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Abstract
The detection and analysis of mesoscale ocean eddies is a complex task, made more difficult when simulated or observational
ocean data are massive. We present the statistical approach of change point detection as a means to help scientists efficiently
extract relevant scientific information. We demonstrate the value of change point detection for the characterization of eddy
behavior in simulated ocean data. Our results show that change point detection helps with the identification of significant
parameter values used in an algorithm or determination of time points that correspond to eddy activity of interest.

CCS Concepts
•Mathematics of computing → Time series analysis; Exploratory data analysis; Regression analysis; •Computing method-
ologies → Object detection; Image processing;

1. Introduction

Mesoscale ocean eddies are widely studied in ocean science. They
are large, rotating bodies of water, ranging from 10km to 150km
in diameter and are a vital component of the ocean’s ecosystem.
They influence the ocean’s biological network [CGS∗11], can con-
tribute to heat transport over several hundred miles [VLF08], affect
weather conditions in the ocean, and impact various other aspects
of ocean dynamics [McW08].

Eddy detection and tracking is a complex task and a major part
of mesoscale ocean eddy studies. A wide range of detection and
tracking techniques have been explored. Chelton et al. [CSSdS07],
Williams et al. [WPB∗11] and Petersen et al. [PWM∗13] em-
ployed variations of the Okubo-Weiss criterion to identify closed
regions of uniform vorticity. Chaigneau et al. [CGG08] and Chen et
al. [CHC11] used versions of a parameter-based, geometric stream-
line clustering method, the winding-angle method, to find closed
streamlines. Souza et al. [SDBMLT11] compared the Okubo-Weiss
and winding-angle approaches to a wavelet packet decomposition
method (first introduced by Doglioli et al. [DBSL07]) to identify
where one method might perform better than another. Though these
techniques have been successful in the detection and tracking of
eddies, oftentimes, in-depth analysis must be limited to smaller
regions of the ocean or performed at coarser resolutions of the
data than desired. Ocean simulation models are complex and time-
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consuming to generate, and simulations produce large amounts of
data when executed at high resolutions [WPS∗16]. In-situ and high-
performance computing approaches might help a scientist to focus
on regions and parameters of interest [AJO∗14, WPS∗16], but in-
situ reduced datasets can still range from megabytes to gigabytes
in size [BTP∗17]. Parsing and exploring this data to find regions of
scientific interest remains a challenging task.

Current applications of statistical techniques to eddy analysis fo-
cus on examining anomalies in the data from established trends
or deviations from a known standard. In [CGG08], Chaigneau et
al. derived the mean of various eddy attributes in Peru over the
seasons. They determined the months with the most significant
deviations from the averages in order to identify anomalies that
might correspond to other oceanic activity at those times. Liu et
al. [LCS∗16] verified the accuracy of their eddy detection method,
which was applied to various regions in the ocean, by comparing
anomalies in their eddy statistics to anomalies in recorded mea-
surements of the same ocean regions. Chen et al. [CHC11] found
that strong inter-seasonal sea level variability in parts of the South
China Sea correspond to higher than normal eddy numbers in the
area. However, the statistical extent of many eddy-science papers
are limited to average, standard deviation, and variance, where final
conclusions are primarily made through guided visual inspection.
Data collected over decades is averaged and graphed, after which
an ocean scientist must painstakingly consider each time step to
determine whether there are significant deviations from a predeter-
mined standard. Techniques to automate this process, which would
reduce the data a scientist must interactively examine, are highly
desirable as they would greatly reduce effort and cost.
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Given the complexities of ocean data, a tool to aid a scientist
in more efficient exploration by intelligently reducing the search
space, would be of significant benefit. We present a unique statisti-
cal approach, change point detection, for parameter and data anal-
ysis of ocean data, to guide a scientist to regions of interest. Based
on criteria specified by the user, our method searches in a scientific
dataset to identify points of interest. The resulting information can
then be used to narrow the set of data to analyze and further re-
fine the parameter space of a simulation. The techniques presented
are general and can be used for simulation data, data captured by
a satellite, data resulting from an in-situ method, or data stemming
from other eddy analyses. Ocean analysis is a complex task and
helping scientists find events from their large simulations can save
valuable time and resources. The application of change detection to
ocean data is a novel approach with broad implications.

Change point detection, or simply change detection, is a widely
used statistical approach for targeted data reduction; it includes
regression-based methods, Bayesian methods, and multi-variate
methods, among others [BN∗93]. Change detection techniques are
used in various scientific disciplines. For example, Verbesselt et
al. [VHNC10] examined satellite images showing land cover of
vegetation over time to identify three types of events that might
determine change: seasonal effects, gradual climate variability
and abrupt change from deforestation, fires or floods. Myers et
al. [MLF∗16] applied change detection in-situ to a simulation of
NASA’s LCROSS project to identify time steps of significance.
Jeon et al. [JSC16] used change detection to find the magnitude
and frequency of extreme rainfall in areas around the world.

2. Methodology

A change point, in statistical terms, refers to a place or time such
that the observed data follows one distribution up to that point and
another distribution after that point [CG11]. Change point detection
refers to a broad category of algorithms where the goal is to find
change points in the data. Change detection algorithms generally
serve two main purposes: (1) to decide whether there is change
in the data and (2) to determine the locations where this change
is present. For eddy detection and analysis, our goal with change
point detection is to extract time steps of scientific significance, or
identify important parametric values in the detection algorithm.

The method described in this section and exemplified in the fol-
lowing section is applied to ocean data derived from a Model for
Prediction Across Scales-Ocean (MPAS-Ocean) [MD] simulation.
This multi-resolution ocean simulation dataset with identifiable ed-
dies, currents and other turbulent features is commonly used in the
ocean science community [RPH∗13]. From this ocean data, we ex-
tract Cinema image databases [AJO∗14] of surface kinetic energy.
A Cinema database is a collection of images, each image a perspec-
tive projection of the simulation data to a 2D image plane. When
generating the Cinema database, the scientist must ensure the res-
olution of the images is sufficient enough for their future analysis,
similar to how they must ensure the proper resolution of their orig-
inal simulation. With this MPAS-Ocean Cinema dataset, we over-
sampled the simulation to ensure that each component of the sim-
ulation is represented by several pixels, ensuring a high quality of
input for image feature analysis. We then apply the contour de-

tection method described by Banesh et al. [BSAH17] to identify
features of interest (Figure 1) from the Cinema databases. The con-
tour detection technique takes the gray-scale version of a Cinema
image as input. It applies a user-defined threshold value to assign
all pixels in the image above the threshold to a value of one, and all
pixels below the threshold to a value of zero. Every connected set
of pixels with a value of one is considered to be a derived contour.
The technique described is robust enough to track slow moving fea-
tures over small deformations such as the curvature of the Earth’s
surface. Change detection analysis is applied to a metric based on
these contours.

Figure 1: MPAS-Ocean image from a Cinema database of surface
kinetic energy, using a log-scale, hot-cold color-map (chosen for its
perceptual advantages and minimal color vision issues [TWSR17]).
Contour detection was applied with a threshold value of 77. De-
tected regions are highlighted in bright yellow.

2.1. Change Detection

There are various categories of change detection algorithms based
on various statistical concepts. We use a piecewise linear regression
model based on the work presented by Myers et al. [MLF∗16]. Al-
though originally designed to analyze pixel values in an image, we
have adapted this approach to detect changes in other types of data.
There are a variety of change point methods based on piecewise
representations, including the trend filtering approach proposed by
Tibshirani [T∗14] that uses the Lasso technique [HGT16].

A linear regression model estimates the least squares line fit to
a set of data points. The goal is to estimate the best relationship
between the dependent variable on the x-axis, and the independent
variable on the y-axis. However, if the relationship between the two
variables is non-linear, then the linear regression model will be a
poor representation of the data. This can be addressed using a piece-
wise linear regression model, where line segments are fit to subsets
of the data. A line segment is used to represent the data as long as
the error between the data and the fitted line segment is acceptably
small. When the addition of a new data point increases the error
beyond the acceptable threshold, this point is set to be the “change
point”, where a new line segment begins (Figure 2).
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Figure 2: Illustration of piecewise linear regression. The image on
the left shows a blue line segment fit to the first three data points.
The fourth point would introduce too much error to the linear re-
gression model to be a good fit to the blue line. Therefore, a new
line fit starts, as shown in green on the right, encompassing the
third and fourth points. The fourth point is considered the change
point.

The piecewise linear regression model determines change points
in the following way: The user first defines a buffer size, B, indica-
tive of the number of data points the algorithm will consider to find
a change point. For example, in a time-dependent data set, B would
correspond to the number of time steps to examine. This approach
ensures that even with very large data sets, calculations can still be
performed efficiently by focusing on smaller regions when desired.
Given a buffer size, B, the algorithm considers the first B time steps
in the simulation, denoted as curr, and the subsequent B time steps,
denoted as bu f f . It computes two residual sum-of-squares (RSS)
terms for a piecewise linear fit; they are:

RSS1 = RSScurr∪bu f f

RSS2 = RSScurr +RSSbu f f

RSS1 determines the RSS for the combined set of curr and bu f f
(a single line was fit to the combination of both sets), while RSS2
determines the sum of RSS for each set curr and bu f f (there were
separate lines fit to curr and to bu f f ). These values are used to
calculate the F-statistic associated with the two fits.

F =
(RSS1−RSS2

p2−p1
)

( RSS2
Tcurr∪bu f f−p2

)
,

where p1 = 2 and p2 = 4, with p1 and p2 denoting the number of
parameters in each fit; Tcurr∪bu f f is the total number of time steps
being considered. The F-statistic is used to determine whether one
line or two lines would be a better representation for the selected
region of data.

The user also provides a second input value, α. For any data
point in curr and bu f f , when the data point maps to a value of
the F-distribution that is larger than the given α value, this point is
considered to be a change point. For certain data sets, the α crite-
rion for change point detection can still identify a larger number of
change points than desired. Therefore, a third user-defined param-
eter is considered, δ

2. The F-distribution is closely related to the
variance of the two sets of data, and because in most cases, closely
located data are correlated with each other, the δ

2 parameter takes
this correlation into account when detecting change points. This
parameter directs the algorithm to make it more difficult to select

change points in the presence of auto-correlation of nearby points.
For more details on this piecewise linear regression model, see Sec-
tion 3 of [MLF∗16].

When applying this technique to eddy analysis data derived from
our Cinema image databases of MPAS-Ocean, we found that these
“more discrete” datasets resulted in more abrupt changes than the
examples used in [MLF∗16]. To address this issue, we added a
wrapper function to the algorithm that first searches for regions
in the data where two or more consecutive points have the same
y-value; that is, flat regions of no change. The first data point of a
flat region is automatically marked as a change point and the re-
gion of no change is marked as having no additional change points.
The piecewise linear regression algorithm is applied to every set
of remaining data points between these regions of no change to
determine any additional change points in the data. We introduce
an additional optional parameter, n f lat , ranging from two to n+ 1,
where n is the size of the entire data set. Only flat regions above
that number of points are considered and marked as having change
points detected, with a value of n+ 1 indicating that a flat region,
regardless of size, should not be considered. When searching large
data sets, flat regions of two or three points might not necessarily
indicate significant change, so this parameter allows a user to have
control over the change points detected. Additionally, the first and
last data points of a data set are always marked as change points.

As with most parameter-based eddy detection algorithms, in-
cluding the Okubo-Weiss method, the winding-angle method and
the 2D wavelet method [LCS∗16], the image-based contour de-
tection method presented in [BSAH17] requires a user to select a
threshold parameter to identify features of interest. This can be a
time-consuming process because a scientist must examine many
parameter threshold values in order to identify those of signifi-
cance. Using change point detection, a scientist can minimize this
search space according to a scientifically relevant degree of change.

Figure 3 shows the results of the change detection algorithm ap-
plied to the contour threshold parameter of the contour detection
algorithm presented in [BSAH17]. By holding the B and δ

2 values
constant, we can vary the α value to identify various degrees of
change. Figure 3(a) detects only the highest levels of change, from
zero to the maximum number of features detected. Figures 3(b)-(d)
gradually detect smaller levels of change until users can determine
a level that fits their needs.

3. Results and Discussion

The data we examine in the previous section is a sample data set,
included to illustrate the advantages of change detection for analy-
sis techniques applied to ocean data. However, as seen in Figure 1,
since the feature detection technique is applied to a color-mapped
image, other turbulent structures in the ocean have also been de-
tected as potential features of interest. For an eddy detection and
tracking application, this leads to inaccurate results. To compute
more precise results, in the case studies explored here, we apply
our change detection algorithm to the “raw data” in a Cinema im-
age database. In a raw data image, each pixel value is set to the
value of the underlying MPAS-Ocean simulation it represents. It is
not altered by a color-map or shading/lighting effects. Therefore, a
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(a) B = 10, α = 1e−15, δ2 = 1 (b) B = 10, α = 1e−9, δ2 = 1

(c) B = 10, α = 1e−5, δ2 = 1 (d) B = 10, α = 1, δ2 = 1

Figure 3: Contour detection [BSAH17] applied to the MPAS-Ocean Cinema image shown in Figure 1. We vary the contour threshold value
from 0 to 255 on the x-axis and plot the number of features detected on the y-axis. We apply change detection to this graph, holding B
constant at 10 and δ

2 constant at 1, while varying α. The blue dots are the change points detected, and the red lines show the piecewise
linear regression fits to the data. As α decreases, the number of change points decreases and only corresponds to the higher degrees of change
in the data. As α increases, change points corresponding to smaller degrees of change are included.

contour detection algorithm that is applied to this image provides
a more accurate representation of the features present in the simu-
lation. In the following case studies, we focus our attention on the
eddies formed by the Agulhas Retroflection in the South Atlantic,
also known as the Agulhas Rings, shown as the highlighted region
in Figure 4).

Figure 4: MPAS-Ocean Cinema “raw data” image of kinetic sur-
face energy. A log-scale, blue color-map is used for visualization
purposes; actual analysis is conducted on the underlying data. The
boxed region in yellow is the region of interest for our case studies.

3.1. Case Study: Change Detection to Find Contour
Threshold Parameter Values of Interest

To identify contour threshold parameter values of significance for
eddies in the Agulhas Retroflection region, we apply change detec-
tion to the region selected in Figure 4. We vary the contour thresh-
old parameter value from 0 to 255 on the x-axis and count the num-
ber of eddies detected on the y-axis. To analyze this data, we use the
following change detection parameter values: B = 4, α = 5, δ

2 = 1,
n f lat = 2.

The results are shown in Figure 5(a), with selected images cor-
responding to the 12 detected change points shown in Figure 5(b)-
(g). When analyzing these results, we can make certain assessments
of the data. The change point at contour threshold (ct) = 4 corre-
sponds to the value where the major eddies of the Agulhas Rings
are selected, including a few of the smaller meandering eddies and
the eddies at the far right that are just about to be separated. Thresh-
olds of ct = 3 and ct = 5 fail to find several eddies in this region.
Starting from the change point at ct = 8 and moving up to ct = 255,
every change point we detect corresponds to the start of a region of
no change. In each of these regions, the eddies detected at the be-
ginning of the flat regions remain the same until the end of the re-
gion. From these assessments, we can determine that the variation
of the eddy detection algorithm over the 256 values of the contour
threshold parameter range can be summarized by these 12 change
points. We have effectively minimized the range of values a scien-
tist needs to consider. Specifically, in the flat regions, as there is no
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(a) B = 4, α = 5, δ2 = 1, n f lat = 2

(b) Contour Threshold = 4, Eddies Detected = 14 (c) Contour Threshold = 8, Eddies Detected = 8 (d) Contour Threshold = 10, Eddies Detected = 7

(e) Contour Threshold = 41, Eddies Detected = 3 (f) Contour Threshold = 51, Eddies Detected = 1 (g) Contour Threshold = 104, Eddies Detected = 0

Figure 5: Eddy detection method applied to the selected region in Figure 4. In (a), change points are shown in blue. We vary the contour
threshold parameter (x-axis) to identify eddies in the Agulhas Rings region (y-axis). The change point in (b) corresponds to the major eddies
of the Agulhas Rings detected. In (c)-(g), in every flat region the eddies detected are the same; we simply lose a few eddies from one change
point to the next.

change in the eddies detected from start to end, an ocean scientist
can save significant time.

3.2. Case Study: Change Detection to Find Time Steps of
Interest

Finding change points in a time-dependent data set is one of the
most common applications of statistical change detection. In this
case study, we apply change detection to a time series of MPAS-
Ocean Cinema “raw data” images for 60 time steps; each time step
is five days apart. We remain focused on the region highlighted in
Figure 4 and select a constant contour threshold value of 13. We
iterate through time on the x-axis and count the number of eddies
detected on the y-axis. We use the following change detection pa-
rameter values: B = 3, α = 1, δ

2 = 1, n f lat = 2.

The results of change detection applied to this data are shown
in Figure 6. Here, we categorize our change points according
to slope. When the slope from timeStep(changepoint − 1) to
timeStep(changepoint) is positive, we mark the change point as
green. When the slope is negative, we mark it as orange. All other
change points are marked as blue. Of the 60 time steps analyzed, 10
are marked as change points with a positive slope. Change points
with positive slope generally indicate the start of increased activity

in this region. The two main types of increased activity occur when
a new eddy separates from the Agulhas Retroflection or when one
eddy splits into multiple eddies during its trek across the South
Atlantic. Of these 10 positive-slope change points, we determined
that six are time steps when a new eddy is separating from the Ag-
ulhas Retroflection, see Figure 6(b),(d). Visually, we determined
that no false negatives are detected; we have not missed any time
steps when a new eddy separates. Effectively, we have reduced the
search space for a scientist from 60 time steps to 10.

3.3. Discussion

One of the most significant outcomes of this work was the real-
ization of how novel it was to apply change detection to ocean
science. Our ocean science collaborators were not familiar with
the concept nor can it be found in oceanography literature. Since
large time-dependent datasets are commonly found in both obser-
vational data and ocean simulation, applying statistical techniques
such as change detection might lead to faster analysis or new in-
sights. Our ocean science collaborators were excited to see the re-
sults presented here, and motivated to explore other areas of ocean
science where change detection and other similar statistical ap-
proaches might impact their analysis.
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(a) B = 3, α = 1, δ2 = 1, n f lat = 2

(b) Time = 8, Eddies Detected = 8 (c) Time = 9, Eddies Detected = 9 (d) Time = 31, Eddies Detected = 7

Figure 6: Eddies are tracked in the Agulhas Retroflection region over 60 time steps. Change points are shown as a combination of blue, green
and orange, where green change points indicate a positive slope from the previous step to the change point, orange indicates a negative slope,
and blue indicates a zero slope. Green change points indicate the start of increased activity in the region: either a new eddy separates from
the Agulhas Retroflection, as in (b) and (d), or one eddy splits into multiple eddies, as in (c).

4. Conclusions

Eddy detection and tracking analysis is generally conducted using
parametric methods, optimally over long periods of time. Tools that
allow a scientist to process and analyze large amounts of data more
efficiently must automate parameter space search and provide guid-
ance on areas of scientific interest. We have presented a method that
supports a scientist in this way, leading to a significant reduction in
human effort. Our approach uses change detection as a valuable
tool to help with the reduction of parameter search space, iden-
tifying just a subset(s) of the data to explore. We have provided
two examples, one parameter-based and one time-based, support-
ing the advantages of our approach for scientific investigation of
ocean data.

We are interested is testing this algorithm on other regions with
high numbers of mesoscale eddies, such as the Kuroshio and Gulf
Stream, as it might identify other scientifically meaningful eddy be-
havior. It would also be insightful to apply this technique to eddies
at various ocean depths, and compare to the sea surface, as ocean
behavior alters with depth. We also plan to extend this research to
explore measurements captured from satellites and weather bouys
in the ocean. A comparison to eddy census data, when available,
would be useful to test the accuracy of our results. We also want to
generalize this work by considering other metrics beyond the num-
ber of eddies. For example, we can consider birth, death, splitting
and merging events of eddies. This would support scientific analy-
sis of more specific activity within a region. Finally, we would like
to devise and explore the use of multi-variate change point detec-
tion techniques, as they are likely to help with the identification of
points of interest in multi-variate ocean data.
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