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Abstract

Computer Vision is a promising technique for in-situ monitoring of ecosystems. It is non-intrusive and cost-
effective compared to sending human observers. Automatic animal detection and species recognition support
the study of population dynamics and species composition, i.e., the evolution of species populations’ size. Fixed
cameras support continuous data collection, which can serve a variety of ecology research. Prior to in-depth data
analysis, ecologists need to familiarise with the dataset, and with the limitations of video technologies. We propose
an interactive visualization system for exploring the video data. It addresses user needs for i) eliciting information
of interest for specific studies; and ii) identifying the uncertainty factors inherent to video technologies. We discuss
generalisable interaction principes and illustrate them with screenshots of an online prototype.

Categories and Subject Descriptors (according to ACM CCS):

Techniques—Interaction techniques

1.3.6 [Computer Graphics]: Methodology and

1. Introduction

The Fish4Knowledge project developed computer vision
technologies and data visualizations for the in-situ moni-
toring of fish populations [BHB*]. With 9 fixed underwater
cameras continuously recording during 3 years, it supported
innovative long-term studies of coral reef ecosystems. Video
streams were split into 10-minute video samples, and com-
puter vision performed fish detection and species recogni-
tion. Visualizations were developed for exploring the dataset
and the uncertainties inherent to automatic video monitor-
ing. Our specification of uncertainty factors and our visu-
alization design are generalisable to other use cases using
computer vision for ecology research [ACBCB*09,BCF* 08,
LMMZ*10,SMvO12], or needing multi-purpose data explo-
ration.

2. Uncertainty Factors and Information Needs

From interviewing ecologists [BAAHVO13], we identified
2 core information needs: i) counting fish and their species
over locations and time periods; ii) assessing the uncertainty
of video data. Measuring fish body size was requested, but is
not feasible with our technology. Uncertainty assessment re-
quires both domain and technical expertise. From additional
interviews of computer vision experts, we identified 10 un-
certainty factors and their related metrics (Table 1-2). Ecolo-
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gists may conduct a variety of research, focusing on specific
species, locations or time periods. Their information needs
depend on their specific research, both for the ecological (i)
and uncertainty (ii) measurements to consider. Hence we de-
signed a tool for data exploration addressing a wide range of
user interests. It helps preparing further data analysis per-
formed with specialised tools and methods. We generalised
user tasks as: selecting datasets of interest, and exploring
ecological and uncertainty measurements displayed over the
multiple data dimensions.

The data dimensions are the location, time and image qual-
ity of video samples, the fish species and certainty score (in-
dicating the quality of fish appearance, thus the chances of
computer vision error). Datasets of interest are selected us-
ing the same dimensions, e.g., fish from specific species and
time periods. The time dimension is decomposed into Year,
Week of the Year, and Hour of the Day (e.g., to select fish oc-
curring in the spring weeks, or the morning hours), as ecol-
ogists can study daily or yearly cycles, and compare popula-
tions across years (e.g., compare spring weeks’ populations
over several years).

Ecological measurements are the number of fish and species,
and their mean and variance over dimensions of interest
(e.g., mean per day or video sample). Using mean counts
per video sample compensates for unbalanced numbers of
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videos due to Fragmentary Processing (missing or unpro-
cessed videos). When comparing data subsets, the fewer the
videos, the fewer the fish. But mean counts per 10-min video
sample remain comparable.

Uncertainty measurements are the number of video samples,
the fish scores, and the fish detection and species recog-
nition errors, i.e., the number and rate of True Positives
(TP), False Positives (FP) and False Negatives (FN). TP
are correctly detected fish. FP are objects added to a cate-
gory they do not belong to: non-fish added to the set fish,
or fish from species A added to the set of fish from species
B (denoted FPg, ). FN are objects missing from the cat-
egory they truly belong to: undetected fish, or fish missing
from species A since they are attributed to species B (de-
noted FN4_,p). FP and FN are measured by comparing au-
tomatic and manual (ground-truth) fish classification. Users
need to understand that FN for one species are FP for an-
other (besides undetected fish). This creates biases, e.g., if
species A increases, its FN increase, and species B may arti-
ficially increase too. Hence, to enable extrapolations of Er-
rors in Specific Output under varying species proportions,
rates of FN and FP are relative to the TP of their true class:
rate(FNy_,g) = rate(FPp ) = F%,r‘*. Contrarily to tra-
ditional metrics, F P4._x must not be added to the denomi-
nator, as it depends on the sizes of other species populations.
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Figure 1: Static visualization of computer vision errors from
[BAH14c].

3. Visualization and Interaction Principles

To reduce the complexity of exploring the multiple dimen-
sions and measurements, we use simple graphs in multi-
ple views. Multiple views introduce additional complexity
(context switching) which can be balanced by the consis-
tency between views (display same datasets or dimensions)
[WBWKO00]. We focused on ensuring views’ consistency,
while allowing flexible views’ variation (Fig. 2). Zone A
contains the main graph which is controlled with Zone B:
users can select the type of graph (simple graph, stacked
graph, or boxplot) and what measurements and dimensions
are represented by its axes. While the Y axis displays a mea-
surement, e.g., number of fish, the X axis can be swapped
between dimensions (e.g., day, location, species). The Y axis
can be swapped, e.g., for number of species, while keep-
ing the same X axis. Incompatible options are disabled (e.g.,

number of species over species). Swapping axes is the core
interaction principle for users to gradually navigate through
the video data. Further multidimensional exploration is of-
fered by stacked graph (Fig. 3) and boxplots (Fig. 4). Swap-
ping graphs, our second interaction principle, preserves the
X and Y axes’ dimensions and measurements. For stacked
charts and boxplots, users can swap the dimension (i.e., the
Z axis) for which measurements are stacked, or summarized
with mean and variance. Zone C contains filter widgets, one
per dimension, for selecting datasets of interest. They are
opened on-demand depending on user interests. They dis-
play histograms for each filterable value, which Y axis is
the same measurement as for Zone A, thus ensuring multi-
ple views consistency. Propagating Y axis measurement is
our third interaction principle. It offers both overviewing
(Zone C widgets) and detailed views (Zone A main graph).
Early user feedback expressed enthusiasm for its flexibil-
ity and intuitiveness (e.g., "I can display anything I want").
These interaction principles are applicable to studying eco-
logical or uncertainty measurements. For the latter, numbers
of video samples and fish scores can be visualised using the
same graphs as in Fig. 2-4. Visualizing computer vision error
requires specific graphs developed in [BAH14c, BAH14a]
(Fig. 1). Although designed as a series of 4 static graphs
(number and rate of errors for fish detection and species
recognition), our interaction principles can be applied to
provide integrated data exploration (Fig. 5). Error measure-
ments (number and rate of errors) can made available for the
Y axis. The X and Z axes can provide further options to de-
compose the errors over e.g., species, fish score, or image
quality. But error measurements may not be available over
all dimensions: ground-truth data spans over a limited range
of time periods and locations, as otherwise it is too costly
or useless (computer vision errors may not vary over years).
Future work can investigate if it is preferable to use a distinct
type graph, e.g., an error graph rather than a stacked graph.
For investigating uncertainty due to Fields of View and Du-
plicated Individuals, no measurements are available and
users need to draw approximative estimations by inspecting
the video footage. A video browser can be displayed in Zone
A, as an option in the list of available graph.

4. Conclusions

Our initial work investigated interactive data exploration
[BAH14b] and simplified visualization of computer vision
errors [BAH14c]. We introduce here an application of the
interaction principles to the visualization of computer vision
errors. We argue that the interaction principles (swapping
graphs and axes, propagating Y axis) are generalisable, and
that the visualization system is extensible. It can be extended
with further measurements for the Y axis (e.g., growth rate of
populations, fish body size) ; with dimensions for the X and
Z axes (e.g., subsample over random splits for boxplots); and
with other types of graph. For further reuse, an initial proto-
type [F4Kb] and open source code are available [F4Ka].
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Figure 2: Multi-purpose visualization system.
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Figure 4: Multi-purpose boxplot visualization.
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Factor Description

Uncertainty due to computer vision algorithms

Ground-Truth Quality Ground-truth items may be scarce, represent the wrong objects, or odd fish appearances.

Fish Detection Errors Some fish may be undetected, and non-fish objects may be detected as fish.

Species Recognition Errors ~ Some species may not be recognized, or confused with another.

Image Quality Lighting, contrast, resolution or fuzziness may impact the magnitude of computer vision errors.

Uncertainty due to in-situ system deployment

Field of View Cameras may observe heterogeneous ecosystems, and over- or under-represent some species.

Fragmentary Processing Some videos may be yet unprocessed, missing, or unusable (e.g., encoding errors).

Duplicated Individuals Fish swimming back and forth are repeatedly recorded. Rates of duplication vary among species
behaviour (e.g., sheltering in coral head) and Fields of view (e.g., open sea or coral head).

Sampling Coverage The numbers of video samples may not suffice for software outputs to be statistically representative.

Uncertainty due to both computer vision algorithms and deployment conditions

Biases Emerging from Errors may be random (noise) or systematic (bias). Biases may emerge from a combinaison of fac-

Noise tors (Image Quality, Field of View, Duplicated Individuals, Fish Detection & Species Recognition).
Uncertainty in Specific  Uncertainty in specific set of outputs may be extrapolated from errors measured in test conditions,
Output compared to the specific characteristics of the output (e.g., fewer low quality images).

Table 1: Uncertainty factors introduced by computer vision software and in-situ system deployment.

Factor Metrics Visualization

Uncertainty due to computer vision algorithms

Ground-Truth Quality Number of ground-truth items over species and image quality. Fig. 6
Fish Detection Errors Number and rate of TP, FN and FP. Fig. 6
Species Recognition Errors ~ Number and rate of TP, FN and FP. Fig. 6
Image Quality Number of video samples from each type of image quality. Fig. 3-5
Uncertainty due to in-situ system deployment

Sampling Coverage & Number of video samples over time and location. Average fish count per video. Fig. 3-5
Fragmentary Processing

Field of View No existing metric. Manual inspection of video footage.

Duplicated Individuals No existing metric. Manual inspection of video footage.

Uncertainty due to both computer vision algorithms and deployment conditions

Biases Emerging from Estimation of significantly higher Duplicated Individuals, Fish Detection and  Fig. 3-6

Noise Species Recognition Errors over species, Image Quality and Field of View.
Uncertainty in Specific  Fish certainty score. Correlate Biases emerging from Noise with dataset charac-  Fig. 3-6
Output teristics (Species, Image Quality, Field of View, and certainty score distributions).

Table 2: Metrics addressing the uncertainty factors of Table 1 and corresponding visualizations.
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Figure 5: Multi-purpose visualization of computer vision errors, using the interaction principles of Fig. 2-4 for Fig. 1.
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