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Abstract
The Multiple T-Maze study is one of the standard methods used in ethology and behaviourism. In this paper we extend the
current state of the art in analysis of Multiple T-Maze data for animal cohorts. We focus on pattern finding within animals’
paths. We introduce the Sequence View which makes it possible to quickly spot patterns and to search for specific sub-paths in
animal paths. Further, we also evaluate four different metrics for string comparison and two widely used embeddings to support
interactive clustering. All views are fully integrated in a coordinated multiple views system and support active brushing. This
research represents a step towards (semi)-automatic clustering for Multiple T-Maze cohort data, which will significantly improve
the Multiple T-Maze data analysis.

1. Introduction

Ethology and behaviourism deal with the scientific and objective
study of animal behaviour. Such studies are not performed only
to understand animals, but also to better understand physiological
processes, neural mechanisms, or learning and aging processes in
humans. Conducting control studies with humans is almost tech-
nically impossible, and clearly ethically unacceptable. Further, ag-
ing processes last very long in humans, and rodents, for example,
have a much shorter expected life time and a faster aging (the ex-
pected lifetime of Sprague-Dawley rats is about 2 years [Bir13]). A
rodent’s brain shows significant similarities with the human brain
[BN06], which makes rodents a premium mean for studying vari-
ous processes. A better understanding of learning and memory in
relation to the aging of rodents leads to a better understanding of
similar processes of humans [BLJ94, HES∗06, WPF09, LWF11].
Understanding of the aging process leads to a better health care
and helps to cope with the problems of today’s aging society. The
idea of studying the rodents’ behavior and their learning process
is not new. Willard S. Small used the behavior of rats in mazes
as a measure of learning already at the begin of the 20th cen-
tury [Sma01, SN27].

Various types of ethological studies have been designed for dif-
ferent research tasks. The Multiple T-Maze, a maze composed of
multiple T-shaped segments, is a widely used experiment for study-
ing learning processes. The maze is built so that at each junction the
view to the left and to the right looks exactly the same. There are no
visual clues on the correct way. As a motivation there is always a
reward (food) at the end. Animals are set in the maze several times
a day during the first week, and once more after another week. The
animals in the maze have to memorize the path using short term
(daily repetitions) and long term memory (final repetition after one

week). One method to analyze the animals behaviour is to track
their movements throughout the maze and compute trajectories.

Evaluation of these trajectories is done using quite a simple sta-
tistical evaluation. Bechtold et al. [BSM18] introduced an interac-
tive visual approach to the analysis of Multiple T-Maze data. Our
work extends such an approach by means of an automatic analysis.
The experts are interested in trajectories of the cohort of animals.
They want to see if there are patterns in the behavior of the animals.
Are there certain sub-paths that appear more often than some oth-
ers? Are there clusters of the paths? Answering such questions with
a pure interactive solution is tedious. Automatic analysis should
complement an interactive solution. However, the automatic analy-
sis of such complex data is challenging. Due to data complexity, the
analysis requires a visual feedback and means to refine results in-
teractively. Only a combination of interactive and automatic system
can yield satisfactory results here.

In this paper we focus on the animal trajectories in a Multiple
T-Maze. Our results should be seen as an extension of an interac-
tive approach as suggested by Bechtold et al. [BSM18], and not as
an alternative to interactive analysis methods. In order to explore
trajectories, we also use sequence search mechanisms, where users
can search in the gate sequences of the animal cohort. We imple-
mented the newly proposed approach into a coordinated multiple
views system which is used to provide feed-back, refine searches,
and define cohort subsets. The main contribution of this paper is
a novel way of analysis for Multiple T-Maze data which combines
interactive and automatic analysis methods. In addition, we also de-
scribe in detail how we analyze Multiple T-Maze data, and integrate
everything in an interactive visualization system.
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2. Related Work

Our work is related to several research directions as our approach
involves an interactive visual analysis system which takes advan-
tage of humans in the exploration loop, and of automatic analysis
methods. Such combinations belong to the field of visual analyt-
ics [TC05,KKS∗11], whose systems have been deployed in numer-
ous domains. In addition, we rely on the well known coordinated
multiple views paradigm [Rob07].

Probably the most related papers to ours is previous work on
interactive visual analysis for open field data [MWSB12] and for
Multiple T-Maze data [BSM18]. In contrast to those papers, we
use different metrics for sequences data and we then project the se-
quences to a 2D embedding using multidimensional scaling [CC00]
and t-SNE methods [vdMH08]. Additionally we incorporate se-
quence search mechanisms.

Visual analysis of various movement data is a well researched
topic [AAB∗13]. There are also papers dealing with more spe-
cific movement tasks, e.g., movement in sports [SJL∗18], move-
ment in air traffic [AAFG18], or movement of animals in the
wild [SvL16]. Adrienko et al. [AA13] examine visualisation tech-
niques and movement clustering on the example of primarily traffic
trajectories. He et al. [HCC∗19] show state-of-the-art visualisation
techniques for trajectories such as space-time density views and
flow maps.

Another application area for way finding tasks is psychology.
Siegel and White [SW75], Montelo et al. [MHRW04], and Ji-Sun
et al. [KGMQ08], for example, focus on human way finding. If a
way finding study has to be conducted in a controlled environment,
rodents represent the first choice. The Multiple T-Maze is a well de-
fined and described experiment [HEB∗00, PJCK03]. Bubna-Littitz
et al. [BLHKN81] found out that the Multiple T-Maze is the best
means for studying the learning process as variations appear much
earlier than in other methods.

In addition to the use of simple scalar features, such as total way
traveled or time needed to find the goal, we propose to examine
paths in more detail. Clearly, it is important if an animal finds the
way and how long it takes. But it is also interesting to study the
ways of the cohort; are there any patterns in behavior or do animals
which do not find the goal get lost in the same way, for example.
Our research makes such an analysis possible.

3. Multiple T-Maze Data and Analysis Tasks

The analysis tasks as identified by Bechtold et al. [BSM18] are un-
satisfactory for finding patterns within the paths. In this work we
expand the analysis tasks to accommodate the experts’ wish to de-
tect patterns in the animals’ movement behaviour. Experts seek to
examine the data of animals following a certain succession of gates,
i.e. the sequence of T-segments in which they traverse the maze.
Additionally they are interested in how much time animals spent in
each successive T-segment. Lastly, as finding similarities between
paths can be costly, experts desire a way to (semi-)automatically
cluster paths together. The examination of patterns should be pos-
sible on a high level, i.e. on the whole cohort, and on a specific
group of animals; for example paths containing a specific travers-
ing sequence of the gates or all paths belonging to a specific cluster.

Figure 1: The Multiple T-Maze is divided into T-shaped segments.
Each segment is labeled with a unique letter to enable the compu-
tation of sequences. The ideal sequence is SBDFHJLNOX.

Therefore the tasks are abstracted as follows:

(i) High Level Tasks

H1 Identify sequence of T-segment traverse of all paths
H2 Identify time spent in each T-segment while traversing
H3 Cluster similar groups of paths

(ii) Medium Level Tasks

M1 Identify order of traverse of a sub-group of paths
M2 Analyse paths containing a specific traverse order

The Multiple T-Maze data set consists of various types of attributes.
For the computation of descriptive statistics mostly categorical and
numerical attributes are used and explored using common statistical
views. The paths’ trajectories consist of Cartesian coordinates and
are the starting point for tackling the above declared tasks. Each
gate segment is labeled with a unique letter. Figure 1 shows the used
Multiple T-Maze divided into T-segments and the assigned labels.
We know in which segment a trajectory coordinate is situated and
how many coordinate points are tracked per second. Based on this
knowledge we build a data structure combining the label of the
traversed segment and time spent in it. For example the value {S,
1.5} means that an animal spent 1.5 seconds in the start area. A
sequence data set consists of all successive label and time values
throughout a path. To examine the sequences we implemented a
new view, the Sequence View, which is explained in detail in section
4. The metrics we use for the clustering task H3 use a string as
input data. Therefore we extracted a single sequence string from the
trajectories. The string ’SBABD’ e.g., represents an animal which
moved from the start segment S to the first T-segment B, chose the
wrong corridor A and moved back to B, and then to the second T-
segment D. The ideal path equates to the string ’SBDFHJLNOX’.

4. Multiple T-Maze Sequences Analysis

The Sequence View is developed to display the animals’ traversing
sequence in a compact and easy to interact manner. It allows the
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visual exploration of all sequences in the data set, as required for
task H1. A sequence is depicted as a train of boxes, where each
box represents a single T-segment or label. To visibly distinguish
the individual segments, each label is assigned a color, spanning a
gradient from dark brown for the first label, to light blue in the mid-
dle and dark blue at the end. This linear color scheme is mapped to
the labels in alphabetical order and focuses on the orderly traversal
through the maze. Other color mappings could highlight, for exam-
ple, the deviation from the ideal path. Optionally a legend visually
connecting the colors to the segment labels can be displayed. The
sequence view shows all sequences at once to give an overview of
their structure. To view sequences in more detail, scaling in both
directions is possible. Figure 2a shows a vertically scaled section
of the Sequence View. This view enables the easy distinguishing
of the lengths of the different sequences, indicating how much an
animal is moving within the gate. Here it is possible to quickly per-
ceive patterns, such as, for example, a periodic, mirrored pattern
of brown, light and dark blue in the 3rd sequence from the top in
figure 2a. The sequence depicts repeated movement between the
earlier and the later segments, indicating turns along the path.

Optionally the user can select time-dependent sequences. Here
the size of the box is not uniformly scaled but it depends on the
time spent in the corresponding segment as requested for task H2.
Figure 2b shows the same section of sequences as figure 2a, but
this time with time-dependent scaling. Now it becomes apparent in
which segments an animal dwelled for some time and which seg-
ments it quickly passed. Comparing these two views, it is easy to
see that a sequence with many values does not automatically corre-
spond to a long run. The 7th sequence, for example, is of average
length when uniquely scaled, but the longest when time-dependent.
I.e., the animal did not move between the segments so much but a
lot within single segments. The 7th sequence also has a large dark
blue strip, indicating that it did not move out of the last gate seg-
ment for some time.

The Sequence View, just as the other views, is embedded into a
Coordinated Multiple View system. This allows the selection of a
subset of the data set in any view via brushing and highlighting the
selection in other views (the requirement for M1). The Sequence
View is used when sequences themselves are of main interest. For
a deeper exploration of the time component in the data, other views
are more suitable, as Bechtold et al. [BSM18] have done in their
work.

Another important aspect of our work is the brushing of data
which follow a specific sequence order, as desired in task M2.
Therefore we implemented a simple string-based search, as we al-
ready have a sequence represented as a single string. This allows to
easily select all paths that, e.g., return from segment D to segment B
by searching for ’DB’. Though this is possible in the Gate-O-Gon
as introduced by Bechtold et al. [BSM18], the other way around,
i.e. ’BD’, is not easily accomplished. With the string-based search
it is also easy to search for paths turning around through specific
segments at some point by search for ’BD*DB’ for example. It is
also possible to exclude a certain sequence, e.g., ’~BS’ excludes all
paths with returns from segment B to the start area. This allows for
a far more in-depth exploration of the Multiple T-Maze data.

We focus on sequences themselves, as we want to explore the

data deeply. We are interested if there are some patterns or clusters
of sequences which would manifest similar trajectories. The Multi-
ple T-Maze trajectories can be very different. The ideal case is if an
animal goes straight to the end area. So, we do have an ideal path.
The animals that reach the end area can do it in numerous ways.
Exploration of this variation is the main goal of our approach.

In order to cluster trajectories and to see the patterns we need
a metric to compare individual trajectories. We have tested four
methods known from text sequence comparisons. As the length of
a sequence is not necessarily the main criterion for similarity in our
case, we choose metrics, which do not penalize difference in length.
Imagine an animal that swings between two gates for some time,
and then, finally, continues to the end. The swinging would make
the sequence very long. Another animal which makes a wrong de-
cision at four different gates (but does it only once per gate) could
have a relatively short sequence. The question is now which one is
closer to the ideal? Basically there is no right answer to this ques-
tion. We choose the following four metrics for string comparisons
in our study, each using different algorithms to compute the dis-
tances to the ideal string and therefore revealing different clusters:

1. Jaro-Winkler
2. longest substring similarity
3. MLIPNS
4. Needleman-Wunsch

The methods were selected by the criteria of assumed capability
to determine relative similarity between the routes, i.e., animal be-
havior exhibiting similar patterns, by calculating the correlation of
measured string distance and percentage of common substrings.
The chosen methods compensate for different string sizes and have
a better correlation with the ratio of common substrings. Addition-
ally, Needleman-Wunsch takes many possible random error pat-
terns into account, which in the case of our animal trajectory data
can be interpreted as similar movement behaviour. The Python
text distance package [Str] is used to compute the distances. Once
the distances are computed they are used to compute 2D embed-
ding of the sequences. We compute MDS – multidimensional scal-
ing [CC00] and t-SNE – t-Distributed Stochastic Neighbor Embed-
ding [vdMH08] for each of the four metrics.

The user can show the embeddings now in a coordinated multi-
ple view setup, and explore the sequences by means of interaction.
Figure 3 shows results for the 4 metrics and two embeddings. By
viewing the 8 scatter-plots side-by-side the user can detect diverse
clusters and explore how they relate to other clusters. The top row
shows the MDS and the middle row shows t-SNE approach. Four
differently colored brushes are shown in order to illustrate differ-
ences between the approaches. The bottom row shows the trajec-
tories views corresponding to different brushes. We scale the point
size according to the number of trajectories which are represented
by a point. Some algorithms map the same sequences to the same
point (which becomes larger then), and some scatter the points.

Note the completely different layouts for the eight cases we ex-
amine in order to see which approach could be used for Multiple
T-Maze data. We start by brushing the large point in the third view
in the top row. It corresponds to ten exactly same sequences. These
are ideal paths, as shown in the first bottom view. Some approaches
scatter the points quite a lot (see orange points in all scatter plots).
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(a) Section of the Sequence View with uniformly scaled sequence boxes.
(b) The same section of the Sequence View with time-dependent scaling
of sequence boxes.

Figure 2

Figure 3: MDS (top row) and t-SNE (middle row) embeddings using four proposed metrics are shown. We brush various clusters in single
views and check if they stay together in all views. The metrics yield very different results. The bottom row shows corresponding animal
trajectories for the brushed data.

The purple brush shows a cluster in MLIPNS t-SNE embedding.
Again, many views do not show the purple points together. It seems
that the Needleman-Wunsch metric groups similarly long strings
together. We will further explore the Needleman-Wunsch metric
and use it for automatic clustering of the trajectories.

5. Conclusion

The extension of an interactive visual analysis tool has proposed
by Bechtold et al. [BSM18] by integrating mechanisms for easy
pattern finding as proven to be useful. Comparing sequences and
finding paths which contain a specific sequence of traversed Mul-
tiple T-Maze gate segments is simple in the Sequence View. It al-
lows more in-depth brushing of the data than current state of the

art methods. Though the search function is very rudimentary at the
current state and can be improved to allow multiple and more com-
plex search queries, it allows more deeper data exploration.

For the clustering of the Multiple T-Maze data we used four dif-
ferent metrics which compute the distance of the sequence, repre-
sented as a string, to the ideal sequence: the path from the start to
the end area with no wrong turns. The currently used metrics re-
sult in only small clusters, which indicates that we have not found
a suitable metric as of yet. But Needleman-Wunsch metric needs
further investigation. Alternatively, clustering could be improved if
it is not based only on the sequence string but some other criteria
such as the distance between the paths or the divergence from the
perfect, shortest path through the maze.
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