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Abstract

The soil is an essential element of life. It is where people grow plants for food, fibers, and other materials. It also helps to
filter water and recycles wastes. Therefore, understanding soil physical/chemical characteristics and structural aggregation are
of vital importance. In this project, we work closely with the soil scientists to develop a visualization solution to the rapidly
gaining favor approach to soil horizon analysis using Portable X-ray Fluorescence (pXRF) devices. Our visualization, called
SOAViz, aims to provide soil scientists with rapid valuable insights into soil properties both visually perceptible with graphs
and imperceptible quantification features with statistical calculations from the data collected from pXRF equipment. SOAViz
was developed with analysis tasks solicited from the soil scientists and validated by applying to real soil profiles collected in an
Experimental Rangeland in Lubbock, TX, USA. This visual solution together with the quick scanning results from pXRF devices
offers a timely means of quantifying elemental concentrations in the soil horizons in large scale at a reduced cost.

1. Introduction

Agriculture is tasked with feeding a large and increasing popula-
tion with limited natural resources. In addition, soil health is gradu-
ally decreased due to unsustainable agricultural practices and envi-
ronmental management [Sta06], which leaves pressures on policy
maker on better solutions for managing and controlling the prop-
erties related to soil health. Because accurate soil health assess-
ments require many different types of measurements, researchers
have struggled to establish an effective unified method for quanti-
fying soil health [WCW™15]. Sensor-based approaches may pro-
vide a cost-effective, site-specific solution for soil health moni-
toring and management. Recently, using proximal sensors such
as portable X-ray fluorescence spectrometry (pXRF) to analyze
soil horizons is gaining favor [SCMM16, GIH* 18] with the abil-
ity to provide faster scanning results (in 60 to 90 seconds), it of-
fers a rapid means of quantifying elemental concentrations in the
soil [LBZ*12,PMWP15]. This paper focuses on analyzing the col-
lected data from proximal sensors.

While the scanning time reduced significantly, the analyzing
time is still a time-consuming process which may take days or
weeks and involve many people with different expertise for data
collection, chemical measurements, visual representation, and data
analysis. Currently, soil scientists use traditional software to ana-
lyze the scanned results such as Microsoft Excel or some compli-
cated packages such as ArcGIS and MatLab or even programming
languages such as R or Python to create custom visualizations for
the analysis part. Moreover, current soil data analytics approaches
are limited to very few dimensions to be considered at the same
time and therefore the analysis outcomes heavily rely on the skills
and experiences of the soil experts. In this paper, we propose a vi-
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sual prototype, called SOAViz, for analyzing the multidimensional
data from pXRF equipment on-the-fly. Hence, the main contribu-
tions of this work are:

e We propose an approach for analyzing soil chemical data
scanned by pXRF devices. The approach is implemented as a
web application and is portable, so soil scientists can upload soil
data to analyze on-field.

e We incorporate statistical features for detecting distribution and
correlations of chemical elements identified in the soil pro-
file [DW14b]. These features and visualizations provide scien-
tists a lens into both visually perceptible features (with graphs)
and imperceptible features (with statistical calculations) of the
soil profiles.

e We apply our solution to three soil profiles collected in an Ex-
perimental Rangeland in Lubbock, TX, USA and conduct an in-
formal user study with the soil scientists.

Overall, the tool has three overview visualizations: a) chemical
elements and how they are correlated to each other b) concentra-
tion of elements across the cross 2D section’s cells, and c) the
concentration of elements across the cross section’s horizontal lev-
els. The interaction capabilities are restricted to low-level routine
methods [AESO5]. The overview visualizations might be useful to
highlight outliers, and visual features [BBK*18, WAG06] in the
data distribution which is an important step in data-intensive sci-
ence [DW14a].

The remainder of the paper is organized as follows: we first de-
scribe the background and related research in this direction. We
present the project roadmap and describe the major components.
Then we give the detailed exposition of each proposed step with
visual examples. Finally, we conclude the paper with future work.
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2. Related Work

Visible and near-infrared (VisNIR) diffuse reflectance spectroscopy
(DRS) is a promising hyperspectral scanning technology that
has become popular for rapidly quantifying and identifying mul-
tiple soil parameters simultaneously [RWM™*06]. By compari-
son, VisNIR spectroscopy utilizes reflectance patterns from visi-
ble and near-infrared light emitted from a contact probe or mug
lamp to make determinations of soil properties. This hyperspec-
tral technique has achieved wider acceptance in soil science, ow-
ing to its cost-effectiveness and advantages over other analytical
spectroscopic and wet chemistry methods. VisNIR spectroscopy
perfectly complements many of the “gaps” not easily read by
PXRF [Weil6]. Emerging proximal sensor technologies such as
diffused reflectance spectroscopy (DRS) and portable XRF (PXRF)
can efficiently quantify soil salinity, total C/total N, and other
soil properties [ZWZ11,CWD™*17]. Coupled with georeferencing,
the combined use of DRS and PXRF enables us to predict mul-
tiple soil properties in a single day on-site with non-destructive
scans [WBZ14, CMd*18]. This paper focuses on proximal sen-
sor technologies, particularly the on-the-field collected data via
portable XRF devices [MWC*18].

In this section, we do not attempt to survey all visualizations so-
lutions for analyzing soil horizon data coming from pXRF devices
but to provide general tools that soil scientists often use for their
analysis. The pXRF devices, such as Vanta Handheld XRF Series
(Olympus Corporation) and the Handheld XRF analyzers (Hitachi
High-Tech Analytical Science), provide some basic statistics (sim-
ple listing) incorporated into their device screens. However, these
are mostly tabular format data displays or basic charts and usu-
ally does not scale well with the data sizes. Figure 1 shows two
typical screens from Vanta Handeld XRF Series built-in interface
adapted from Vanta Family X-Ray Fluorescence Analyzer User’s
Manual [Anal6]. In many cases, soil scientists need to create their
own visualizations to suit their analysis purposes which highlight
the trends and patterns in a large amount of collected data. In these
cases, the solutions could be generally categorized into three main
approaches as using a traditional method, advanced software, or
custom programming code.

The conventional approach to analyzing pXRF soil pedon scan-
ning results is using Microsoft Excel [ZWZ11]. Some advanced
software packages such as Global Mapper (Blue Marble Geo-
graphics, Hallowell, ME), ArcGIS (ESRI, The Redlands, CA),
NCSS 8 (NCSS, Kaysville, UT) [PMWP15, GIH" 18], MDI Jade
v9.1.1 [CWD™*17], GeoChem, and SAGA GIS [CMd* 18] require
a reasonable training time before being able to use them. In many
cases, soil scientists even need to use complicated programming
languages/packages like MatLab, R, and Python to analyze their
data [WORDI13]. These visual representations customized for in-
dividual cases based on the data collection settings and tasks are
time-consuming to be generated and usually required experiences
and skills in using the software packages and/or programming lan-
guages. For the same task, the analysis process can be repetitive
over the years. As the availability of pXRF devices, soil pedon data
are easier and faster to collect. Therefore, it is desirable for a uni-
fied framework for analyzing this type of data with consistency,
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Figure 1: Vanta Handheld XRF series built-in interface. This fig-
ure is adapted from Vanta Family X-Ray Fluorescence Analyzer
User’s Manual [Anal6].

high performance, and reduced cost. Our SOAViz prototype is de-
signed to fill in this gap.

3. SOAViz Stages

Our prototype aims to provide visual representations for the col-
lected data. The visualization can be generated on-the-fly so that
obvious mistakes in data collection can be corrected while the soil
scientists are still on the field (which otherwise very expensive or
irreversible). Figure 2 depicts the major phases of our system: data
importing, data processing, visualization, and interactions.

1. Data processing: The data processing stage consists of several
modules for data cleaning, adding of some important soil com-
pounds, and statistical calculations for the correlations of the
concentrations of the detected chemical elements (details are de-
scribed in Section 3.1).

2. Data visualizations: There are several interconnected graphs to
show the spatial chemical element distributions in the pedon,
and the statistical correlations among these elements are also
displayed (details are discussed in Section 3.2).

3. Interactions: Interactions allow selecting individual soil profile
to analyze, picking different chemical elements (or their com-
pounds) to compare their correlations and/or changing display
properties such as contour types, color ranges, and plot opacity
(details are described in Section 3.3).

While developing this visualization solution, we worked closely
with the soil scientists to implement the following analysis
tasks [CGM*17, CAS*18] required while analyzing pXRF soil
horizon scanning data:

e T1: Provide an overview of all detected chemical elements
and/or their compounds in the soil profile [KPS04].

e T2: Show and quantify the relationship between any two selected
chemical elements and/or their compounds [GE03].
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Figure 2: Major stages in SOAViz roadmap: data importing, pro-
cessing, data visualizing, and interactions.

e T3: Show and compare the spatial distributions of any two se-
lected chemical elements and/or their compounds over the 2-D
surface of the pedon.

e T4: Quantify the distributions of any two selected chemical ele-
ments and/or their compounds over the pedon horizons.

e T5: Show and quantify the difference between the traditional (6-
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horizons) soil profile approach and the newly exploring (10-cm-
horizon across 13 horizons) approach to soil profiling.

e T6: Detect and alert outlying data points [WAGOS5] that might be
caused by the mistakes happened during on-field soil scanning.

3.1. Data processing

The soil scientists provided us three soil profiles to evaluate and de-
velop this visualization solution. The soil profiles were located on
an Experimental Rangeland in Lubbock, TX, USA. The soil pits at
each site were excavated to a depth of 1.2m. Before the morpho-
logical process, strings were used to set up a grid across the entire
pedon; each grid cell was 10cm?®. A column and row numbering
system was applied, such that each grid cell had a unique identifier.
Then, a Vanta Series M pXRF (Olympus Corporation) was used to
scan the soil in each cell in situ.

After the data is imported from the pXRF devices, the data is
then cleaned such as removing missing or lower than "LOD" (Limit
of Detection) values. The remained pXRF elements detected in
these soil horizons include 20 elements (Al, Ca, Cr, Cu, Fe, K, Mn,
Nb, Ni, Pb, Rb, S, Si, Sr, Th, Ti, V, Y, Zn, and Zr). Besides the re-
ported values on individual chemical elements, several important
soil compounds such as Ruxton Weathering Index (SiO,/Al,03),
Desilication Index (SiOy / (Al O3 + Fep O3 4 TiO»), and Stable Ra-
tio (Ti/Zr) [SCMM16] are also calculated and added to the soil
profile to aid the soil properties analysis.

The statistical modules help to calculate several statistics while
analyzing soil profiles. Sample correlations [SC80] among the el-
ements are used to show the relationships among them. Box-plot
statistics [HN98] are calculated to show the distributions of ele-
ment contamination in the thirteen measured horizons. R-squared
scores [Nag(7] are used to quantify the goodness of fit between
the exploring 10-cm-horizon across 13 levels approach versus the
traditional 6-horizon-levels approach to soil profiling. We use the
R-squared score in this case because it gives an estimate of the
relationship between the movements of the two measurement ap-
proaches. The R-squared score of 1.0 represents a perfect match,
and the R-squared score of 0.0 represents a not good match (simply
fitting a curve to its mean value resulted in R-squared score of 0.0).
Also, it provides sufficient generality [CW97] to cover reasonably
the correlation between these two non-linear curves of measured
data.

The scanned pedon is divided into 13 (indexed from A to M)
by 10 (indexed from 1-10) discrete cells of 10cm by 10cm each.
Also, in some cases, outlying data in these discrete cells might be
removed due to the mistake during scanning. On the visualizations,
the soil scientists would like to have a smooth view of the chemi-
cal element contamination distributed on the pit. Therefore, we use
Krigging algorithm [VBO5] to interpolate the data. This method is
widely used in the spatial analysis which is governed by the Gaus-
sian process regression to give better smoothness of the data distri-
bution.

3.2. Data visualizations

To realize the analysis tasks required by the soil scientists (as de-
scribed earlier in Section 3), coordinated multiple views [Rob07]
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is adapted to show a different perspective of chemical elements:
the correlation graphs, the scatter plots and linear regression line,
the contour-map/heat-map, the box-plots, and the goodness of fit
graphs. These views are linked.

The correlation graphs: To give an overview of all detected
chemical elements and their relationships (task T1 and task
T2), SOAViz calculates the sample correlations among the ele-
ments and the compounds to generate a force-directed network
graph [BOH11], as shown in Figure 3. Each vertex represents a
chemical element (or a chemical compound) and overlaid by its
contamination contour to guide users during the exploration pro-
cess. A link indicates the correlation between two nodes: the thicker
the link, the higher the correlation. The color of the links encodes
positive/negative correlations. Notice that the highly connected ver-
tices represent similar contour patterns. Users can use the slider
provided at the bottom right corner to refine the relationship net-
work and focus on the strongly correlated chemical element. As
we explore the different soil profile, the relationship network varies
significantly across different profiles since they are collected from
various locations and hence represent different soil classifications.
Ruxton Weathering Index Desilication Index, and Stable Ratio are
abbreviated as Ri, Di, and Ti in the network view. As shown on
the top of Figure 3, Ri and Di are positively correlated in this soil
profile.

Correlation graph

E) 4

Ti
Correlation thre@hold

075

Figure 3: The correlation network of chemical elements and their
compounds in a soil profile. The vertex thumbnails show their
chemical contamination maps.

To verity the correlation of any two chemical elements or the
compounds (visualization task T2), a scatterplot is generated on
demand. As depicted in Figure 4, each data point is an instance
(or a pXRF shot) on the 2D soil profile grid. A linear regression

line [NWKS89] is plotted as a reference for the estimated correla-
tion. Furthermore, the Pearson correlation score can be displayed
on top of the scatterplot to quantify and compare the relationship
between any two selected chemical elements.
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Figure 4: The scatterplot and the linear regression line of two se-
lected chemical elements (K vs. Al) from the network in Figure 3.

Figure 5 shows the scatterplot matrices [DAW13] of all pairwise
correlation between 21 chemical elements in the two sample soil
profile collected via the portable XRF device. The scatterplots are
color-coded by their Pearson correlation scores: red for high corre-
lation, green for no association. The variables (chemical elements)
have been ordered so that high correlated variables appear on the
top of the matrix triangles.

The contour maps/heatmaps: Relying on the string settings
that were used to physically impose a grid across the profile dur-
ing the on-field scanning, a contour-map or heatmap (can be made
interchangeably on the user selection from the menu at the top of
our visualization tool) is generated to mimics the actual spatial dis-
tributions of the element concentrations over the 2D surface of the
pit (task T3). In case of the contour map as shown in Figure 6(a),
the data is first interpolated using the Krigging algorithm (as de-
scribed in section 3.1) to have smooth data over the pit. On the
other hand, the discrete heat-map shows the discrete data scanned
from the corresponding cells as in Figure 6(b). Notice that pXRF
devices iteratively shot at the center of each cell.

The box-plots: The box-plots are used to show distributions
of the selected elements across the soil horizons of the pedon
(visualization task T4) as shown in Figure 7. Box-plots are the
standardized methodology the soil scientists use to graphically
visualize the statistical distributions of the concentrations of the
chemical elements across the soil horizons. In particular, boxplot
displays the distribution of data based on a five number sum-
mary: minimum, first quartile, median, third quartile, and max-
imum [Will7]. It also shows the outliers which are not in the

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.



V. Pham and T. Dang / SOAViz: Visualization for Portable X-ray Fluorescence Soil Profiles 37

. - | |
Monotonic g i \t . “~
’ L TR WMMWU

S

N\,

160k

140k

120k

100K

Monotonic
10

70k

Figure 5: Overview of all chemical pairwise correlations in two
soil profiles. Each data point is an multidimensional instance (on
the 2D soil profile grid) collected via a pXRF shot.

range from minimum to maximum (visualization task T6). More-

over, remove outlying data before applying other analysis tech- Figure 6: The spatial distributions of the contamination of the de-
niques are recommended by many works in the soil research field tected chemical elements: (a) contour map (b) heatmap.

( [ZTLX09,FZZ*16, BEA18]), as to improve the accuracy of the

soil profile analysis. We can quickly notice that the chemical con-

centrations vary significantly as we go deeper.
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Figure 7: The box-plots to show the distribution of the element
contamination over the horizons of the pedon. The Ca and Al con-
centrations vary significantly as shown in the last two rows.

The goodness-of-fit graphs: With the availability of the pXRF
devices and its improvement in getting the faster scanning results,
the soil scientists would like to explore a new approach to soil hori-
zon analysis using 10cm horizons (across 13 horizons) instead of
the traditional 6-level horizon approach. Comparing to the tradi-
tional approach, the newly exploring strategy provides finer details
of the chemical element contamination distribution over the pit and
better accuracy by having higher sampling frequencies in the hor-
izontal and vertical directions. Figure 8 displays the curves to vi-
sually represent the goodness-of-fit of the averaged concentration
values of these two approaches (task TS5). To quantify the goodness-
of-fit between the two curves, the R-squared score (described in
section 3.1) is calculated and displayed on top of the element pro-
file.

Ca Concentration, R-Squared:0.831 Al Concentration, R-Squared:0.769
(] ]

w
00 L 100 ‘>
0 ﬁ ] //

5 o 4 5 [

10cm Horizon — 10cm Horizon

Figure 8: Goodness-of-fit graphs to show the difference/similarity
between the traditional 6-level-horizon approach and 10cm-
horizon across 13 horizons approach to soil horizon analysis.

3.3. Interactions

Users can select any uploaded pXRF soil horizon profile to vi-
sualize from the top menu of the visualization. All the visualiza-
tion views are interconnected, for instance, users can choose any
two nodes on the network graph visualization in Figure 3, the se-
lected nodes will be highlighted (with black borders), and all the
views will be updated to compare the two selected elements. Sim-
ilarly, users could also choose individual chemical elements (or
compounds) by names to analyze from the selection boxes at the
bottom of the contour-map/heat-map views as in Figure 6 and all
other views will be updated accordingly.

There are also several interactions to customize individual views
while analyzing the data. On the correlation network graph in Fig-
ure 3, users can use the slider at the bottom to set the correlation
threshold, the network graph will only show the links for nodes
with an absolute value of the correlation greater than or equal to
this threshold. The soil scientists would often like to refer back the
digital photo taken of the pedon surface while observing the dis-
tributions of the contamination of the chemical elements. At the
bottom of the contour map/heatmap views, there are sliders for the
user to set the opacity of these graphs. Users can lower the opac-
ity to view the soil color and content in the digital photo in the
background. Another essential analysis task is that the soil scien-
tists would like to have different views of the contamination levels
on the contour-map/heat-map views, so we provide three different
color ranges as coarse (5 color ranges), fine (10 color ranges), and
smooth (20 color ranges) to select from the top of the system.

4. Implementation

For portability, ease of use, and multiple platform compatibil-
ity, SOAViz is implemented as JavaScript based web applica-
tion using D3.js [BOH11] and Plotly.js [SPH*17] libraries. The
source codes, video, and the web demo of our visualization
are available on our Github project at https://github.com/
iDataVisualizationLab/Soil.

5. Evaluation and discussion

While developing this visualization solution, we worked closely
with two senior soil scientists: One post-doc researcher and a se-
nior Professor with more than ten years of experience in analyzing
soil horizons and soil profiling with pXRF devices. With their ex-
periences in this field, they provided us with clear, concrete, and
important soil horizon analysis tasks and we worked together to
form visualizations, interactions, and statistics for the tasks. We
frequently meet to solicit analysis tasks required and validate pro-
posed visualizations and interactions with application to the real
soil profiles provided by the soil scientists.

The soil scientists are currently using our solution in analyz-
ing soil horizon profiles in their lab. They reported to us a good
use-case regarding analyzing Profilel (out of the three soil horizon
profiles given to us), SOAViz helps to highlight the extremely high
value of Ca concentration in the cell F6 visually in the contour
map as shown at the red arrow in the panel (a) of Figure 6. The soil
scientists explained that it could be due to an error that the pXRF

(© 2019 The Author(s)
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equipment was hitting directly to rock in this cell during the scan-
ning time. This outlying cell was then removed from soil horizon
Profilel for better accuracy of the analysis.

Current visualization solution receives positive feedback from
these experts as it provides a common framework for analyzing soil
horizon scanning data using pXRF devices. Also, they stated that
pairing between fast scanning results using pXRF devices and more
rapid analysis process using SOAViz is promising solution to enable
us to create soil profiles for a large number of pedons at consistent
results, lower cost, and shorter time.

To complete this promising solution, there are several directions
that these experts expected us to incorporate in future develop-
ments. The first one is being able to connect and pull data directly
from pXRF devices using various wireless communication chan-
nels such as WiFi and Bluetooth. This helps to reduce the data im-
porting process. The second direction is about enabling the users to
define more custom color ranges due to different soil profile would
have different ranges of chemical contamination values. The cur-
rent solution of fixing 5, 10, or 20 color levels may work in many
general cases as default settings but would still be better to allow
users to set color ranges for some specific cases.

We have also initiated several interviews with four soil survey
staff from the United States Department of Agriculture (USDA),
Natural Resources Conservation Service at Lubbock County, and
received positive feedback from them. However, in the future, we
will continue to work more with the soil survey staff to make this
project become a standard framework in analyzing soil horizons
using pXRF devices.

6. Conclusion and Future work

In this project, we worked closely with two senior soil scientists
to develop an on-the-fly visualization solution to help to analyze
the soil horizon pXRF scanning results which otherwise may takes
days. The solution supports several visualizations and interactions
to provide perceptions about the data. Also, to quantify the data
correlation, several statistical calculations are computed and dis-
played on the solution. Interactions are provided to aid the analysis
tasks. The system allows the user to navigate through different pro-
files or compare individual elements or change display properties
such as opacity and color. We also applied our solution to three soil
horizon profiles provided by the soil scientists and received posi-
tive feedback from the soil scientists and the soil survey staff from
USDA.

In the future, we will continue to work on several essential fea-
tures such as connecting to the pXRF devices using WiFi or Blue-
tooth connection to pull data directly from them to improve time
and convenience and to enable on-field analysis. One another di-
rection to speed up the analysis process would be being able to de-
ploy our solution directly in the pXRF devices. Also, we will work
more with the soil survey staff from USDA to make this project be-
come a standard framework in analyzing soil horizons using pXRF
equipment.

© 2019 The Author(s)
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