object orientation. It adjusts an object’s rotation around one of
the primary axis, by a random angle chosen uniformly at random
from within a defined angle range (Figure 4).

3.2.3. Editing Objects

All procedural objects may be edited after creation, for example
to adjust children positions and orientations, add and delete ele-
ments or variants, or adjust parameters like spacing. When editing
an object, it is called the edit subject, and only its children can be
modified or moved. The operations available while editing are only
those that pertain to adjusting the subject. When editing a Group,
the user can modify the relative positions of the elements, delete
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elements, and add new elements, either by cloning elements within
the group or from outside into the group. Similarly, when editing a
Random the user can change the relative positions of the variants
and also add and remove variants. In the case of the Random, this
introduces the ability to have the variants appear with different rel-
ative positions. For reference, a set of axes are shown in the origin
of the local space of the object being edited.

Tilings, Movers and Rotators are edited in the same way their
parameters are set on creation. For the Tiling, the number of tiles
and the spacing between the tiles can be adjusted. For the Mover,
the permissible offset box appears while editing and it can be re-
sized. For the Rotator the permissible angle range can be adjusted
around one of the three rotation axes. Editing may be performed
recursively in the object tree: while editing a Group, the editing
process can go to one of its children; while editing a Random the
active variant may be edited instead; and while editing a Tiling,
Mover or Rotator the child entity can be edited.

3.3. Empty Object

The last object type of our approach is the Empty object, which
behaves identically to a Primitive object but is actually invisible.
This object can be used to represent the concept of nothing among
the variants of a Random. The visibility of Empty objects can be
toggled on and off, so they have a visual representation the user
can interact with.

3.4. Object Trees

The composition of objects form object trees. The children of a
group node are the Group’s elements, the children of a random
node are the Random’s variants (including those not shown), and
the other three object types have only one child. The leaves of an
object tree are all Primitive or Empty entities. Figure 5 show three
examples of object trees. Once the models are built, the root objects
G, M and T, are the only objects that the user can interact with.

« Handle

B g% Handle

Figure 3: Editing a Mover procedural object. The handle starts in
the origin of the local space (top left), the user drags the handle
creating a box centered in the origin which defines the offset range
(top right), and a new random offset is applied after releasing the
handle (bottom).

Figure 4: Editing a Rotator procedural object. The three handles il-
lustrate each of the available rotation axis (top left), the user drags
one of the handles defining the angle range (top right), and a new
random rotation is applied after releasing the handle (bottom).

3.5. Operations

Besides moving entities, and creating and editing procedural ob-
jects, the following operations are available to users.

3.5.1. Clone + Linking

A Clone operation can be applied to any object, and it creates an-
other instance of the same object, with its children cloned recur-
sively. The object tree of the clone is identical to the original, there-
fore following the same rules. Cloning a Primitive object creates
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Figure 5: Object trees for three examples: a computer prop (top),
a chair prop (bottom left), and a chessboard (bottom right).
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another Primitive object with the same asset. Procedural objects
are cloned by reference. When a Group G is cloned into another
group G, the two groups become linked. If another clone G3 is
made of either G| or G, then the three groups will be linked to
each other. The same link-on-clone logic applies to the other com-
posite and procedural objects. We call two objects that are linked
to each other siblings.

Linking is recursive. If G| has another linked object A; as its
element, then the corresponding clones A; and Az, in G, and G3
respectively, are also linked to each other and to A;. Also, linking
propagates modifications. When a linked object is modified, the
modification automatically propagates to all of its siblings. For ex-
ample, if the designer edits group G; by cloning an object X and
adding it as a new element X, then two clones X, and X3 of X
are automatically created and added to G, and G3, respectively, in
the same position and orientation. If the user then moves X; inside
G|, the same movement is applied to X, and X3 in their own local
space, and so on for the remaining operations available to edit G.
The user has live feedback of these mirror operations on the sibling
objects, so he can visualize the effect of his changes simultaneously
on all siblings that fit in his field of view. Lastly, linking is recipro-
cal. Modifications made to G, also propagate to G| and Gz; there
is no master object. However, linked objects are not necessarily
identical. For instance, if two Randoms R; and R; are siblings they
have the same object tree structure and also the same set of variants,
but they do not necessarily show the same variant. Similarly, two
Mover objects M and M, have identically sized offset ranges, but
their random offsets are different. Two siblings still make different
and independent random choices.

3.5.2. Unlink

Using the Unlink operation on a linked object, the user can break
the link that object has to all of its siblings. In the previous example,
applying the Unlink operation to G3 allows the user to modify G3
without propagating the changes to G or G, and vice-versa. Edits
to G will still propagate to G, and edits to G, will still propagate
to G1. If G is then cloned to G4 then G3 and G4 will be siblings,
but still separate from G| and G».

3.5.3. Reroll

A Reroll operation can be applied to any object, and it requests the
object to make a different set of random choices, recursively down
the object tree. When applied to a Primitive object the operation
does nothing. When applied to a Random object it requests that an-
other variant be shown, and that the shown variant itself be rerolled.
When applied to a Group the elements are themselves rerolled, and
similarly for a Tiling. When applied to a Mover the random off-
set is rerolled, and when applied to a Rotator the random angle is
rerolled, and then the child object itself is rerolled as well.

3.5.4. Disband

A Disband operation can be applied to any object and it serves to
break a composite object into its constituents, by deleting the root
node of the object tree but not its children. When applied to a Prim-
itive object this operation does nothing. When applied to a Group
or Tiling with n elements or tiles, the Group/Tiling node disappears
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while the 7 entities remain as object roots. When applied to a Ran-
dom a similar thing happens, but only one root remains, the visible
variant, with the hidden variants being deleted. When applied to
a Mover or Rotator, the position/orientation offset is bound to the
child object, as if the user had specified it, and the modifier node is
removed, leaving the child element as a new object root.

3.5.5. Delete

Lastly, the Delete operation deletes the whole object tree rooted
at the object it is applied to. This is also available while editing
Groups and Random to remove elements and variants, respectively.

4. Prototype

The prototype was developed in Unity with the SteamVR tool. For
development, we used an Oculus Rift virtual reality headset. The
user holds two controllers, one on each hand. The dominant hand’s
controller shoots a laser outwards that collides with the first ob-
ject or interface entity in its path. The laser is also used to inter-
act with an interface menu floating over the user’s non-dominant
hand (Figure 6). Besides options to create procedural objects and
execute operations, the menu also includes options common in 3D
modelling applications, such as movement and rotation lock, snap-
ping and scene scaling. Locomotion is possible by moving around
in the real-world playing area, and it can be aided by standard arc
teleportation.

A scene initially contains only Primitive objects. All objects in
the scene are static — they do not respond to gravity and do not col-
lide with each other or with the user. Our prototype supports undo
and redo actions, by maintaining a stack of modifications applied
to the objects in the scene. A simple text log is shown fixed and
over other objects just below the center of the user’s field of view.
It shows information of the object currently being interacted with,
such as: asset name, object type, number of elements and variants
in a Group or Random, offset or angle range in a Mover or Rotator,
number of tiles in a Tiling, as well as the number of siblings.
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Figure 6: Floating menu over the user’s non-dominant hand.
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5. User Evaluation

We conducted an evaluation to both assess the prototype’s viability
and usability and compare our modelling approach with a baseline
consisting of the core subset of objects and operations. We present
the evaluation methodology used, the results obtained and the con-
clusions that follow from them.

5.1. Method

Our primary goal in this study is to identify whether the proce-
dural approach grants a significant speedup in the development of
models with moderate complexity, over the baseline. Hence, we
prepared a test protocol, and reached out openly for volunteers in
our university to participate in the tests. No prior experience with
virtual reality devices and applications, modelling applications or
programming was required. The details on the tests themselves are
presented next.

5.1.1. Testing environment

All volunteers used an Oculus Rift headset during testing. Sessions
were expected to last between 60 and 70 minutes. Participants with-
out any prior virtual reality experience were given an informal and
gentle introduction in the Google Earth VR demo for about 15 min-
utes before the session proper. This included an introduction to
laser mechanics, the VR controllers, and gave inexperienced volun-
teers an opportunity to adjust and settle in this virtual environment.
All participants agreed to continue with the session after this intro-
duction. Participants were given a standard consent form, inform-
ing them they could interrupt or abort the session at any moment,
and that their execution of the tasks within the modeling sandbox
would be recorded anonymously for later analysis.

5.1.2. Tutorial

The users were introduced to the system with a guided tutorial in a
very simple sandbox with five different trees and a square grass tile
(Figure 7). The tutorial has two parts. The first part is a very quick
introduction to the basic elements of the system, where the user is
guided to perform a set of well-defined steps regarding locomotion,
teleportation, grabbing objects, the undo system, and the baseline
menu’s operations. The second part of the tutorial introduces the
procedural operations and objects. The Random, Mover and Rota-
tor objects are introduced outside of the virtual reality environment
with real-world examples and analogies, alongside the Reroll oper-
ation. The user then goes back to the tutorial sandbox and is guided
to perform a new set of steps using these new tools.

Figure 7: Tutorial scenario set. On the right a possible output after
the tutorial’s first part.
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Figure 8: Restricted baseline menu.

5.1.3. Approaches

We evaluated two modelling approaches: our procedural approach,
ProGenVR, with all modeling operations and objects available, and
a baseline approach that restricts the set of objects and operations
available to only grouping, cloning, deleting and disbanding ob-
jects (Figure 8). In this approach, there are no randomization tools
available. It is still possible to use the undo system and there is still
feedback for all operations performed.

5.1.4. Tasks

Each session was split into two segments. In one segment, partici-
pants performed two tasks using the baseline approach, and in the
other segment used the full procedural approach. Approximately
half of the participants began the session with the baseline approach
and the others with ProGenVR to prevent bias in either direction.
In each segment, participants had to perform two tasks, consisting
of assembling different scenarios, for a total of four tasks for the
whole session. In the first task, participants were asked to assemble
a computer room, and in the second task a town center. Participants
were informed of both tasks, their specifications, the structure of
the entire session, and the nature of both approaches upfront. Be-
fore each task, participants went through the specifications again.

In the first task, participants were given a library of assets (prim-
itive objects) consisting of objects that can often be found in an of-
fice or classroom, including tables, chairs, computer monitors, key-
boards and a laptop, mousepads, notebooks, pencils, paper stashes,
desk lamps and a few more. The user must assemble the room over
a designated area right next to the library (Figure 9). The room must
meet the following specifications:

e There must be exactly six desks in the room, with no particular
layout required.

e Each desk must have one chair in front of it, one computer set
and at least three other assets on top of it.

e The computer set must be either a laptop with no keyboard, or a
monitor with a keyboard.

e Objects should not overlap each other.

e The desks should have different sets of items and the layout of
these items should vary. This requires varying the chair, tabletop
and computer set assets per desk.
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Figure 9: Computer room task: the initial scene and asset library.

In the second task, participants were given a similar setup with
assets to create a town center including grass, pavement, parks and
buildings of various type, shapes and sizes. Participants must as-
semble the town inside the road skeleton provided right next to the
library (Figure 10). The skeleton had six empty blocks, and several
buildings can fit in each block. The town must meet the following
specifications:

o All six blocks must be filled with buildings, no particular design
enforced.

o All types and shapes of buildings must be used across all blocks.

e Buildings and parks must not overlap each other.

e The blocks should have different sets of buildings on them, but
the layout of the buildings does not have to vary.

With the baseline approach, participants could assemble the sce-
narios however they wished, and they were informed that the goal
was to produce the design as quickly as possible. With ProGenVR,
participants were suggested to assemble the unit model first. In the
first scenario this was a desk group that meets the desk specifi-
cations, and in the second scenario it was a block group that met
the block specification, both using procedural objects. The whole
scene should then be assembled only by cloning this unit model six
times to meet the specifications for the whole scenario. A possible
outcome of both tasks is shown in Figure 1. This requires partici-
pants to work backwards, to figure out what structure the unit model
should have to ensure that the clones would meet the global varia-

Figure 10: Town center task: the initial scene and asset library.
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tion constraint. Since our primary goal was assessing the difference
between task completion times, we deemed it proper to inform the
users whenever they broke the specification.

5.1.5. Questionnaire

Before beginning the session participants were asked to fill in a
form with their profile information, including age, education and
experience with virtual reality or modelling applications. After con-
cluding the first two tasks participants were asked to answer a short
questionnaire about their experience in those two tasks, and then
again after the last two tasks when the session was finished.

5.2. Participants

We gathered a total of 15 participants (1 female). Their age ranged
from 16 to 30 years old. Regarding modelling application experi-
ence, 5 (33,3%) had never used them, 7 (46,7%) used them once
a month or less, and 3 (20%) used them between once a day and
once a week. In terms of VR applications, 6 (40%) had not tried
them yet, 6 (40%) used them once a month or less, and 3 (20%)
used them between once a day and once a week.

5.3. Results

The primary goal of the study was to determine, for each of the
tasks, whether the procedural approach offered an advantage in
terms of modelling time and complexity versus the baseline and,
if so, to which degree. We were also interested in evaluating the
task load associated with both approaches.

5.3.1. Task performance

For all tasks we tracked the total time to completion. For the proce-
dural approach’s tasks we also tracked the time to the first model,
i.e. how long the user took to form the group model of the desk
or square block. (Figure 11). The distributions of task completion
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Figure 11: Completion times for both tasks using the two ap-
proaches, and time to finish the first model with ProGenVR.
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Computer room Town center
Baseline | ProGenVR | Baseline | ProGenVR
I found the task mentally demanding. 3(3) 2(1) 3(12) 3(1)
1 found the task physically demanding. 3(4) 4 (4) 3(4)* 4(3)*
I feel the pace of the task was hurried or rushed. 34) 3(3) 3(3) 4(4)
I think I was successful in accomplishing what I was asked to do. 24 203) 24 203
I had to work hard to accomplish my level of performance. 3(2) 2(1) 3(1) 2(2)
I felt insecure, discouraged, stressed or annoyed. 4(4) 4 (4) 4 (4) 34

Table 1: Questionnaire results (1-Strongly Agree, 5-Strongly disagree): means and interquartile ranges. * indicate statistical significance.

time are approximately normally distributed (Shapiro-Wilk signif-
icance of 0.581 and 0.111 for baseline, and 0.754 and 0.030 for
procedural approach). Therefore, we used the paired-samples t-test
to assess statistically significant differences. In the room scenario,
participants consistently took longer with the procedural approach
to complete the task (¢(14) = 5.33, p < .001). In fact every partici-
pant took strictly more time, on average 70% longer for the whole
task. A significant contributor was the monitor/laptop challenge we
further report. In the town scenario there is once again a significant
difference for completion time (¢(10) = 2.717, p = .022). One con-
tributor to this fact was that aligning the large block model clones
into the road skeleton was quite difficult if the user did not zoom
out in this task, and very few actually did. Another contributor is
the fact that participants could create a very simple block model
and still meet all the required specifications.

Considering the times to complete the first model of each task, it
is noticeable that this makes for the most part of the task execution.
We calculated that participants took on average 95 seconds to con-
clude the computer room task after finishing the model. Increasing
the number of required desks clearly favours the procedural ap-
proach. Extrapolating the mean time to model of all participants
suggests the break even point is at approximately 12.3 desks, as-
suming the time to complete the baseline version of this task is
proportional to the number of models created. For the town sce-
nario the break even point was 9.8 blocks.

5.3.2. Usability and Task Load

After each session segment we inquired about task load, using a
questionnaire with a 5-point Likert scale based on the NASA-TLX
(Table 1). This assessment did not vary significantly between the
two approaches, according to the Wilcoxon signed-rank test. The
only exception is the reported physical load in the town center
task (Z = —2.070, p = .038). This might be related to the extensive
repetitive gestures in a larger environment required by the baseline.

5.3.3. Observations

As the final models were not required to look aesthetically pleasing,
most design decisions were left open to the participants. In practice,
almost all participants designed the computer room in roughly the
same way in both runs, placing the computer in the center of the ta-
ble, the chair facing the table, and the remaining items either left or
right of the computer. In the city task, however, many participants
specialized the square blocks with the baseline approach, such as
making two residential blocks, two commercial blocks, and two
office blocks. This was explicitly allowed, but with the procedural

approach (before or after) this specialization required far more ef-
fort and complexity, so they instead created a block with a fixed
layout and practically no specialization. We also noted that there is
a peculiar difficulty in the room task using the procedural approach.
It was easy to create the computer set model incorrectly by aggre-
gating the monitors and the laptop together into one Random entity,
which could make the laptop to appear with a keyboard in front.

5.3.4. Discussion

Despite the small sample size of our study, some important as-
pects can be identified. In terms of performance, there is an ini-
tial cost to the procedural approach (compared to the baseline) that
is compensated when generating a significant number of elements
afterwards. Regarding task load, a similar trade-off is observed: a
possible larger mental load in creating the procedural rules in the
beginning is compensated later by reduced physical load in genera-
tion later, compared to the baseline approach. This suggests that the
procedural approach can be beneficial for generating more complex
scenes, both in terms of time and mental and physical load.

6. Conclusions and Future Work

We presented an overview of the difficulties associated with con-
tent creation, particularly in virtual reality settings. Then we de-
tailed our proposed approach for modelling in virtual reality with
procedural content generation tools, centered around a system with
primitive, procedural and composite objects supporting basic oper-
ations such as replication, relative and randomized placement, ori-
entation and spacing along different axes, and random selection.
We designed and prototyped a natural interaction model for our ap-
proach. We conducted a user evaluation to compare our approach
against a baseline without procedural tools. Results suggest that
our approach can be better for complex scenes, in terms of time
and mental and physical loads.

As future work, we would like to further explore PCG features
and how to use them within an immersive environment. Some kind
of constraint solving that would prevent content resulting from ran-
domization to overlap/collide with each other would also benefit
our approach. Also, our prototype works with assets that were pre-
viously prepared and imported to the scene. We would like to make
this more flexible by allowing on-the-fly loading of any kind of 3D
model. Lastly, we intend to explore ways to make this approach for
3D content creation collaborative, allowing multiple users to con-
tribute for the specification of the rules of a scene.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.
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